

SAF Software

SAF Software is available on github [https://github.com/markcmiller86/SAF]

SAF User Manuals

	Sets and Fields (SAF) API
	Table of Contents
	Permuted_Index [chapter]

	Concept_Index [chapter]

	Introduction [chapter]

	Environment [chapter]
	Members
	SAF_ASSERT_DISABLE [Public symbol]

	SAF_ERROR_REPORTING [Public symbol]

	SAF_POSTCOND_DISABLE [Public symbol]

	SAF_PRECOND_DISABLE [Public symbol]

	SAF_REGISTRIES [Public symbol]

	SAF_REGISTRY_SAVE [Public symbol]

	SAF_TRACING [Public symbol]

	Error_Handling [chapter]
	Members
	SAF_CATCH [Public symbol]

	SAF_CATCH_ALL [Public symbol]

	SAF_CATCH_ERR [Public macro]

	SAF_TRY_BEGIN [Public symbol]

	SAF_TRY_END [Public symbol]

	SAF_error_t [Public datatype]

	saf_error_str [Public function]

	Library_Initialization [chapter]
	Members
	_saf_gen_stdtypes [Public function]

	saf_final [Public function]

	saf_init [Public macro]

	Library_Properties [chapter]
	Members
	saf_createProps_lib [Public function]

	saf_freeProps_lib [Public function]

	saf_setProps_DontAbort [Public function]

	saf_setProps_ErrFunc [Public function]

	saf_setProps_ErrorLogging [Public function]

	saf_setProps_ErrorMode [Public function]

	saf_setProps_LibComm [Public function]

	saf_setProps_Registry [Public function]

	saf_setProps_StrMode [Public function]

	saf_setProps_StrPoolSize [Public function]

	Path_Info [chapter]
	Members
	saf_freeInfo_path [Public function]

	saf_getInfo_errmsg [Public function]

	saf_getInfo_hdfversion [Public function]

	saf_getInfo_isHDFfile [Public function]

	saf_getInfo_isSAFdatabase [Public function]

	saf_getInfo_libversion [Public function]

	saf_getInfo_mpiversion [Public function]

	saf_getInfo_permissions [Public function]

	saf_getInfo_staterror [Public function]

	saf_readInfo_path [Public function]

	Databases [chapter]
	Members
	SAF_NOT_SET_DB [Public symbol]

	saf_close_database [Public function]

	saf_open_database [Public function]

	saf_update_database [Public function]

	Database_Properties [chapter]
	Members
	SAF_DEFAULT_DBPROPS [Public symbol]

	saf_createProps_database [Public function]

	saf_freeProps_database [Public function]

	saf_setProps_Clobber [Public function]

	saf_setProps_DbComm [Public function]

	saf_setProps_MemoryResident [Public function]

	saf_setProps_ReadOnly [Public function]

	Sets [chapter]
	Members
	SAF_NULL_SET [Public macro]

	SAF_UNIVERSE [Public macro]

	saf_declare_set [Public function]

	saf_describe_set [Public function]

	saf_find_matching_sets [Public function]

	saf_find_sets [Public function]

	saf_get_set_att [Public function]

	saf_put_set_att [Public function]

	Collection_Categories [chapter]
	Members
	SAF_SELF [Public macro]

	saf_declare_category [Public function]

	saf_describe_category [Public function]

	saf_find_categories [Public function]

	saf_get_cat_att [Public function]

	saf_put_cat_att [Public function]

	Collections [chapter]
	Members
	saf_declare_collection [Public function]

	saf_describe_collection [Public function]

	saf_extend_collection [Public function]

	saf_find_collections [Public function]

	saf_same_collections [Public function]

	Subset_Relations [chapter]
	Members
	SAF_BOUNDARY [Public macro]

	SAF_COMMON [Public macro]

	SAF_EMBEDBND [Public macro]

	SAF_GENERAL [Public macro]

	saf_declare_subset_relation [Public function]

	saf_describe_subset_relation [Public function]

	saf_find_subset_relations [Public function]

	saf_get_count_and_type_for_subset_relation [Public function]

	saf_read_subset_relation [Public function]

	saf_target_subset_relation [Public function]

	saf_use_written_subset_relation [Public function]

	saf_write_subset_relation [Public function]

	Topology_Relations [chapter]
	Members
	saf_declare_topo_relation [Public function]

	saf_describe_topo_relation [Public function]

	saf_find_topo_relations [Public function]

	saf_get_count_and_type_for_topo_relation [Public function]

	saf_is_self_stored_topo_relation [Public function]

	saf_read_topo_relation [Public function]

	saf_target_topo_relation [Public function]

	saf_write_topo_relation [Public function]

	Relations [chapter]
	Members
	SAF_NULL_REL [Public macro]

	Field_Templates [chapter]
	Members
	SAF_NULL_FTMPL [Public macro]

	saf_declare_field_tmpl [Public function]

	saf_describe_field_tmpl [Public function]

	saf_find_field_tmpls [Public function]

	saf_get_field_tmpl_att [Public function]

	saf_put_field_tmpl_att [Public function]

	Fields [chapter]
	Members
	SAF_CONSTANT [Public macro]

	SAF_DECOMP [Public macro]

	SAF_NODAL [Public macro]

	SAF_NULL_FIELD [Public macro]

	SAF_WHOLE_FIELD [Public symbol]

	SAF_ZONAL [Public macro]

	_saf_find_parent_field [Public function]

	saf_data_has_been_written_to_comp_field [Public function]

	saf_data_has_been_written_to_field [Public function]

	saf_declare_coords [Public function]

	saf_declare_default_coords [Public function]

	saf_declare_field [Public function]

	saf_describe_field [Public function]

	saf_find_coords [Public function]

	saf_find_default_coords [Public function]

	saf_find_fields [Public function]

	saf_get_count_and_type_for_field [Public function]

	saf_get_field_att [Public function]

	saf_is_self_stored_field [Public function]

	saf_put_field_att [Public function]

	saf_read_field [Public function]

	saf_target_field [Public function]

	saf_write_field [Public function]

	State_Templates [chapter]
	Members
	SAF_NULL_STMPL [Public macro]

	saf_declare_state_tmpl [Public function]

	saf_describe_state_tmpl [Public function]

	saf_find_state_tmpl [Public function]

	saf_get_state_tmpl_att [Public function]

	saf_put_state_tmpl_att [Public function]

	States [chapter]
	Members
	SAF_NULL_STATE_GRP [Public macro]

	saf_declare_state_group [Public function]

	saf_describe_state_group [Public function]

	saf_find_state_groups [Public function]

	saf_get_state_grp_att [Public function]

	saf_put_state_grp_att [Public function]

	saf_read_state [Public function]

	saf_write_state [Public function]

	Suites [chapter]
	Members
	SAF_NULL_SUITE [Public macro]

	saf_declare_suite [Public function]

	saf_describe_suite [Public function]

	saf_find_suites [Public function]

	saf_get_suite_att [Public function]

	saf_put_suite_att [Public function]

	Quantities [chapter]
	Members
	SAF_QAMOUNT [Public symbol]

	SAF_QCURRENT [Public symbol]

	SAF_QLENGTH [Public symbol]

	SAF_QLIGHT [Public symbol]

	SAF_QMASS [Public symbol]

	SAF_QNAME [Public macro]

	SAF_QTEMP [Public symbol]

	SAF_QTIME [Public symbol]

	saf_declare_quantity [Public function]

	saf_describe_quantity [Public function]

	saf_divide_quantity [Public macro]

	saf_find_one_quantity [Public function]

	saf_find_quantities [Public function]

	saf_multiply_quantity [Public function]

	Units [chapter]
	Members
	saf_declare_unit [Public function]

	saf_describe_unit [Public function]

	saf_divide_unit [Public macro]

	saf_find_one_unit [Public function]

	saf_find_unit_not_applicable [Public function]

	saf_find_units [Public function]

	saf_log_unit [Public function]

	saf_multiply_unit [Public function]

	saf_offset_unit [Public function]

	saf_quantify_unit [Public function]

	Attributes [chapter]
	Members
	saf_get_attribute [Public function]

	saf_put_attribute [Public function]

	Miscellaneous_Utilities [chapter]
	Members
	SAF_BARRIER [Public macro]

	SAF_EQUIV [Public macro]

	SAF_NELMTS [Public macro]

	SAF_RANK [Public macro]

	SAF_SIZE [Public macro]

	SAF_VALID [Public macro]

	SAF_XOR [Public macro]

	_saf_strdup [Public function]

	saf_allgather_handles [Public function]

	Version_Numbers [chapter]
	Members
	SAF_PARALLEL_VAR [Public symbol]

	SAF_VERSION_ANNOT [Public symbol]

	SAF_VERSION_MAJOR [Public symbol]

	SAF_VERSION_MINOR [Public symbol]

	SAF_VERSION_RELEASE [Public symbol]

	SAF_VERSION_VAR [Public symbol]

	saf_version_string [Public function]

	Datatypes [chapter]
	Members
	SAF [Public datatype]

	SAF_1DC [Public macro]

	SAF_1DF [Public macro]

	SAF_2DC [Public macro]

	SAF_2DF [Public macro]

	SAF_3DC [Public macro]

	SAF_3DF [Public macro]

	SAF_ATT [Public datatype]

	SAF_BasisConstants [Public datatype]

	SAF_BoundMode [Public datatype]

	SAF_CORDER [Public macro]

	SAF_DEFAULT_LIBPROPS [Public symbol]

	SAF_DecompMode [Public datatype]

	SAF_ErrMode [Public datatype]

	SAF_EvalConstants [Public datatype]

	SAF_ExtendMode [Public datatype]

	SAF_FORDER [Public macro]

	SAF_FindSetMode [Public datatype]

	SAF_IndexSchema [Public datatype]

	SAF_Interleave [Public datatype]

	SAF_NA_INDEXSPEC [Public symbol]

	SAF_NOT_APPLICABLE_INT [Public symbol]

	SAF_NOT_IMPL [Public symbol]

	SAF_RoleConstants [Public datatype]

	SAF_SilRole [Public datatype]

	SAF_StrMode [Public datatype]

	SAF_SubsetRelRep [Public datatype]

	SAF_TopMode [Public datatype]

	SAF_TopoDim [Public datatype]

	SAF_TopoRelRep [Public datatype]

	SAF_TriState [Public datatype]

	SAF_VoidPtr [Public datatype]

	SAF_return_t [Public datatype]

	SAF_type_t [Public datatype]

	Notes [chapter]
	Members
	Constants [note]

	Properties [note]

	Algebraic_Types [chapter]
	Members
	SAF_ALGTYPE [Public datatype]

	saf_declare_algebraic [Public function]

	saf_describe_algebraic [Public function]

	saf_find_algebraics [Public function]

	saf_find_one_algebraic [Public function]

	Alternative_Index_Specification [chapter]
	Members
	saf_declare_alternate_indexspec [Public function]

	saf_describe_alternate_indexspec [Public function]

	saf_find_alternate_indexspecs [Public function]

	saf_read_alternate_indexspec [Public function]

	saf_write_alternate_indexspec [Public function]

	Basis_Types [chapter]
	Members
	saf_declare_basis [Public function]

	saf_describe_basis [Public function]

	saf_find_bases [Public function]

	saf_find_one_basis [Public function]

	Collection_Roles [chapter]
	Members
	saf_declare_role [Public function]

	saf_describe_role [Public function]

	saf_find_one_role [Public function]

	saf_find_roles [Public function]

	Data_Types [chapter]
	Members
	_saf_convert [Public function]

	_saf_is_primitive_type [Public function]

	Evaluation_Types [chapter]
	Members
	saf_declare_evaluation [Public function]

	saf_describe_evaluation [Public function]

	saf_find_evaluations [Public function]

	saf_find_one_evaluation [Public function]

	Relation_Representation_Types [chapter]
	Members
	saf_declare_relrep [Public function]

	saf_describe_relrep [Public function]

	saf_find_one_relrep [Public function]

	saf_find_relreps [Public function]

	SAF Examples
	Table of Contents
	Birth_and_Death_Use_Case [chapter]
	Members
	GetAddDelSequence [Public function]

	OpenDatabase [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

	Storagew [chapter]
	Members
	main [Public function]

	make_base_space [Public function]

	make_direct_coord_field [Public function]

	make_direct_temperature_field [Public function]

	make_indirect_coord_field [Public function]

	make_indirect_temperature_field [Public function]

	Triangle_Mesh [chapter]
	Members
	main [Public function]

	make_base_space [Public function]

	make_coord_field [Public function]

	make_coord_field_dofs [Public function]

	make_mesh_connectivity [Public function]

	make_scalar_field [Public function]

	make_scalar_field_dofs [Public function]

	make_stress_field [Public function]

	make_stress_field_dofs [Public function]

	Dynamic_Load_Balance_Use_Case [chapter]
	Members
	OpenDatabase [Public function]

	ReadBackElementHistory [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

	Example_Utilities [chapter]
	Members
	CloseDatabase [Public function]

	UpdateDatabase [Public function]

	Hadaptive_Use_Case [chapter]
	Members
	OpenDatabase [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

	Larry_Use_Case [chapter]
	Members
	main [Public function]

	make_base_space [Public function]

	make_displacement_field [Public function]

	make_distribution_factors_on_ss2_field [Public function]

	make_global_coord_field [Public function]

	make_init_suite [Public function]

	make_pressure_on_ss1_field [Public function]

	make_stress_on_cell_1_field [Public function]

	make_temperature_on_cell_2_field [Public function]

	make_temperature_on_ns1_field [Public function]

	make_time_base_field [Public function]

	make_time_suite [Public function]

	N_to_1_Remapping_Use_Case [chapter]
	Members
	main [Public function]

	Overloaded_Definitions [chapter]
	Members
	OpenDatabase

	Members
	OpenDatabase [Public function]

	OpenDatabase [Public function]

	OpenDatabase [Public function]

	WriteCurrentMesh

	Members
	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	main

	Members
	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	make_base_space

	Members
	make_base_space [Public function]

	make_base_space [Public function]

	make_base_space [Public function]

	Tests [chapter]
	Members
	main [Public function]

	main [Public function]

	Permuted_Index [chapter]

	SAF Support Library
	Table of Contents
	Introduction [chapter]

	Library [chapter]
	Members
	ss_init_func [Public function]

	ss_initialized [Public function]

	ss_finalize [Public function]

	ss_zap [Public function]

	ss_error [Public function]

	ss_bytes [Public function]

	ss_insert_commas [Public function]

	ss_init [Public macro]

	Environment_Variables [chapter]
	Members
	SSLIB [Public datatype]

	Error_Handling [chapter]
	Members
	SS_MINOR [Public datatype]

	SS_ASSERT_TYPE [Public macro]

	SS_ASSERT_MEM [Public macro]

	SS_ASSERT_CLASS [Public macro]

	SS_CHECKING [Public macro]

	SS_FAILED [Public symbol]

	SS_FAILED_WHEN [Public macro]

	SS_SKIPPED [Public symbol]

	SS_SKIPPED_WHEN [Public macro]

	SS_END_CHECKING [Public symbol]

	SS_END_CHECKING_WITH [Public macro]

	Magic_Numbers [chapter]
	Members
	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC [Public macro]

	SS_MAGIC_OK [Public macro]

	SS_MAGIC_CLASS [Public macro]

	SS_MAGIC_SEQUENCE [Public macro]

	SS_MAGIC_CONS [Public macro]

	SS_MAGIC_OF [Public macro]

	Properties [chapter]
	Members
	ss_prop_new [Public function]

	ss_prop_dup [Public function]

	ss_prop_cons [Public function]

	ss_prop_dest [Public function]

	ss_prop_add [Public function]

	ss_prop_has [Public function]

	ss_prop_set [Public function]

	ss_prop_set_i [Public function]

	ss_prop_set_u [Public function]

	ss_prop_set_f [Public function]

	ss_prop_get [Public function]

	ss_prop_get_i [Public function]

	ss_prop_get_u [Public function]

	ss_prop_get_f [Public function]

	ss_prop_buffer [Public function]

	ss_prop_type [Public function]

	ss_prop_appendable [Public function]

	ss_prop_modifiable [Public function]

	ss_prop_immutable [Public function]

	Persistent_Objects [chapter]
	Members
	ss_pers_new [Public function]

	ss_pers_copy [Public function]

	ss_pers_reset [Public function]

	ss_pers_dest [Public function]

	ss_pers_deref [Public function]

	ss_pers_update [Public function]

	ss_pers_refer [Public function]

	ss_pers_scope [Public function]

	ss_pers_file [Public function]

	ss_pers_iswritable [Public function]

	ss_pers_topscope [Public function]

	ss_pers_eq [Public function]

	ss_pers_equal [Public function]

	ss_pers_state [Public function]

	ss_pers_cmp [Public function]

	ss_pers_cmp_ [Public function]

	ss_pers_cksum [Public function]

	ss_pers_find [Public function]

	ss_pers_modified [Public function]

	ss_pers_unique [Public function]

	ss_pers_debug [Public function]

	ss_pers_decode_cb [Public function]

	SS_PERS_DEST [Public macro]

	SS_PERS_NEW [Public macro]

	SS_PERS_COPY [Public macro]

	SS_PERS_FIND [Public macro]

	SS_PERS_EQ [Public macro]

	SS_PERS_EQUAL [Public macro]

	SS_PERS_MODIFIED [Public macro]

	SS_PERS_ISNULL [Public macro]

	SS_PERS_UNIQUE [Public macro]

	Persistent_Object_Tables [chapter]
	Members
	ss_table_indirect [Public function]

	Strings [chapter]
	Members
	ss_string_get [Public function]

	ss_string_ptr [Public function]

	ss_string_set [Public function]

	ss_string_memset [Public function]

	ss_string_reset [Public function]

	ss_string_realloc [Public function]

	ss_string_cmp [Public function]

	ss_string_cmp_s [Public function]

	ss_string_cat [Public function]

	ss_string_splice [Public function]

	ss_string_len [Public function]

	ss_string_memlen [Public function]

	Variable_Length_Arrays [chapter]
	Members
	ss_array_target [Public function]

	ss_array_targeted [Public function]

	ss_array_resize [Public function]

	ss_array_get [Public function]

	ss_array_put [Public function]

	ss_array_reset [Public function]

	ss_array_nelmts [Public function]

	Files [chapter]
	Members
	ss_file_open [Public function]

	ss_file_references [Public function]

	ss_file_openall [Public function]

	ss_file_create [Public function]

	ss_file_isopen [Public function]

	ss_file_istransient [Public function]

	ss_file_iswritable [Public function]

	ss_file_readonly [Public function]

	ss_file_synchronize [Public function]

	ss_file_synchronized [Public function]

	ss_file_flush [Public function]

	ss_file_close [Public function]

	ss_file_registry [Public function]

	ss_file_topscope [Public function]

	Global_File_Information [chapter]
	Members
	ss_gfile_debug_all [Public function]

	ss_gfile_debug_one [Public function]

	Scopes [chapter]
	Members
	ss_scope_open [Public function]

	ss_scope_close [Public function]

	ss_scope_isopen [Public function]

	ss_scope_isopentop [Public function]

	ss_scope_istransient [Public function]

	ss_scope_iswritable [Public function]

	ss_scope_synchronize [Public function]

	ss_scope_synchronized [Public function]

	ss_scope_flush [Public function]

	ss_scope_comm [Public function]

	Object_Attributes [chapter]
	Members
	ss_attr_new [Public function]

	ss_attr_find [Public function]

	ss_attr_count [Public function]

	ss_attr_get [Public function]

	ss_attr_put [Public function]

	ss_attr_modify [Public function]

	ss_attr_describe [Public function]

	Values [chapter]
	Members
	ss_val_dump [Public function]

	ss_val_cmp_t [Public datatype]

	HDF5 [chapter]
	Members
	H5Tcmp [Public function]

	H5T_NATIVE [Public datatype]

	H5F_ACC_TRANSIENT [Public symbol]

	Datatypes [chapter]
	Members
	SS_MAX_INDEXDIMS [Public symbol]

	SS_MAX_BASEQS [Public symbol]

	SAF_SROLE_ANY [Public symbol]

	ss_silrole_t [Public datatype]

	Miscellaneous [chapter]
	Members
	SS [Public datatype]

	Notes [chapter]
	Members

	Debugging [chapter]
	Members
	ss_debug [Public function]

	ss_debug_env [Public function]

	ss_debug_s [Public function]

	Overloaded_Definitions [chapter]
	Members
	SS_MAGIC_ss

	Members
	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	Permuted_Index [chapter]

Sets and Fields (SAF) API Reference Manual for SAF 2.0.3

Acknowledgements

Table of Contents

	Permuted_Index [chapter]

	Concept_Index [chapter]

	Introduction [chapter]

	Environment [chapter]
	Members
	SAF_ASSERT_DISABLE [Public symbol]

	SAF_ERROR_REPORTING [Public symbol]

	SAF_POSTCOND_DISABLE [Public symbol]

	SAF_PRECOND_DISABLE [Public symbol]

	SAF_REGISTRIES [Public symbol]

	SAF_REGISTRY_SAVE [Public symbol]

	SAF_TRACING [Public symbol]

	Error_Handling [chapter]
	Members
	SAF_CATCH [Public symbol]

	SAF_CATCH_ALL [Public symbol]

	SAF_CATCH_ERR [Public macro]

	SAF_TRY_BEGIN [Public symbol]

	SAF_TRY_END [Public symbol]

	SAF_error_t [Public datatype]

	saf_error_str [Public function]

	Library_Initialization [chapter]
	Members
	_saf_gen_stdtypes [Public function]

	saf_final [Public function]

	saf_init [Public macro]

	Library_Properties [chapter]
	Members
	saf_createProps_lib [Public function]

	saf_freeProps_lib [Public function]

	saf_setProps_DontAbort [Public function]

	saf_setProps_ErrFunc [Public function]

	saf_setProps_ErrorLogging [Public function]

	saf_setProps_ErrorMode [Public function]

	saf_setProps_LibComm [Public function]

	saf_setProps_Registry [Public function]

	saf_setProps_StrMode [Public function]

	saf_setProps_StrPoolSize [Public function]

	Path_Info [chapter]
	Members
	saf_freeInfo_path [Public function]

	saf_getInfo_errmsg [Public function]

	saf_getInfo_hdfversion [Public function]

	saf_getInfo_isHDFfile [Public function]

	saf_getInfo_isSAFdatabase [Public function]

	saf_getInfo_libversion [Public function]

	saf_getInfo_mpiversion [Public function]

	saf_getInfo_permissions [Public function]

	saf_getInfo_staterror [Public function]

	saf_readInfo_path [Public function]

	Databases [chapter]
	Members
	SAF_NOT_SET_DB [Public symbol]

	saf_close_database [Public function]

	saf_open_database [Public function]

	saf_update_database [Public function]

	Database_Properties [chapter]
	Members
	SAF_DEFAULT_DBPROPS [Public symbol]

	saf_createProps_database [Public function]

	saf_freeProps_database [Public function]

	saf_setProps_Clobber [Public function]

	saf_setProps_DbComm [Public function]

	saf_setProps_MemoryResident [Public function]

	saf_setProps_ReadOnly [Public function]

	Sets [chapter]
	Members
	SAF_NULL_SET [Public macro]

	SAF_UNIVERSE [Public macro]

	saf_declare_set [Public function]

	saf_describe_set [Public function]

	saf_find_matching_sets [Public function]

	saf_find_sets [Public function]

	saf_get_set_att [Public function]

	saf_put_set_att [Public function]

	Collection_Categories [chapter]
	Members
	SAF_SELF [Public macro]

	saf_declare_category [Public function]

	saf_describe_category [Public function]

	saf_find_categories [Public function]

	saf_get_cat_att [Public function]

	saf_put_cat_att [Public function]

	Collections [chapter]
	Members
	saf_declare_collection [Public function]

	saf_describe_collection [Public function]

	saf_extend_collection [Public function]

	saf_find_collections [Public function]

	saf_same_collections [Public function]

	Subset_Relations [chapter]
	Members
	SAF_BOUNDARY [Public macro]

	SAF_COMMON [Public macro]

	SAF_EMBEDBND [Public macro]

	SAF_GENERAL [Public macro]

	saf_declare_subset_relation [Public function]

	saf_describe_subset_relation [Public function]

	saf_find_subset_relations [Public function]

	saf_get_count_and_type_for_subset_relation [Public function]

	saf_read_subset_relation [Public function]

	saf_target_subset_relation [Public function]

	saf_use_written_subset_relation [Public function]

	saf_write_subset_relation [Public function]

	Topology_Relations [chapter]
	Members
	saf_declare_topo_relation [Public function]

	saf_describe_topo_relation [Public function]

	saf_find_topo_relations [Public function]

	saf_get_count_and_type_for_topo_relation [Public function]

	saf_is_self_stored_topo_relation [Public function]

	saf_read_topo_relation [Public function]

	saf_target_topo_relation [Public function]

	saf_write_topo_relation [Public function]

	Relations [chapter]
	Members
	SAF_NULL_REL [Public macro]

	Field_Templates [chapter]
	Members
	SAF_NULL_FTMPL [Public macro]

	saf_declare_field_tmpl [Public function]

	saf_describe_field_tmpl [Public function]

	saf_find_field_tmpls [Public function]

	saf_get_field_tmpl_att [Public function]

	saf_put_field_tmpl_att [Public function]

	Fields [chapter]
	Members
	SAF_CONSTANT [Public macro]

	SAF_DECOMP [Public macro]

	SAF_NODAL [Public macro]

	SAF_NULL_FIELD [Public macro]

	SAF_WHOLE_FIELD [Public symbol]

	SAF_ZONAL [Public macro]

	_saf_find_parent_field [Public function]

	saf_data_has_been_written_to_comp_field [Public function]

	saf_data_has_been_written_to_field [Public function]

	saf_declare_coords [Public function]

	saf_declare_default_coords [Public function]

	saf_declare_field [Public function]

	saf_describe_field [Public function]

	saf_find_coords [Public function]

	saf_find_default_coords [Public function]

	saf_find_fields [Public function]

	saf_get_count_and_type_for_field [Public function]

	saf_get_field_att [Public function]

	saf_is_self_stored_field [Public function]

	saf_put_field_att [Public function]

	saf_read_field [Public function]

	saf_target_field [Public function]

	saf_write_field [Public function]

	State_Templates [chapter]
	Members
	SAF_NULL_STMPL [Public macro]

	saf_declare_state_tmpl [Public function]

	saf_describe_state_tmpl [Public function]

	saf_find_state_tmpl [Public function]

	saf_get_state_tmpl_att [Public function]

	saf_put_state_tmpl_att [Public function]

	States [chapter]
	Members
	SAF_NULL_STATE_GRP [Public macro]

	saf_declare_state_group [Public function]

	saf_describe_state_group [Public function]

	saf_find_state_groups [Public function]

	saf_get_state_grp_att [Public function]

	saf_put_state_grp_att [Public function]

	saf_read_state [Public function]

	saf_write_state [Public function]

	Suites [chapter]
	Members
	SAF_NULL_SUITE [Public macro]

	saf_declare_suite [Public function]

	saf_describe_suite [Public function]

	saf_find_suites [Public function]

	saf_get_suite_att [Public function]

	saf_put_suite_att [Public function]

	Quantities [chapter]
	Members
	SAF_QAMOUNT [Public symbol]

	SAF_QCURRENT [Public symbol]

	SAF_QLENGTH [Public symbol]

	SAF_QLIGHT [Public symbol]

	SAF_QMASS [Public symbol]

	SAF_QNAME [Public macro]

	SAF_QTEMP [Public symbol]

	SAF_QTIME [Public symbol]

	saf_declare_quantity [Public function]

	saf_describe_quantity [Public function]

	saf_divide_quantity [Public macro]

	saf_find_one_quantity [Public function]

	saf_find_quantities [Public function]

	saf_multiply_quantity [Public function]

	Units [chapter]
	Members
	saf_declare_unit [Public function]

	saf_describe_unit [Public function]

	saf_divide_unit [Public macro]

	saf_find_one_unit [Public function]

	saf_find_unit_not_applicable [Public function]

	saf_find_units [Public function]

	saf_log_unit [Public function]

	saf_multiply_unit [Public function]

	saf_offset_unit [Public function]

	saf_quantify_unit [Public function]

	Attributes [chapter]
	Members
	saf_get_attribute [Public function]

	saf_put_attribute [Public function]

	Miscellaneous_Utilities [chapter]
	Members
	SAF_BARRIER [Public macro]

	SAF_EQUIV [Public macro]

	SAF_NELMTS [Public macro]

	SAF_RANK [Public macro]

	SAF_SIZE [Public macro]

	SAF_VALID [Public macro]

	SAF_XOR [Public macro]

	_saf_strdup [Public function]

	saf_allgather_handles [Public function]

	Version_Numbers [chapter]
	Members
	SAF_PARALLEL_VAR [Public symbol]

	SAF_VERSION_ANNOT [Public symbol]

	SAF_VERSION_MAJOR [Public symbol]

	SAF_VERSION_MINOR [Public symbol]

	SAF_VERSION_RELEASE [Public symbol]

	SAF_VERSION_VAR [Public symbol]

	saf_version_string [Public function]

	Datatypes [chapter]
	Members
	SAF [Public datatype]

	SAF_1DC [Public macro]

	SAF_1DF [Public macro]

	SAF_2DC [Public macro]

	SAF_2DF [Public macro]

	SAF_3DC [Public macro]

	SAF_3DF [Public macro]

	SAF_ATT [Public datatype]

	SAF_BasisConstants [Public datatype]

	SAF_BoundMode [Public datatype]

	SAF_CORDER [Public macro]

	SAF_DEFAULT_LIBPROPS [Public symbol]

	SAF_DecompMode [Public datatype]

	SAF_ErrMode [Public datatype]

	SAF_EvalConstants [Public datatype]

	SAF_ExtendMode [Public datatype]

	SAF_FORDER [Public macro]

	SAF_FindSetMode [Public datatype]

	SAF_IndexSchema [Public datatype]

	SAF_Interleave [Public datatype]

	SAF_NA_INDEXSPEC [Public symbol]

	SAF_NOT_APPLICABLE_INT [Public symbol]

	SAF_NOT_IMPL [Public symbol]

	SAF_RoleConstants [Public datatype]

	SAF_SilRole [Public datatype]

	SAF_StrMode [Public datatype]

	SAF_SubsetRelRep [Public datatype]

	SAF_TopMode [Public datatype]

	SAF_TopoDim [Public datatype]

	SAF_TopoRelRep [Public datatype]

	SAF_TriState [Public datatype]

	SAF_VoidPtr [Public datatype]

	SAF_return_t [Public datatype]

	SAF_type_t [Public datatype]

	Notes [chapter]
	Members
	Constants [note]

	Properties [note]

	Algebraic_Types [chapter]
	Members
	SAF_ALGTYPE [Public datatype]

	saf_declare_algebraic [Public function]

	saf_describe_algebraic [Public function]

	saf_find_algebraics [Public function]

	saf_find_one_algebraic [Public function]

	Alternative_Index_Specification [chapter]
	Members
	saf_declare_alternate_indexspec [Public function]

	saf_describe_alternate_indexspec [Public function]

	saf_find_alternate_indexspecs [Public function]

	saf_read_alternate_indexspec [Public function]

	saf_write_alternate_indexspec [Public function]

	Basis_Types [chapter]
	Members
	saf_declare_basis [Public function]

	saf_describe_basis [Public function]

	saf_find_bases [Public function]

	saf_find_one_basis [Public function]

	Collection_Roles [chapter]
	Members
	saf_declare_role [Public function]

	saf_describe_role [Public function]

	saf_find_one_role [Public function]

	saf_find_roles [Public function]

	Data_Types [chapter]
	Members
	_saf_convert [Public function]

	_saf_is_primitive_type [Public function]

	Evaluation_Types [chapter]
	Members
	saf_declare_evaluation [Public function]

	saf_describe_evaluation [Public function]

	saf_find_evaluations [Public function]

	saf_find_one_evaluation [Public function]

	Relation_Representation_Types [chapter]
	Members
	saf_declare_relrep [Public function]

	saf_describe_relrep [Public function]

	saf_find_one_relrep [Public function]

	saf_find_relreps [Public function]

Permuted Index

Table 1 Permuted Index

	Concept

	Key

	Reference

	Turn off

	aborts

	saf_setProps_DontAbort

	
	
	

	Specify read-only database

	access

	saf_setProps_ReadOnly

	
	
	

	Finalize

	access to the library

	saf_final

	
	
	

	
	Add members to a collection

	saf_extend_collection

	
	
	

	Declare a new

	algebraic type

	saf_declare_algebraic

	
	
	

	Describe an

	algebraic type

	saf_describe_algebraic

	
	
	

	Find one

	algebraic type

	saf_find_one_algebraic

	
	
	

	Common

	algebraic types

	SAF_ALGTYPE

	
	
	

	Find

	algebraic types

	saf_find_algebraics

	
	
	

	More meaningful

	alias for SAF_TOTALITY

	SAF_WHOLE_FIELD

	
	
	

	NULL

	aliases

	SAF_VoidPtr

	
	
	

	Begin a block of error handling code for

	all errors

	SAF_CATCH_ALL

	
	
	

	String

	allocation modes

	SAF_StrMode

	
	
	

	Set string

	allocation style

	saf_setProps_StrMode

	
	
	

	Set the pool size for string return value

	allocations

	saf_setProps_StrPoolSize

	
	
	

	Find

	alternate index specs by matching criteria

	saf_find_alternate_indexspecs

	
	
	

	Read an

	alternate index specs from disk

	saf_read_alternate_indexspec

	
	
	

	Write an

	alternate index specs to disk

	saf_write_alternate_indexspec

	
	
	

	Get a description of an

	alternate indexing spec

	saf_describe_alternate_indexspec

	
	
	

	Declare an

	Alternative Index Specification

	saf_declare_alternate_indexspec

	
	
	

	The quantity

	Amount

	SAF_QAMOUNT

	
	
	

	Version

	Annotation

	SAF_VERSION_ANNOT

	
	
	

	Check if

	any stat errors occured

	saf_getInfo_staterror

	
	
	

	Trace SAF

	API calls and times

	SAF_TRACING

	
	
	

	Not

	applicable

	SAF_NOT_APPLICABLE_INT

	
	
	

	Find the not

	applicable unit

	saf_find_unit_not_applicable

	
	
	

	
	Apply a logarithmic scale to a unit

	saf_log_unit

	
	
	

	An

	arbitrary named quantity

	SAF_QNAME

	
	
	

	Make a C-automatic

	array of cat handles

	SAF_Cat

	
	
	

	Make a C-automatic

	array of set handles

	SAF_Set

	
	
	

	
	Array size

	SAF_NELMTS

	
	
	

	Control

	Assertion Checking

	SAF_ASSERT_DISABLE

	
	
	

	
	Associates a unit of measure with a specific quantity

	saf_quantify_unit

	
	
	

	
	Associating a role with a collection category

	SAF_RoleConstants

	
	
	

	
	Attach an attribute to a state group

	saf_put_state_grp_att

	
	
	

	
	Attach an attribute to a state template

	saf_put_state_tmpl_att

	
	
	

	
	Attach an attribute to a suite

	saf_put_suite_att

	
	
	

	Get an attribute

	attached to a state group

	saf_get_state_grp_att

	
	
	

	Get an attribute

	attached to a state template

	saf_get_state_tmpl_att

	
	
	

	Get an attribute

	attached to a suite

	saf_get_suite_att

	
	
	

	Create or update a non-sharable

	attribute

	saf_put_attribute

	
	
	

	Read a non-sharable

	attribute

	saf_get_attribute

	
	
	

	Get an

	attribute attached to a state group

	saf_get_state_grp_att

	
	
	

	Get an

	attribute attached to a state template

	saf_get_state_tmpl_att

	
	
	

	Get an

	attribute attached to a suite

	saf_get_suite_att

	
	
	

	Get an

	attribute from a field

	saf_get_field_att

	
	
	

	Get an

	attribute from a set

	saf_get_set_att

	
	
	

	Reserved

	attribute name keys

	SAF_ATT

	
	
	

	Put an

	attribute to a set

	saf_put_set_att

	
	
	

	Attach an

	attribute to a state group

	saf_put_state_grp_att

	
	
	

	Attach an

	attribute to a state template

	saf_put_state_tmpl_att

	
	
	

	Attach an

	attribute to a suite

	saf_put_suite_att

	
	
	

	Get an

	attribute with a cat

	saf_get_cat_att

	
	
	

	Put an

	attribute with a cat

	saf_put_cat_att

	
	
	

	Put an

	attribute with a field

	saf_put_field_att

	
	
	

	Get an

	attribute with a field template

	saf_get_field_tmpl_att

	
	
	

	Put an

	attribute with a field template

	saf_put_field_tmpl_att

	
	
	

	Make a field handle a C

	automatic variable

	SAF_Field

	
	
	

	Make a field template handle a C

	automatic variable

	SAF_FieldTmpl

	
	
	

	Make a relation handle a C

	automatic variable

	SAF_Rel

	
	
	

	Make a state handle a C

	automatic variable

	SAF_StateGrp

	
	
	

	Make a state template handle a C

	automatic variable

	SAF_StateTmpl

	
	
	

	Make a suite handle a C

	automatic variable

	SAF_Suite

	
	
	

	Database information not

	available

	SAF_NOT_SET_DB

	
	
	

	Synchronization

	barrier

	SAF_BARRIER

	
	
	

	Find

	bases

	saf_find_bases

	
	
	

	Declare a new

	basis type

	saf_declare_basis

	
	
	

	Describe a

	basis type

	saf_describe_basis

	
	
	

	Find one

	basis type

	saf_find_one_basis

	
	
	

	
	Basis types

	SAF_BasisConstants

	
	
	

	Queries whether data has

	been written

	saf_data_has_been_written_to_comp_field

	
	
	

	
	Begin a block of error handling code

	SAF_CATCH_ERR

	
	
	

	
	Begin a block of error handling code for all errors

	SAF_CATCH_ALL

	
	
	

	
	Begin a the CATCH part of a TRY/CATCH block

	SAF_CATCH

	
	
	

	
	Begin a TRY/CATCH block

	SAF_TRY_BEGIN

	
	
	

	Begin a the CATCH part of a TRY/CATCH

	block

	SAF_CATCH

	
	
	

	Begin a TRY/CATCH

	block

	SAF_TRY_BEGIN

	
	
	

	End a TRY/CATCH

	block

	SAF_TRY_END

	
	
	

	Begin a

	block of error handling code

	SAF_CATCH_ERR

	
	
	

	Begin a

	block of error handling code for all errors

	SAF_CATCH_ALL

	
	
	

	
	Boundary set tri-state

	SAF_BoundMode

	
	
	

	Conveniently specify a

	boundary subset

	SAF_BOUNDARY

	
	
	

	Conveniently specify an embedded

	boundary subset

	SAF_EMBEDBND

	
	
	

	Initialize the

	built-in object registry

	_saf_gen_stdtypes

	
	
	

	
	Built-in registry name

	SAF_REGISTRY_SAVE

	
	
	

	Make a field handle a

	C automatic variable

	SAF_Field

	
	
	

	Make a field template handle a

	C automatic variable

	SAF_FieldTmpl

	
	
	

	Make a relation handle a

	C automatic variable

	SAF_Rel

	
	
	

	Make a state handle a

	C automatic variable

	SAF_StateGrp

	
	
	

	Make a state template handle a

	C automatic variable

	SAF_StateTmpl

	
	
	

	Make a suite handle a

	C automatic variable

	SAF_Suite

	
	
	

	Make a

	C-automatic array of cat handles

	SAF_Cat

	
	
	

	Make a

	C-automatic array of set handles

	SAF_Set

	
	
	

	Specify a

	callback for error conditions

	saf_setProps_ErrFunc

	
	
	

	The rank of the

	calling process

	SAF_RANK

	
	
	

	Trace SAF API

	calls and times

	SAF_TRACING

	
	
	

	Declare a field as a

	candidate coordinate field

	saf_declare_coords

	
	
	

	Get an attribute with a

	cat

	saf_get_cat_att

	
	
	

	Put an attribute with a

	cat

	saf_put_cat_att

	
	
	

	Make a C-automatic array of

	cat handles

	SAF_Cat

	
	
	

	Begin a the

	CATCH part of a TRY/CATCH block

	SAF_CATCH

	
	
	

	Find collection

	categories

	saf_find_categories

	
	
	

	Associating a role with a collection

	category

	SAF_RoleConstants

	
	
	

	Declare a collection

	category

	saf_declare_category

	
	
	

	Get a description of a collection

	category

	saf_describe_category

	
	
	

	Query quantity

	characteristics

	saf_describe_quantity

	
	
	

	Query unit

	characteristics

	saf_describe_unit

	
	
	

	
	Check if any stat errors occured

	saf_getInfo_staterror

	
	
	

	
	Check if path is a SAF database

	saf_getInfo_isSAFdatabase

	
	
	

	
	Check if path is an HDF5 file

	saf_getInfo_isHDFfile

	
	
	

	Control Assertion

	Checking

	SAF_ASSERT_DISABLE

	
	
	

	Control Postcondition

	Checking

	SAF_POSTCOND_DISABLE

	
	
	

	Control Precondition

	Checking

	SAF_PRECOND_DISABLE

	
	
	

	
	Clobber an existing database on open

	saf_setProps_Clobber

	
	
	

	
	Close a database

	saf_close_database

	
	
	

	Begin a block of error handling

	code

	SAF_CATCH_ERR

	
	
	

	Begin a block of error handling

	code for all errors

	SAF_CATCH_ALL

	
	
	

	Return

	codes

	SAF_return_t

	
	
	

	Error

	codes returned by the library

	SAF_error_t

	
	
	

	Add members to a

	collection

	saf_extend_collection

	
	
	

	Declare a

	collection

	saf_declare_collection

	
	
	

	Describe a

	collection

	saf_describe_collection

	
	
	

	Find

	collection categories

	saf_find_categories

	
	
	

	Associating a role with a

	collection category

	SAF_RoleConstants

	
	
	

	Declare a

	collection category

	saf_declare_category

	
	
	

	Get a description of a

	collection category

	saf_describe_category

	
	
	

	Declare a new

	collection role

	saf_declare_role

	
	
	

	Find one

	collection role

	saf_find_one_role

	
	
	

	Compare two

	collections

	saf_same_collections

	
	
	

	Find

	collections

	saf_find_collections

	
	
	

	
	Common algebraic types

	SAF_ALGTYPE

	
	
	

	Specify MPI database

	communicator

	saf_setProps_DbComm

	
	
	

	The size of the

	communicator

	SAF_SIZE

	
	
	

	Set the MPI

	communicator for the library

	saf_setProps_LibComm

	
	
	

	
	Compare two collections

	saf_same_collections

	
	
	

	Find the parent of a

	component field

	_saf_find_parent_field

	
	
	

	Field

	component interleave modes

	SAF_Interleave

	
	
	

	Specify a callback for error

	conditions

	saf_setProps_ErrFunc

	
	
	

	Conveniently specify a

	constant field

	SAF_CONSTANT

	
	
	

	Update database

	contents

	saf_update_database

	
	
	

	
	Control Assertion Checking

	SAF_ASSERT_DISABLE

	
	
	

	
	Control Postcondition Checking

	SAF_POSTCOND_DISABLE

	
	
	

	
	Control Precondition Checking

	SAF_PRECOND_DISABLE

	
	
	

	
	Control Reporting of Error Messages

	SAF_ERROR_REPORTING

	
	
	

	
	Convenience function for finding a quantity

	saf_find_one_quantity

	
	
	

	
	Convenience function for finding a unit

	saf_find_one_unit

	
	
	

	
	Conveniently specify a boundary subset

	SAF_BOUNDARY

	
	
	

	
	Conveniently specify a constant field

	SAF_CONSTANT

	
	
	

	
	Conveniently specify a decomposition-centered field

	SAF_DECOMP

	
	
	

	
	Conveniently specify a node-centered field

	SAF_NODAL

	
	
	

	
	Conveniently specify a typical subset

	SAF_COMMON

	
	
	

	
	Conveniently specify a zone-centered field

	SAF_ZONAL

	
	
	

	
	Conveniently specify an embedded boundary subset

	SAF_EMBEDBND

	
	
	

	
	Conveniently specify an general subset

	SAF_GENERAL

	
	
	

	
	Convert a single value

	_saf_convert

	
	
	

	Declare a field as a candidate

	coordinate field

	saf_declare_coords

	
	
	

	Find

	coordinate fields

	saf_find_coords

	
	
	

	Find default

	coordinate fields

	saf_find_default_coords

	
	
	

	Declare default

	coordinates of a given set

	saf_declare_default_coords

	
	
	

	
	Copy a string

	_saf_strdup

	
	
	

	
	Create a new database property list with default values

	saf_createProps_database

	
	
	

	
	Create a new library property list with default values

	saf_createProps_lib

	
	
	

	
	Create an memory-resident database

	saf_setProps_MemoryResident

	
	
	

	
	Create or update a non-sharable attribute

	saf_put_attribute

	
	
	

	Find alternate index specs by matching

	criteria

	saf_find_alternate_indexspecs

	
	
	

	Find set by matching

	criteria

	saf_find_matching_sets

	
	
	

	The quantity

	Current

	SAF_QCURRENT

	
	
	

	Does field have

	data

	saf_data_has_been_written_to_field

	
	
	

	Read topological relation

	data

	saf_read_topo_relation

	
	
	

	Write topological relation

	data

	saf_write_topo_relation

	
	
	

	Read the

	data for a field

	saf_read_field

	
	
	

	Write the

	data for a field

	saf_write_field

	
	
	

	Read the

	data for a subset relation

	saf_read_subset_relation

	
	
	

	Queries whether

	data has been written

	saf_data_has_been_written_to_comp_field

	
	
	

	Reuse

	data in a subset relation

	saf_use_written_subset_relation

	
	
	

	Check if path is a SAF

	database

	saf_getInfo_isSAFdatabase

	
	
	

	Close a

	database

	saf_close_database

	
	
	

	Create an memory-resident

	database

	saf_setProps_MemoryResident

	
	
	

	Open a

	database

	saf_open_database

	
	
	

	Specify location of SAF’s standard types

	database

	SAF_REGISTRIES

	
	
	

	Specify read-only

	database access

	saf_setProps_ReadOnly

	
	
	

	Specify MPI

	database communicator

	saf_setProps_DbComm

	
	
	

	Update

	database contents

	saf_update_database

	
	
	

	
	Database information not available

	SAF_NOT_SET_DB

	
	
	

	Clobber an existing

	database on open

	saf_setProps_Clobber

	
	
	

	Free

	database property list

	saf_freeProps_database

	
	
	

	Create a new

	database property list with default values

	saf_createProps_database

	
	
	

	Get

	datatype and size for a field

	saf_get_count_and_type_for_field

	
	
	

	Get

	datatype and size for a subset relation

	saf_get_count_and_type_for_subset_relation

	
	
	

	Get

	datatype and size for a topological relation

	saf_get_count_and_type_for_topo_relation

	
	
	

	Determine if

	datatype is primitive

	_saf_is_primitive_type

	
	
	

	Predefined scalar

	datatypes

	SAF_type_t

	
	
	

	
	Declare a collection

	saf_declare_collection

	
	
	

	
	Declare a collection category

	saf_declare_category

	
	
	

	
	Declare a field

	saf_declare_field

	
	
	

	
	Declare a field as a candidate coordinate field

	saf_declare_coords

	
	
	

	
	Declare a field template

	saf_declare_field_tmpl

	
	
	

	
	Declare a new algebraic type

	saf_declare_algebraic

	
	
	

	
	Declare a new basis type

	saf_declare_basis

	
	
	

	
	Declare a new collection role

	saf_declare_role

	
	
	

	
	Declare a new evaluation type

	saf_declare_evaluation

	
	
	

	
	Declare a new object

	saf_declare_relrep

	
	
	

	
	Declare a new quantity

	saf_declare_quantity

	
	
	

	
	Declare a new unit

	saf_declare_unit

	
	
	

	
	Declare a set

	saf_declare_set

	
	
	

	
	Declare a state group

	saf_declare_state_group

	
	
	

	
	Declare a state template

	saf_declare_state_tmpl

	
	
	

	
	Declare a subset relation

	saf_declare_subset_relation

	
	
	

	
	Declare a suite

	saf_declare_suite

	
	
	

	
	Declare a topological relation

	saf_declare_topo_relation

	
	
	

	
	Declare an Alternative Index Specification

	saf_declare_alternate_indexspec

	
	
	

	
	Declare default coordinates of a given set

	saf_declare_default_coords

	
	
	

	The self

	decomposition of a set

	SAF_SELF

	
	
	

	
	Decomposition tri-state

	SAF_DecompMode

	
	
	

	Conveniently specify a

	decomposition-centered field

	SAF_DECOMP

	
	
	

	Find

	default coordinate fields

	saf_find_default_coords

	
	
	

	Declare

	default coordinates of a given set

	saf_declare_default_coords

	
	
	

	
	Default properties

	SAF_DEFAULT_DBPROPS

	
	
	

	Create a new database property list with

	default values

	saf_createProps_database

	
	
	

	Create a new library property list with

	default values

	saf_createProps_lib

	
	
	

	Divide a quantity into a quantity

	definition

	saf_divide_quantity

	
	
	

	Divide a unit into a unit

	definition

	saf_divide_unit

	
	
	

	Multiply a quantity into a quantity

	definition

	saf_multiply_quantity

	
	
	

	Multiply a unit into a unit

	definition

	saf_multiply_unit

	
	
	

	
	Describe a basis type

	saf_describe_basis

	
	
	

	
	Describe a collection

	saf_describe_collection

	
	
	

	
	Describe a role

	saf_describe_role

	
	
	

	
	Describe an algebraic type

	saf_describe_algebraic

	
	
	

	
	Describe an evaluation type

	saf_describe_evaluation

	
	
	

	
	Describe an object

	saf_describe_relrep

	
	
	

	Obtain a set

	description

	saf_describe_set

	
	
	

	Get a

	description of a collection category

	saf_describe_category

	
	
	

	Get a

	description of a field

	saf_describe_field

	
	
	

	Get a

	description of a field template

	saf_describe_field_tmpl

	
	
	

	Get a

	description of a state group

	saf_describe_state_group

	
	
	

	Get a

	description of a state template

	saf_describe_state_tmpl

	
	
	

	Get a

	description of a subset relation

	saf_describe_subset_relation

	
	
	

	Get a

	description of a suite

	saf_describe_suite

	
	
	

	Get a

	description of an alternate indexing spec

	saf_describe_alternate_indexspec

	
	
	

	Get

	description of topological relation

	saf_describe_topo_relation

	
	
	

	Set the

	destination form of a field

	saf_target_field

	
	
	

	Set the

	destination form of a subset relation

	saf_target_subset_relation

	
	
	

	Set the

	destination form of a topological relation

	saf_target_topo_relation

	
	
	

	
	Determine if a handle is a valid handle

	SAF_VALID

	
	
	

	
	Determine if datatype is primitive

	_saf_is_primitive_type

	
	
	

	
	Determine if two handles refer to the same object

	SAF_EQUIV

	
	
	

	Topological

	dimensions

	SAF_TopoDim

	
	
	

	Read an alternate index specs from

	disk

	saf_read_alternate_indexspec

	
	
	

	Write an alternate index specs to

	disk

	saf_write_alternate_indexspec

	
	
	

	
	Divide a quantity into a quantity definition

	saf_divide_quantity

	
	
	

	
	Divide a unit into a unit definition

	saf_divide_unit

	
	
	

	
	Does field have data

	saf_data_has_been_written_to_field

	
	
	

	Conveniently specify an

	embedded boundary subset

	SAF_EMBEDBND

	
	
	

	
	End a TRY/CATCH block

	SAF_TRY_END

	
	
	

	
	Error codes returned by the library

	SAF_error_t

	
	
	

	Specify a callback for

	error conditions

	saf_setProps_ErrFunc

	
	
	

	Begin a block of

	error handling code

	SAF_CATCH_ERR

	
	
	

	Begin a block of

	error handling code for all errors

	SAF_CATCH_ALL

	
	
	

	Set the library

	error handling mode

	saf_setProps_ErrorMode

	
	
	

	Set the

	error logging mode

	saf_setProps_ErrorLogging

	
	
	

	Get stat

	error message

	saf_getInfo_errmsg

	
	
	

	Control Reporting of

	Error Messages

	SAF_ERROR_REPORTING

	
	
	

	
	Error return modes

	SAF_ErrMode

	
	
	

	Return a pointer to an

	error string

	saf_error_str

	
	
	

	Begin a block of error handling code for all

	errors

	SAF_CATCH_ALL

	
	
	

	Check if any stat

	errors occured

	saf_getInfo_staterror

	
	
	

	Declare a new

	evaluation type

	saf_declare_evaluation

	
	
	

	Describe an

	evaluation type

	saf_describe_evaluation

	
	
	

	Find one

	evaluation type

	saf_find_one_evaluation

	
	
	

	
	Evaluation Types

	SAF_EvalConstants

	
	
	

	Find

	evaluation types

	saf_find_evaluations

	
	
	

	
	Exchange handles

	saf_allgather_handles

	
	
	

	
	Exclusive OR operator

	SAF_XOR

	
	
	

	Clobber an

	existing database on open

	saf_setProps_Clobber

	
	
	

	
	Extendable set tri-state

	SAF_ExtendMode

	
	
	

	Conveniently specify a constant

	field

	SAF_CONSTANT

	
	
	

	Conveniently specify a decomposition-centered

	field

	SAF_DECOMP

	
	
	

	Conveniently specify a node-centered

	field

	SAF_NODAL

	
	
	

	Conveniently specify a zone-centered

	field

	SAF_ZONAL

	
	
	

	Declare a

	field

	saf_declare_field

	
	
	

	Declare a field as a candidate coordinate

	field

	saf_declare_coords

	
	
	

	Find the parent of a component

	field

	_saf_find_parent_field

	
	
	

	Get a description of a

	field

	saf_describe_field

	
	
	

	Get an attribute from a

	field

	saf_get_field_att

	
	
	

	Get datatype and size for a

	field

	saf_get_count_and_type_for_field

	
	
	

	Put an attribute with a

	field

	saf_put_field_att

	
	
	

	Read the data for a

	field

	saf_read_field

	
	
	

	Set the destination form of a

	field

	saf_target_field

	
	
	

	Write the data for a

	field

	saf_write_field

	
	
	

	Declare a

	field as a candidate coordinate field

	saf_declare_coords

	
	
	

	
	Field component interleave modes

	SAF_Interleave

	
	
	

	The null

	field handle

	SAF_NULL_FIELD

	
	
	

	Make a

	field handle a C automatic variable

	SAF_Field

	
	
	

	Does

	field have data

	saf_data_has_been_written_to_field

	
	
	

	Is

	field stored on self

	saf_is_self_stored_field

	
	
	

	Declare a

	field template

	saf_declare_field_tmpl

	
	
	

	Get a description of a

	field template

	saf_describe_field_tmpl

	
	
	

	Get an attribute with a

	field template

	saf_get_field_tmpl_att

	
	
	

	Put an attribute with a

	field template

	saf_put_field_tmpl_att

	
	
	

	The null

	field template handle

	SAF_NULL_FTMPL

	
	
	

	Make a

	field template handle a C automatic variable

	SAF_FieldTmpl

	
	
	

	Find

	field templates

	saf_find_field_tmpls

	
	
	

	Find

	fields

	saf_find_fields

	
	
	

	Find coordinate

	fields

	saf_find_coords

	
	
	

	Find default coordinate

	fields

	saf_find_default_coords

	
	
	

	Check if path is an HDF5

	file

	saf_getInfo_isHDFfile

	
	
	

	Specify registry

	file

	saf_setProps_Registry

	
	
	

	
	Finalize access to the library

	saf_final

	
	
	

	
	Find a state template

	saf_find_state_tmpl

	
	
	

	
	Find algebraic types

	saf_find_algebraics

	
	
	

	
	Find alternate index specs by matching criteria

	saf_find_alternate_indexspecs

	
	
	

	
	Find bases

	saf_find_bases

	
	
	

	
	Find collection categories

	saf_find_categories

	
	
	

	
	Find collections

	saf_find_collections

	
	
	

	
	Find coordinate fields

	saf_find_coords

	
	
	

	
	Find default coordinate fields

	saf_find_default_coords

	
	
	

	
	Find evaluation types

	saf_find_evaluations

	
	
	

	
	Find field templates

	saf_find_field_tmpls

	
	
	

	
	Find fields

	saf_find_fields

	
	
	

	Set

	find modes

	SAF_FindSetMode

	
	
	

	
	Find one algebraic type

	saf_find_one_algebraic

	
	
	

	
	Find one basis type

	saf_find_one_basis

	
	
	

	
	Find one collection role

	saf_find_one_role

	
	
	

	
	Find one evaluation type

	saf_find_one_evaluation

	
	
	

	
	Find one object

	saf_find_one_relrep

	
	
	

	
	Find quantities

	saf_find_quantities

	
	
	

	
	Find relation representation types

	saf_find_relreps

	
	
	

	
	Find roles

	saf_find_roles

	
	
	

	
	Find set by matching criteria

	saf_find_matching_sets

	
	
	

	
	Find sets by traversing the subset inclusion lattice

	saf_find_sets

	
	
	

	
	Find state groups

	saf_find_state_groups

	
	
	

	
	Find subset relations

	saf_find_subset_relations

	
	
	

	
	Find suites

	saf_find_suites

	
	
	

	
	Find the not applicable unit

	saf_find_unit_not_applicable

	
	
	

	
	Find the parent of a component field

	_saf_find_parent_field

	
	
	

	
	Find topological relations

	saf_find_topo_relations

	
	
	

	
	Find units

	saf_find_units

	
	
	

	Convenience function for

	finding a quantity

	saf_find_one_quantity

	
	
	

	Convenience function for

	finding a unit

	saf_find_one_unit

	
	
	

	Set the destination

	form of a field

	saf_target_field

	
	
	

	Set the destination

	form of a subset relation

	saf_target_subset_relation

	
	
	

	Set the destination

	form of a topological relation

	saf_target_topo_relation

	
	
	

	
	Free database property list

	saf_freeProps_database

	
	
	

	
	Free library property list

	saf_freeProps_lib

	
	
	

	
	Free SAF_PathInfo

	saf_freeInfo_path

	
	
	

	Convenience

	function for finding a quantity

	saf_find_one_quantity

	
	
	

	Convenience

	function for finding a unit

	saf_find_one_unit

	
	
	

	Conveniently specify an

	general subset

	SAF_GENERAL

	
	
	

	
	Get a description of a collection category

	saf_describe_category

	
	
	

	
	Get a description of a field

	saf_describe_field

	
	
	

	
	Get a description of a field template

	saf_describe_field_tmpl

	
	
	

	
	Get a description of a state group

	saf_describe_state_group

	
	
	

	
	Get a description of a state template

	saf_describe_state_tmpl

	
	
	

	
	Get a description of a subset relation

	saf_describe_subset_relation

	
	
	

	
	Get a description of a suite

	saf_describe_suite

	
	
	

	
	Get a description of an alternate indexing spec

	saf_describe_alternate_indexspec

	
	
	

	
	Get an attribute attached to a state group

	saf_get_state_grp_att

	
	
	

	
	Get an attribute attached to a state template

	saf_get_state_tmpl_att

	
	
	

	
	Get an attribute attached to a suite

	saf_get_suite_att

	
	
	

	
	Get an attribute from a field

	saf_get_field_att

	
	
	

	
	Get an attribute from a set

	saf_get_set_att

	
	
	

	
	Get an attribute with a cat

	saf_get_cat_att

	
	
	

	
	Get an attribute with a field template

	saf_get_field_tmpl_att

	
	
	

	
	Get datatype and size for a field

	saf_get_count_and_type_for_field

	
	
	

	
	Get datatype and size for a subset relation

	saf_get_count_and_type_for_subset_relation

	
	
	

	
	Get datatype and size for a topological relation

	saf_get_count_and_type_for_topo_relation

	
	
	

	
	Get description of topological relation

	saf_describe_topo_relation

	
	
	

	
	Get stat error message

	saf_getInfo_errmsg

	
	
	

	
	Get the HDF5 version

	saf_getInfo_hdfversion

	
	
	

	
	Get the MPI library version

	saf_getInfo_mpiversion

	
	
	

	
	Get the SAF library version

	saf_getInfo_libversion

	
	
	

	Declare default coordinates of a

	given set

	saf_declare_default_coords

	
	
	

	
	Grab HDF5 I/O library

	saf_grab_hdf5

	
	
	

	Attach an attribute to a state

	group

	saf_put_state_grp_att

	
	
	

	Declare a state

	group

	saf_declare_state_group

	
	
	

	Get a description of a state

	group

	saf_describe_state_group

	
	
	

	Get an attribute attached to a state

	group

	saf_get_state_grp_att

	
	
	

	The null state

	group handle

	SAF_NULL_STATE_GRP

	
	
	

	Find state

	groups

	saf_find_state_groups

	
	
	

	Determine if a handle is a valid

	handle

	SAF_VALID

	
	
	

	The null field

	handle

	SAF_NULL_FIELD

	
	
	

	The null field template

	handle

	SAF_NULL_FTMPL

	
	
	

	The null relation

	handle

	SAF_NULL_REL

	
	
	

	The null set

	handle

	SAF_NULL_SET

	
	
	

	The null state group

	handle

	SAF_NULL_STATE_GRP

	
	
	

	The null state template

	handle

	SAF_NULL_STMPL

	
	
	

	The null suite

	handle

	SAF_NULL_SUITE

	
	
	

	The universe set

	handle

	SAF_UNIVERSE

	
	
	

	Make a field

	handle a C automatic variable

	SAF_Field

	
	
	

	Make a field template

	handle a C automatic variable

	SAF_FieldTmpl

	
	
	

	Make a relation

	handle a C automatic variable

	SAF_Rel

	
	
	

	Make a state

	handle a C automatic variable

	SAF_StateGrp

	
	
	

	Make a state template

	handle a C automatic variable

	SAF_StateTmpl

	
	
	

	Make a suite

	handle a C automatic variable

	SAF_Suite

	
	
	

	Determine if a

	handle is a valid handle

	SAF_VALID

	
	
	

	Exchange

	handles

	saf_allgather_handles

	
	
	

	Make a C-automatic array of cat

	handles

	SAF_Cat

	
	
	

	Make a C-automatic array of set

	handles

	SAF_Set

	
	
	

	Determine if two

	handles refer to the same object

	SAF_EQUIV

	
	
	

	Begin a block of error

	handling code

	SAF_CATCH_ERR

	
	
	

	Begin a block of error

	handling code for all errors

	SAF_CATCH_ALL

	
	
	

	Set the library error

	handling mode

	saf_setProps_ErrorMode

	
	
	

	Queries whether data

	has been written

	saf_data_has_been_written_to_comp_field

	
	
	

	Does field

	have data

	saf_data_has_been_written_to_field

	
	
	

	Check if path is an

	HDF5 file

	saf_getInfo_isHDFfile

	
	
	

	Grab

	HDF5 I/O library

	saf_grab_hdf5

	
	
	

	Ungrab

	HDF5 I/O library

	saf_ungrab_hdf5

	
	
	

	Get the

	HDF5 version

	saf_getInfo_hdfversion

	
	
	

	Grab HDF5

	I/O library

	saf_grab_hdf5

	
	
	

	Ungrab HDF5

	I/O library

	saf_ungrab_hdf5

	
	
	

	Determine

	if a handle is a valid handle

	SAF_VALID

	
	
	

	Check

	if any stat errors occured

	saf_getInfo_staterror

	
	
	

	Determine

	if datatype is primitive

	_saf_is_primitive_type

	
	
	

	Check

	if path is a SAF database

	saf_getInfo_isSAFdatabase

	
	
	

	Check

	if path is an HDF5 file

	saf_getInfo_isHDFfile

	
	
	

	Determine

	if two handles refer to the same object

	SAF_EQUIV

	
	
	

	Not

	implemented

	SAF_NOT_IMPL

	
	
	

	Find sets by traversing the subset

	inclusion lattice

	saf_find_sets

	
	
	

	Subset

	inclusion lattice roles

	SAF_SilRole

	
	
	

	Declare an Alternative

	Index Specification

	saf_declare_alternate_indexspec

	
	
	

	Find alternate

	index specs by matching criteria

	saf_find_alternate_indexspecs

	
	
	

	Read an alternate

	index specs from disk

	saf_read_alternate_indexspec

	
	
	

	Write an alternate

	index specs to disk

	saf_write_alternate_indexspec

	
	
	

	
	Indexing scheme

	SAF_IndexSchema

	
	
	

	
	Indexing scheme

	SAF_FORDER

	
	
	

	
	Indexing scheme

	SAF_CORDER

	
	
	

	
	Indexing scheme

	SAF_1DC

	
	
	

	
	Indexing scheme

	SAF_NA_INDEXSPEC

	
	
	

	
	Indexing scheme

	SAF_2DC

	
	
	

	
	Indexing scheme

	SAF_3DC

	
	
	

	
	Indexing scheme

	SAF_1DF

	
	
	

	
	Indexing scheme

	SAF_2DF

	
	
	

	
	Indexing scheme

	SAF_3DF

	
	
	

	Get a description of an alternate

	indexing spec

	saf_describe_alternate_indexspec

	
	
	

	Load

	information from the specified path

	saf_readInfo_path

	
	
	

	Database

	information not available

	SAF_NOT_SET_DB

	
	
	

	
	Initialize the built-in object registry

	_saf_gen_stdtypes

	
	
	

	
	Initialize the library

	saf_init

	
	
	

	Field component

	interleave modes

	SAF_Interleave

	
	
	

	Divide a quantity

	into a quantity definition

	saf_divide_quantity

	
	
	

	Multiply a quantity

	into a quantity definition

	saf_multiply_quantity

	
	
	

	Divide a unit

	into a unit definition

	saf_divide_unit

	
	
	

	Multiply a unit

	into a unit definition

	saf_multiply_unit

	
	
	

	Check if path

	is a SAF database

	saf_getInfo_isSAFdatabase

	
	
	

	Determine if a handle

	is a valid handle

	SAF_VALID

	
	
	

	Check if path

	is an HDF5 file

	saf_getInfo_isHDFfile

	
	
	

	
	Is field stored on self

	saf_is_self_stored_field

	
	
	

	Determine if datatype

	is primitive

	_saf_is_primitive_type

	
	
	

	
	Is topological relation stored on self

	saf_is_self_stored_topo_relation

	
	
	

	Reserved attribute name

	keys

	SAF_ATT

	
	
	

	Find sets by traversing the subset inclusion

	lattice

	saf_find_sets

	
	
	

	Subset inclusion

	lattice roles

	SAF_SilRole

	
	
	

	The quantity

	Length

	SAF_QLENGTH

	
	
	

	Error codes returned by the

	library

	SAF_error_t

	
	
	

	Finalize access to the

	library

	saf_final

	
	
	

	Grab HDF5 I/O

	library

	saf_grab_hdf5

	
	
	

	Initialize the

	library

	saf_init

	
	
	

	Set the MPI communicator for the

	library

	saf_setProps_LibComm

	
	
	

	Ungrab HDF5 I/O

	library

	saf_ungrab_hdf5

	
	
	

	Set the

	library error handling mode

	saf_setProps_ErrorMode

	
	
	

	
	Library properties

	SAF_DEFAULT_LIBPROPS

	
	
	

	Free

	library property list

	saf_freeProps_lib

	
	
	

	Create a new

	library property list with default values

	saf_createProps_lib

	
	
	

	Get the MPI

	library version

	saf_getInfo_mpiversion

	
	
	

	Get the SAF

	library version

	saf_getInfo_libversion

	
	
	

	The quantity

	Light

	SAF_QLIGHT

	
	
	

	Free database property

	list

	saf_freeProps_database

	
	
	

	Free library property

	list

	saf_freeProps_lib

	
	
	

	Create a new database property

	list with default values

	saf_createProps_database

	
	
	

	Create a new library property

	list with default values

	saf_createProps_lib

	
	
	

	
	Load information from the specified path

	saf_readInfo_path

	
	
	

	Specify

	location of SAF’s standard types database

	SAF_REGISTRIES

	
	
	

	Apply a

	logarithmic scale to a unit

	saf_log_unit

	
	
	

	Set the error

	logging mode

	saf_setProps_ErrorLogging

	
	
	

	
	Major version number

	SAF_VERSION_MAJOR

	
	
	

	
	Make a C-automatic array of cat handles

	SAF_Cat

	
	
	

	
	Make a C-automatic array of set handles

	SAF_Set

	
	
	

	
	Make a field handle a C automatic variable

	SAF_Field

	
	
	

	
	Make a field template handle a C automatic variable

	SAF_FieldTmpl

	
	
	

	
	Make a relation handle a C automatic variable

	SAF_Rel

	
	
	

	
	Make a state handle a C automatic variable

	SAF_StateGrp

	
	
	

	
	Make a state template handle a C automatic variable

	SAF_StateTmpl

	
	
	

	
	Make a suite handle a C automatic variable

	SAF_Suite

	
	
	

	The quantity

	Mass

	SAF_QMASS

	
	
	

	Find alternate index specs by

	matching criteria

	saf_find_alternate_indexspecs

	
	
	

	Find set by

	matching criteria

	saf_find_matching_sets

	
	
	

	More

	meaningful alias for SAF_TOTALITY

	SAF_WHOLE_FIELD

	
	
	

	Associates a unit of

	measure with a specific quantity

	saf_quantify_unit

	
	
	

	Add

	members to a collection

	saf_extend_collection

	
	
	

	Create an

	memory-resident database

	saf_setProps_MemoryResident

	
	
	

	Get stat error

	message

	saf_getInfo_errmsg

	
	
	

	Control Reporting of Error

	Messages

	SAF_ERROR_REPORTING

	
	
	

	
	Minor version number

	SAF_VERSION_MINOR

	
	
	

	Set the error logging

	mode

	saf_setProps_ErrorLogging

	
	
	

	Set the library error handling

	mode

	saf_setProps_ErrorMode

	
	
	

	Top

	mode tri-state

	SAF_TopMode

	
	
	

	Error return

	modes

	SAF_ErrMode

	
	
	

	Field component interleave

	modes

	SAF_Interleave

	
	
	

	Set find

	modes

	SAF_FindSetMode

	
	
	

	String allocation

	modes

	SAF_StrMode

	
	
	

	
	More meaningful alias for SAF_TOTALITY

	SAF_WHOLE_FIELD

	
	
	

	Set the

	MPI communicator for the library

	saf_setProps_LibComm

	
	
	

	Specify

	MPI database communicator

	saf_setProps_DbComm

	
	
	

	Get the

	MPI library version

	saf_getInfo_mpiversion

	
	
	

	
	Multiply a quantity into a quantity definition

	saf_multiply_quantity

	
	
	

	
	Multiply a unit into a unit definition

	saf_multiply_unit

	
	
	

	Built-in registry

	name

	SAF_REGISTRY_SAVE

	
	
	

	Reserved attribute

	name keys

	SAF_ATT

	
	
	

	An arbitrary

	named quantity

	SAF_QNAME

	
	
	

	Declare a

	new algebraic type

	saf_declare_algebraic

	
	
	

	Declare a

	new basis type

	saf_declare_basis

	
	
	

	Declare a

	new collection role

	saf_declare_role

	
	
	

	Create a

	new database property list with default values

	saf_createProps_database

	
	
	

	Declare a

	new evaluation type

	saf_declare_evaluation

	
	
	

	Create a

	new library property list with default values

	saf_createProps_lib

	
	
	

	Declare a

	new object

	saf_declare_relrep

	
	
	

	Declare a

	new quantity

	saf_declare_quantity

	
	
	

	Declare a

	new unit

	saf_declare_unit

	
	
	

	Conveniently specify a

	node-centered field

	SAF_NODAL

	
	
	

	Create or update a

	non-sharable attribute

	saf_put_attribute

	
	
	

	Read a

	non-sharable attribute

	saf_get_attribute

	
	
	

	
	Not applicable

	SAF_NOT_APPLICABLE_INT

	
	
	

	Find the

	not applicable unit

	saf_find_unit_not_applicable

	
	
	

	Database information

	not available

	SAF_NOT_SET_DB

	
	
	

	
	Not implemented

	SAF_NOT_IMPL

	
	
	

	
	NULL aliases

	SAF_VoidPtr

	
	
	

	The

	null field handle

	SAF_NULL_FIELD

	
	
	

	The

	null field template handle

	SAF_NULL_FTMPL

	
	
	

	The

	null relation handle

	SAF_NULL_REL

	
	
	

	The

	null set handle

	SAF_NULL_SET

	
	
	

	The

	null state group handle

	SAF_NULL_STATE_GRP

	
	
	

	The

	null state template handle

	SAF_NULL_STMPL

	
	
	

	The

	null suite handle

	SAF_NULL_SUITE

	
	
	

	Major version

	number

	SAF_VERSION_MAJOR

	
	
	

	Minor version

	number

	SAF_VERSION_MINOR

	
	
	

	Release

	number

	SAF_VERSION_RELEASE

	
	
	

	Returns string representation of version

	number

	saf_version_string

	
	
	

	Declare a new

	object

	saf_declare_relrep

	
	
	

	Describe an

	object

	saf_describe_relrep

	
	
	

	Determine if two handles refer to the same

	object

	SAF_EQUIV

	
	
	

	Find one

	object

	saf_find_one_relrep

	
	
	

	Initialize the built-in

	object registry

	_saf_gen_stdtypes

	
	
	

	
	Obtain a set description

	saf_describe_set

	
	
	

	
	Obtain permissions of path

	saf_getInfo_permissions

	
	
	

	Check if any stat errors

	occured

	saf_getInfo_staterror

	
	
	

	Turn

	off aborts

	saf_setProps_DontAbort

	
	
	

	Translate unit by an

	offset

	saf_offset_unit

	
	
	

	Clobber an existing database

	on open

	saf_setProps_Clobber

	
	
	

	Is field stored

	on self

	saf_is_self_stored_field

	
	
	

	Is topological relation stored

	on self

	saf_is_self_stored_topo_relation

	
	
	

	Find

	one algebraic type

	saf_find_one_algebraic

	
	
	

	Find

	one basis type

	saf_find_one_basis

	
	
	

	Find

	one collection role

	saf_find_one_role

	
	
	

	Find

	one evaluation type

	saf_find_one_evaluation

	
	
	

	Find

	one object

	saf_find_one_relrep

	
	
	

	Clobber an existing database on

	open

	saf_setProps_Clobber

	
	
	

	
	Open a database

	saf_open_database

	
	
	

	Exclusive OR

	operator

	SAF_XOR

	
	
	

	Write

	out a state

	saf_write_state

	
	
	

	Find the

	parent of a component field

	_saf_find_parent_field

	
	
	

	Begin a the CATCH

	part of a TRY/CATCH block

	SAF_CATCH

	
	
	

	Load information from the specified

	path

	saf_readInfo_path

	
	
	

	Obtain permissions of

	path

	saf_getInfo_permissions

	
	
	

	Check if

	path is a SAF database

	saf_getInfo_isSAFdatabase

	
	
	

	Check if

	path is an HDF5 file

	saf_getInfo_isHDFfile

	
	
	

	Obtain

	permissions of path

	saf_getInfo_permissions

	
	
	

	Return a

	pointer to an error string

	saf_error_str

	
	
	

	Set the

	pool size for string return value allocations

	saf_setProps_StrPoolSize

	
	
	

	Control

	Postcondition Checking

	SAF_POSTCOND_DISABLE

	
	
	

	Control

	Precondition Checking

	SAF_PRECOND_DISABLE

	
	
	

	
	Predefined scalar datatypes

	SAF_type_t

	
	
	

	Determine if datatype is

	primitive

	_saf_is_primitive_type

	
	
	

	The rank of the calling

	process

	SAF_RANK

	
	
	

	Default

	properties

	SAF_DEFAULT_DBPROPS

	
	
	

	Library

	properties

	SAF_DEFAULT_LIBPROPS

	
	
	

	Free database

	property list

	saf_freeProps_database

	
	
	

	Free library

	property list

	saf_freeProps_lib

	
	
	

	Create a new database

	property list with default values

	saf_createProps_database

	
	
	

	Create a new library

	property list with default values

	saf_createProps_lib

	
	
	

	
	Put an attribute to a set

	saf_put_set_att

	
	
	

	
	Put an attribute with a cat

	saf_put_cat_att

	
	
	

	
	Put an attribute with a field

	saf_put_field_att

	
	
	

	
	Put an attribute with a field template

	saf_put_field_tmpl_att

	
	
	

	Find

	quantities

	saf_find_quantities

	
	
	

	An arbitrary named

	quantity

	SAF_QNAME

	
	
	

	Associates a unit of measure with a specific

	quantity

	saf_quantify_unit

	
	
	

	Convenience function for finding a

	quantity

	saf_find_one_quantity

	
	
	

	Declare a new

	quantity

	saf_declare_quantity

	
	
	

	The

	quantity Amount

	SAF_QAMOUNT

	
	
	

	Query

	quantity characteristics

	saf_describe_quantity

	
	
	

	The

	quantity Current

	SAF_QCURRENT

	
	
	

	Divide a quantity into a

	quantity definition

	saf_divide_quantity

	
	
	

	Multiply a quantity into a

	quantity definition

	saf_multiply_quantity

	
	
	

	Divide a

	quantity into a quantity definition

	saf_divide_quantity

	
	
	

	Multiply a

	quantity into a quantity definition

	saf_multiply_quantity

	
	
	

	The

	quantity Length

	SAF_QLENGTH

	
	
	

	The

	quantity Light

	SAF_QLIGHT

	
	
	

	The

	quantity Mass

	SAF_QMASS

	
	
	

	The

	quantity Temperature

	SAF_QTEMP

	
	
	

	The

	quantity Time

	SAF_QTIME

	
	
	

	
	Queries whether data has been written

	saf_data_has_been_written_to_comp_field

	
	
	

	
	Query quantity characteristics

	saf_describe_quantity

	
	
	

	
	Query unit characteristics

	saf_describe_unit

	
	
	

	The

	rank of the calling process

	SAF_RANK

	
	
	

	
	Read a non-sharable attribute

	saf_get_attribute

	
	
	

	
	Read an alternate index specs from disk

	saf_read_alternate_indexspec

	
	
	

	
	Read the data for a field

	saf_read_field

	
	
	

	
	Read the data for a subset relation

	saf_read_subset_relation

	
	
	

	
	Read topological relation data

	saf_read_topo_relation

	
	
	

	Specify

	read-only database access

	saf_setProps_ReadOnly

	
	
	

	Determine if two handles

	refer to the same object

	SAF_EQUIV

	
	
	

	Initialize the built-in object

	registry

	_saf_gen_stdtypes

	
	
	

	Specify

	registry file

	saf_setProps_Registry

	
	
	

	Built-in

	registry name

	SAF_REGISTRY_SAVE

	
	
	

	Declare a subset

	relation

	saf_declare_subset_relation

	
	
	

	Declare a topological

	relation

	saf_declare_topo_relation

	
	
	

	Get a description of a subset

	relation

	saf_describe_subset_relation

	
	
	

	Get datatype and size for a subset

	relation

	saf_get_count_and_type_for_subset_relation

	
	
	

	Get datatype and size for a topological

	relation

	saf_get_count_and_type_for_topo_relation

	
	
	

	Get description of topological

	relation

	saf_describe_topo_relation

	
	
	

	Read the data for a subset

	relation

	saf_read_subset_relation

	
	
	

	Reuse data in a subset

	relation

	saf_use_written_subset_relation

	
	
	

	Set the destination form of a subset

	relation

	saf_target_subset_relation

	
	
	

	Set the destination form of a topological

	relation

	saf_target_topo_relation

	
	
	

	Write a subset

	relation

	saf_write_subset_relation

	
	
	

	Read topological

	relation data

	saf_read_topo_relation

	
	
	

	Write topological

	relation data

	saf_write_topo_relation

	
	
	

	The null

	relation handle

	SAF_NULL_REL

	
	
	

	Make a

	relation handle a C automatic variable

	SAF_Rel

	
	
	

	
	Relation representation types

	SAF_TopoRelRep

	
	
	

	Find

	relation representation types

	saf_find_relreps

	
	
	

	Subset

	relation representation types

	SAF_SubsetRelRep

	
	
	

	Is topological

	relation stored on self

	saf_is_self_stored_topo_relation

	
	
	

	Find subset

	relations

	saf_find_subset_relations

	
	
	

	Find topological

	relations

	saf_find_topo_relations

	
	
	

	
	Release number

	SAF_VERSION_RELEASE

	
	
	

	Control

	Reporting of Error Messages

	SAF_ERROR_REPORTING

	
	
	

	Returns string

	representation of version number

	saf_version_string

	
	
	

	Find relation

	representation types

	saf_find_relreps

	
	
	

	Relation

	representation types

	SAF_TopoRelRep

	
	
	

	Subset relation

	representation types

	SAF_SubsetRelRep

	
	
	

	
	Reserved attribute name keys

	SAF_ATT

	
	
	

	
	Retrieve a state

	saf_read_state

	
	
	

	
	Return a pointer to an error string

	saf_error_str

	
	
	

	
	Return codes

	SAF_return_t

	
	
	

	Error

	return modes

	SAF_ErrMode

	
	
	

	Set the pool size for string

	return value allocations

	saf_setProps_StrPoolSize

	
	
	

	Error codes

	returned by the library

	SAF_error_t

	
	
	

	
	Returns string representation of version number

	saf_version_string

	
	
	

	
	Reuse data in a subset relation

	saf_use_written_subset_relation

	
	
	

	Declare a new collection

	role

	saf_declare_role

	
	
	

	Describe a

	role

	saf_describe_role

	
	
	

	Find one collection

	role

	saf_find_one_role

	
	
	

	Associating a

	role with a collection category

	SAF_RoleConstants

	
	
	

	Find

	roles

	saf_find_roles

	
	
	

	Subset inclusion lattice

	roles

	SAF_SilRole

	
	
	

	Trace

	SAF API calls and times

	SAF_TRACING

	
	
	

	Check if path is a

	SAF database

	saf_getInfo_isSAFdatabase

	
	
	

	Get the

	SAF library version

	saf_getInfo_libversion

	
	
	

	Specify location of

	SAF’s standard types database

	SAF_REGISTRIES

	
	
	

	Free

	SAF_PathInfo

	saf_freeInfo_path

	
	
	

	More meaningful alias for

	SAF_TOTALITY

	SAF_WHOLE_FIELD

	
	
	

	Determine if two handles refer to the

	same object

	SAF_EQUIV

	
	
	

	Predefined

	scalar datatypes

	SAF_type_t

	
	
	

	Apply a logarithmic

	scale to a unit

	saf_log_unit

	
	
	

	Indexing

	scheme

	SAF_IndexSchema

	
	
	

	Indexing

	scheme

	SAF_FORDER

	
	
	

	Indexing

	scheme

	SAF_CORDER

	
	
	

	Indexing

	scheme

	SAF_1DC

	
	
	

	Indexing

	scheme

	SAF_NA_INDEXSPEC

	
	
	

	Indexing

	scheme

	SAF_2DC

	
	
	

	Indexing

	scheme

	SAF_3DC

	
	
	

	Indexing

	scheme

	SAF_1DF

	
	
	

	Indexing

	scheme

	SAF_2DF

	
	
	

	Indexing

	scheme

	SAF_3DF

	
	
	

	Wildcards for

	searching

	SAF

	
	
	

	Is field stored on

	self

	saf_is_self_stored_field

	
	
	

	Is topological relation stored on

	self

	saf_is_self_stored_topo_relation

	
	
	

	The

	self decomposition of a set

	SAF_SELF

	
	
	

	
	Serial/Parallel-dependent variable

	SAF_PARALLEL_VAR

	
	
	

	Declare a

	set

	saf_declare_set

	
	
	

	Declare default coordinates of a given

	set

	saf_declare_default_coords

	
	
	

	Get an attribute from a

	set

	saf_get_set_att

	
	
	

	Put an attribute to a

	set

	saf_put_set_att

	
	
	

	The self decomposition of a

	set

	SAF_SELF

	
	
	

	Find

	set by matching criteria

	saf_find_matching_sets

	
	
	

	Obtain a

	set description

	saf_describe_set

	
	
	

	
	Set find modes

	SAF_FindSetMode

	
	
	

	The null

	set handle

	SAF_NULL_SET

	
	
	

	The universe

	set handle

	SAF_UNIVERSE

	
	
	

	Make a C-automatic array of

	set handles

	SAF_Set

	
	
	

	
	Set string allocation style

	saf_setProps_StrMode

	
	
	

	
	Set the destination form of a field

	saf_target_field

	
	
	

	
	Set the destination form of a subset relation

	saf_target_subset_relation

	
	
	

	
	Set the destination form of a topological relation

	saf_target_topo_relation

	
	
	

	
	Set the error logging mode

	saf_setProps_ErrorLogging

	
	
	

	
	Set the library error handling mode

	saf_setProps_ErrorMode

	
	
	

	
	Set the MPI communicator for the library

	saf_setProps_LibComm

	
	
	

	
	Set the pool size for string return value allocations

	saf_setProps_StrPoolSize

	
	
	

	Boundary

	set tri-state

	SAF_BoundMode

	
	
	

	Extendable

	set tri-state

	SAF_ExtendMode

	
	
	

	Find

	sets by traversing the subset inclusion lattice

	saf_find_sets

	
	
	

	Convert a

	single value

	_saf_convert

	
	
	

	Array

	size

	SAF_NELMTS

	
	
	

	Get datatype and

	size for a field

	saf_get_count_and_type_for_field

	
	
	

	Get datatype and

	size for a subset relation

	saf_get_count_and_type_for_subset_relation

	
	
	

	Get datatype and

	size for a topological relation

	saf_get_count_and_type_for_topo_relation

	
	
	

	Set the pool

	size for string return value allocations

	saf_setProps_StrPoolSize

	
	
	

	The

	size of the communicator

	SAF_SIZE

	
	
	

	Get a description of an alternate indexing

	spec

	saf_describe_alternate_indexspec

	
	
	

	Associates a unit of measure with a

	specific quantity

	saf_quantify_unit

	
	
	

	Declare an Alternative Index

	Specification

	saf_declare_alternate_indexspec

	
	
	

	Load information from the

	specified path

	saf_readInfo_path

	
	
	

	Conveniently

	specify a boundary subset

	SAF_BOUNDARY

	
	
	

	
	Specify a callback for error conditions

	saf_setProps_ErrFunc

	
	
	

	Conveniently

	specify a constant field

	SAF_CONSTANT

	
	
	

	Conveniently

	specify a decomposition-centered field

	SAF_DECOMP

	
	
	

	Conveniently

	specify a node-centered field

	SAF_NODAL

	
	
	

	Conveniently

	specify a typical subset

	SAF_COMMON

	
	
	

	Conveniently

	specify a zone-centered field

	SAF_ZONAL

	
	
	

	Conveniently

	specify an embedded boundary subset

	SAF_EMBEDBND

	
	
	

	Conveniently

	specify an general subset

	SAF_GENERAL

	
	
	

	
	Specify location of SAF’s standard types database

	SAF_REGISTRIES

	
	
	

	
	Specify MPI database communicator

	saf_setProps_DbComm

	
	
	

	
	Specify read-only database access

	saf_setProps_ReadOnly

	
	
	

	
	Specify registry file

	saf_setProps_Registry

	
	
	

	Find alternate index

	specs by matching criteria

	saf_find_alternate_indexspecs

	
	
	

	Read an alternate index

	specs from disk

	saf_read_alternate_indexspec

	
	
	

	Write an alternate index

	specs to disk

	saf_write_alternate_indexspec

	
	
	

	
	Standard tri-state values

	SAF_TriState

	
	
	

	Specify location of SAF’s

	standard types database

	SAF_REGISTRIES

	
	
	

	Get

	stat error message

	saf_getInfo_errmsg

	
	
	

	Check if any

	stat errors occured

	saf_getInfo_staterror

	
	
	

	Retrieve a

	state

	saf_read_state

	
	
	

	Write out a

	state

	saf_write_state

	
	
	

	Attach an attribute to a

	state group

	saf_put_state_grp_att

	
	
	

	Declare a

	state group

	saf_declare_state_group

	
	
	

	Get a description of a

	state group

	saf_describe_state_group

	
	
	

	Get an attribute attached to a

	state group

	saf_get_state_grp_att

	
	
	

	The null

	state group handle

	SAF_NULL_STATE_GRP

	
	
	

	Find

	state groups

	saf_find_state_groups

	
	
	

	Make a

	state handle a C automatic variable

	SAF_StateGrp

	
	
	

	Attach an attribute to a

	state template

	saf_put_state_tmpl_att

	
	
	

	Declare a

	state template

	saf_declare_state_tmpl

	
	
	

	Find a

	state template

	saf_find_state_tmpl

	
	
	

	Get a description of a

	state template

	saf_describe_state_tmpl

	
	
	

	Get an attribute attached to a

	state template

	saf_get_state_tmpl_att

	
	
	

	The null

	state template handle

	SAF_NULL_STMPL

	
	
	

	Make a

	state template handle a C automatic variable

	SAF_StateTmpl

	
	
	

	Is field

	stored on self

	saf_is_self_stored_field

	
	
	

	Is topological relation

	stored on self

	saf_is_self_stored_topo_relation

	
	
	

	Copy a

	string

	_saf_strdup

	
	
	

	Return a pointer to an error

	string

	saf_error_str

	
	
	

	
	String allocation modes

	SAF_StrMode

	
	
	

	Set

	string allocation style

	saf_setProps_StrMode

	
	
	

	Returns

	string representation of version number

	saf_version_string

	
	
	

	Set the pool size for

	string return value allocations

	saf_setProps_StrPoolSize

	
	
	

	Set string allocation

	style

	saf_setProps_StrMode

	
	
	

	Conveniently specify a boundary

	subset

	SAF_BOUNDARY

	
	
	

	Conveniently specify a typical

	subset

	SAF_COMMON

	
	
	

	Conveniently specify an embedded boundary

	subset

	SAF_EMBEDBND

	
	
	

	Conveniently specify an general

	subset

	SAF_GENERAL

	
	
	

	Find sets by traversing the

	subset inclusion lattice

	saf_find_sets

	
	
	

	
	Subset inclusion lattice roles

	SAF_SilRole

	
	
	

	Declare a

	subset relation

	saf_declare_subset_relation

	
	
	

	Get a description of a

	subset relation

	saf_describe_subset_relation

	
	
	

	Get datatype and size for a

	subset relation

	saf_get_count_and_type_for_subset_relation

	
	
	

	Read the data for a

	subset relation

	saf_read_subset_relation

	
	
	

	Reuse data in a

	subset relation

	saf_use_written_subset_relation

	
	
	

	Set the destination form of a

	subset relation

	saf_target_subset_relation

	
	
	

	Write a

	subset relation

	saf_write_subset_relation

	
	
	

	
	Subset relation representation types

	SAF_SubsetRelRep

	
	
	

	Find

	subset relations

	saf_find_subset_relations

	
	
	

	Attach an attribute to a

	suite

	saf_put_suite_att

	
	
	

	Declare a

	suite

	saf_declare_suite

	
	
	

	Get a description of a

	suite

	saf_describe_suite

	
	
	

	Get an attribute attached to a

	suite

	saf_get_suite_att

	
	
	

	The null

	suite handle

	SAF_NULL_SUITE

	
	
	

	Make a

	suite handle a C automatic variable

	SAF_Suite

	
	
	

	Find

	suites

	saf_find_suites

	
	
	

	
	Synchronization barrier

	SAF_BARRIER

	
	
	

	The quantity

	Temperature

	SAF_QTEMP

	
	
	

	Attach an attribute to a state

	template

	saf_put_state_tmpl_att

	
	
	

	Declare a field

	template

	saf_declare_field_tmpl

	
	
	

	Declare a state

	template

	saf_declare_state_tmpl

	
	
	

	Find a state

	template

	saf_find_state_tmpl

	
	
	

	Get a description of a field

	template

	saf_describe_field_tmpl

	
	
	

	Get a description of a state

	template

	saf_describe_state_tmpl

	
	
	

	Get an attribute attached to a state

	template

	saf_get_state_tmpl_att

	
	
	

	Get an attribute with a field

	template

	saf_get_field_tmpl_att

	
	
	

	Put an attribute with a field

	template

	saf_put_field_tmpl_att

	
	
	

	The null field

	template handle

	SAF_NULL_FTMPL

	
	
	

	The null state

	template handle

	SAF_NULL_STMPL

	
	
	

	Make a field

	template handle a C automatic variable

	SAF_FieldTmpl

	
	
	

	Make a state

	template handle a C automatic variable

	SAF_StateTmpl

	
	
	

	Find field

	templates

	saf_find_field_tmpls

	
	
	

	The quantity

	Time

	SAF_QTIME

	
	
	

	Trace SAF API calls and

	times

	SAF_TRACING

	
	
	

	
	Top mode tri-state

	SAF_TopMode

	
	
	

	
	Topological dimensions

	SAF_TopoDim

	
	
	

	Declare a

	topological relation

	saf_declare_topo_relation

	
	
	

	Get datatype and size for a

	topological relation

	saf_get_count_and_type_for_topo_relation

	
	
	

	Get description of

	topological relation

	saf_describe_topo_relation

	
	
	

	Set the destination form of a

	topological relation

	saf_target_topo_relation

	
	
	

	Read

	topological relation data

	saf_read_topo_relation

	
	
	

	Write

	topological relation data

	saf_write_topo_relation

	
	
	

	Is

	topological relation stored on self

	saf_is_self_stored_topo_relation

	
	
	

	Find

	topological relations

	saf_find_topo_relations

	
	
	

	
	Trace SAF API calls and times

	SAF_TRACING

	
	
	

	
	Translate unit by an offset

	saf_offset_unit

	
	
	

	Find sets by

	traversing the subset inclusion lattice

	saf_find_sets

	
	
	

	Boundary set

	tri-state

	SAF_BoundMode

	
	
	

	Decomposition

	tri-state

	SAF_DecompMode

	
	
	

	Extendable set

	tri-state

	SAF_ExtendMode

	
	
	

	Top mode

	tri-state

	SAF_TopMode

	
	
	

	Standard

	tri-state values

	SAF_TriState

	
	
	

	Begin a

	TRY/CATCH block

	SAF_TRY_BEGIN

	
	
	

	Begin a the CATCH part of a

	TRY/CATCH block

	SAF_CATCH

	
	
	

	End a

	TRY/CATCH block

	SAF_TRY_END

	
	
	

	
	Turn off aborts

	saf_setProps_DontAbort

	
	
	

	Compare

	two collections

	saf_same_collections

	
	
	

	Determine if

	two handles refer to the same object

	SAF_EQUIV

	
	
	

	Declare a new algebraic

	type

	saf_declare_algebraic

	
	
	

	Declare a new basis

	type

	saf_declare_basis

	
	
	

	Declare a new evaluation

	type

	saf_declare_evaluation

	
	
	

	Describe a basis

	type

	saf_describe_basis

	
	
	

	Describe an algebraic

	type

	saf_describe_algebraic

	
	
	

	Describe an evaluation

	type

	saf_describe_evaluation

	
	
	

	Find one algebraic

	type

	saf_find_one_algebraic

	
	
	

	Find one basis

	type

	saf_find_one_basis

	
	
	

	Find one evaluation

	type

	saf_find_one_evaluation

	
	
	

	Basis

	types

	SAF_BasisConstants

	
	
	

	Common algebraic

	types

	SAF_ALGTYPE

	
	
	

	Evaluation

	Types

	SAF_EvalConstants

	
	
	

	Find algebraic

	types

	saf_find_algebraics

	
	
	

	Find evaluation

	types

	saf_find_evaluations

	
	
	

	Find relation representation

	types

	saf_find_relreps

	
	
	

	Relation representation

	types

	SAF_TopoRelRep

	
	
	

	Subset relation representation

	types

	SAF_SubsetRelRep

	
	
	

	Specify location of SAF’s standard

	types database

	SAF_REGISTRIES

	
	
	

	Conveniently specify a

	typical subset

	SAF_COMMON

	
	
	

	
	Ungrab HDF5 I/O library

	saf_ungrab_hdf5

	
	
	

	Apply a logarithmic scale to a

	unit

	saf_log_unit

	
	
	

	Convenience function for finding a

	unit

	saf_find_one_unit

	
	
	

	Declare a new

	unit

	saf_declare_unit

	
	
	

	Find the not applicable

	unit

	saf_find_unit_not_applicable

	
	
	

	Translate

	unit by an offset

	saf_offset_unit

	
	
	

	Query

	unit characteristics

	saf_describe_unit

	
	
	

	Divide a unit into a

	unit definition

	saf_divide_unit

	
	
	

	Multiply a unit into a

	unit definition

	saf_multiply_unit

	
	
	

	Divide a

	unit into a unit definition

	saf_divide_unit

	
	
	

	Multiply a

	unit into a unit definition

	saf_multiply_unit

	
	
	

	Associates a

	unit of measure with a specific quantity

	saf_quantify_unit

	
	
	

	Find

	units

	saf_find_units

	
	
	

	The

	universe set handle

	SAF_UNIVERSE

	
	
	

	Create or

	update a non-sharable attribute

	saf_put_attribute

	
	
	

	
	Update database contents

	saf_update_database

	
	
	

	Determine if a handle is a

	valid handle

	SAF_VALID

	
	
	

	Convert a single

	value

	_saf_convert

	
	
	

	Set the pool size for string return

	value allocations

	saf_setProps_StrPoolSize

	
	
	

	Create a new database property list with default

	values

	saf_createProps_database

	
	
	

	Create a new library property list with default

	values

	saf_createProps_lib

	
	
	

	Standard tri-state

	values

	SAF_TriState

	
	
	

	Make a field handle a C automatic

	variable

	SAF_Field

	
	
	

	Make a field template handle a C automatic

	variable

	SAF_FieldTmpl

	
	
	

	Make a relation handle a C automatic

	variable

	SAF_Rel

	
	
	

	Make a state handle a C automatic

	variable

	SAF_StateGrp

	
	
	

	Make a state template handle a C automatic

	variable

	SAF_StateTmpl

	
	
	

	Make a suite handle a C automatic

	variable

	SAF_Suite

	
	
	

	Serial/Parallel-dependent

	variable

	SAF_PARALLEL_VAR

	
	
	

	Version-dependent

	variable

	SAF_VERSION_VAR

	
	
	

	Get the HDF5

	version

	saf_getInfo_hdfversion

	
	
	

	Get the MPI library

	version

	saf_getInfo_mpiversion

	
	
	

	Get the SAF library

	version

	saf_getInfo_libversion

	
	
	

	
	Version Annotation

	SAF_VERSION_ANNOT

	
	
	

	Major

	version number

	SAF_VERSION_MAJOR

	
	
	

	Minor

	version number

	SAF_VERSION_MINOR

	
	
	

	Returns string representation of

	version number

	saf_version_string

	
	
	

	
	Version-dependent variable

	SAF_VERSION_VAR

	
	
	

	Queries

	whether data has been written

	saf_data_has_been_written_to_comp_field

	
	
	

	
	Wildcards for searching

	SAF

	
	
	

	
	Write a subset relation

	saf_write_subset_relation

	
	
	

	
	Write an alternate index specs to disk

	saf_write_alternate_indexspec

	
	
	

	
	Write out a state

	saf_write_state

	
	
	

	
	Write the data for a field

	saf_write_field

	
	
	

	
	Write topological relation data

	saf_write_topo_relation

	
	
	

	Queries whether data has been

	written

	saf_data_has_been_written_to_comp_field

	
	
	

	Conveniently specify a

	zone-centered field

	SAF_ZONAL

Concept Index

Introduction

This is the Sets and Fields (SAF [https://github.com/markcmiller86/SAF] pronounced “safe”) Application Programming Interface (API) programmer’s reference
manual. This manual is organized into Chapters where each chapter covers a different, top-level, set of functions
(e.g. object and its supporting methods) SAF [https://github.com/markcmiller86/SAF] supports.

	There is a decent introduction to the SAF [https://github.com/markcmiller86/SAF] data model in this paper,

	github.com/markcmiller86/SAF/blob/master/src/safapi/docs/miller001.pdf [http://github.com/markcmiller86/SAF/blob/master/src/safapi/docs/miller001.pdf]

	Various API design ideas were taken from this paper,

	github.com/markcmiller86/SAF/blob/master/src/safapi/docs/necdc_2004_paper_30Nov04.pdf [https://github.com/markcmiller86/SAF/blob/master/src/safapi/docs/necdc_2004_paper_30Nov04.pdf]

SAF is designed first and foremost to support scalable I/O of shareable, scientific data.

The key words in this statement are scalable and shareable.

Scalable means that SAF [https://github.com/markcmiller86/SAF] is designed to operate with high performance from single processor, workstation class machines,
to large scale, parallel computing platforms such as are in use in the ASCI program.
In turn, this also demands that SAF [https://github.com/markcmiller86/SAF] be portable across a variety of computing platforms. Currently, SAF [https://github.com/markcmiller86/SAF] operates
in serial and parallel on Dec, Sun, Linux, IBM-SP2, Intel TeraFlops, SGI-O2k (single box). SAF [https://github.com/markcmiller86/SAF] is also supported
in serial on Windows. A good measure of SAF [https://github.com/markcmiller86/SAF]’s performance and portability is derived from its use of industry
standard software components such as HDF5 (support.hdfgroup.org/HDF5/doc/index.html [https://support.hdfgroup.org/HDF5/doc/index.html]) and
MPI (www.mpi-forum.org [http://www.mpi-forum.org]). However, scalable I/O is just one of SAF [https://github.com/markcmiller86/SAF]’s primary goals. Making data
shareable is another.

Shareable means that if one application uses SAF [https://github.com/markcmiller86/SAF] to write its data, other wholly independent applications can
easily read and interpret that data. Of course, it is not all that impressive if one application can simply read a
bunch of bytes that another has written. Thus, the key to understanding what shareable means is the and interpret
part. SAF [https://github.com/markcmiller86/SAF] is designed to make it easy for one scientific computing application to interpret another’s data.
Even more so, SAF [https://github.com/markcmiller86/SAF] is designed to enable this interpretation across a diverse and continually expanding gamut
of scientific computing applications. In a nutshell, SAF [https://github.com/markcmiller86/SAF] lays the foundation for very large scale integration of
scientific software.

The organizations involved in the development of SAF [https://github.com/markcmiller86/SAF] have plenty of experience
with integration on smaller scales with products like netCDF, HDF, PATRAN, SEACAS, Silo and Exodus II.
These technologies offer applications a menu of objects; some data structures
(e.g. array, list, tree) and/or some mesh objects (e.g. structured-mesh, ucd-mesh, side-sets, etc.).
For application developers who use these products, the act of sharing their data is one of browsing the menu.
If they are lucky, they will find an object that matches their data and use it. If
they are unlucky, they will have to modify their data to put it into a form that matches one of the objects on the menu.

Thus, former approaches to making shareable data suffer from either requiring all clients to use the same data structures
and/or objects to represent their data or by resulting in an ever expanding set of incrementally different data structures
and/or objects to support each client’s slightly different needs. The result is that these products can and have been
highly successful within a small group of applications who either…

	buy into the small menu of objects they do support, or

	don’t require support for very many new objects (e.g. changes to the supporting library), or

	don’t expect very many other applications to understand their data

In other words, previous approaches have succeeded in integration on the small scale but hold little promise for
integration on the large scale.

The key to integration and sharing of data on the large scale is to find a small set of primitive, yet mathematically
meaningful, building blocks out of which descriptions for many different kinds of scientific data can be constructed.
In this approach, each new and slightly different kind of data requires the application of the same building blocks to
form a slightly different assembly. Since every assembly is just a different application of the same building
blocks, each is fully supported by existing software. In fact, every assembly of building blocks is simply a model
for an instance of some scientific data. This is precisely how SAF [https://github.com/markcmiller86/SAF] is designed to operate.
For application developers using SAF [https://github.com/markcmiller86/SAF], the act of sharing their data is one of literally modeling their data; not
browsing a menu. This modeling is analogous to the user of a CAD/CAM tool when applying
constructive solid geometry (CSG) primitives to build an engineering model for some physical part. In a nutshell, the
act of sharing data with SAF [https://github.com/markcmiller86/SAF] is one of scientific data modeling.

This requires a revolution in the way scientific computing application developers think about their data. The details
of bits and bytes, arrays and lists are pushed to the background. These concepts are still essential but less so
than the modeling primitives used to characterize scientific data. These modeling primitives are firmly rooted in
the mathematics underlying most, if not all, scientific computing applications. By and large, this means the model
primitives will embody the mathematical and physical notions of fields defined on base - spaces or sets.

The term field is used to describe any phenomenon that can be mathematically represented, at least locally, as a
function over some, often continuous, base-space or domain. The term base - space is used to describe an infinite
point set, often continuous, with a topological dimension over which fields are defined.
Thus, SAF [https://github.com/markcmiller86/SAF] provides three key modeling primitives; fields, sets, and relations between these entities. Fields may
represent real physical phenomena such as pressure, stress and velocity. Fields may be related to other fields by
integral, derivative or algebraic equations. Fields are defined on sets. Sets may represent real physical objects such
parts in an assembly, materials and slide interfaces. And, sets may be related to other sets by set-algebraic equations
involving union, intersection and difference.

A full description of modeling principles upon which SAF [https://github.com/markcmiller86/SAF] is based is outside this scope of this programmer’s reference
manual. User quality tutorials of this material will be forthcoming as SAF [https://github.com/markcmiller86/SAF] evolves. However, the reader should pause for
a moment and confirm in his own mind just how general the notions of field and set are in describing scientific data. The
columns of an Excel spreadsheet are fields. A time history is a field. The coordinates of a mesh is a field. A plot dump
is a whole bunch of related fields. An image is a field. A video is a field. A load curve is a field. Likewise for sets.
An individual node or zone is a set. A processor domain is a set. An element block is a set. A slide line or surface is a
set. A part in an assembly is a set. And so on.

Understanding and applying set, field and relation primitives to model scientific data represents a revolutionary
departure from previous, menu based approaches. SAF [https://github.com/markcmiller86/SAF] represents a first cut at a portable, parallel, high performance
application programming interface for modeling scientific data. Over the course of development of SAF [https://github.com/markcmiller86/SAF], the organizations
involved have seen the value in applying this technology in several directions…

	A publish/subscribe scenario for exchanging data between scientific computing clients, in-situ.

	End-user tools for performing set operations and restricting fields to subsets of the base space to
take a closer look at portions of tera-scale data.

	Operators which transform data during exchange between clients such as changing the processor decomposition,
evaluation method, node-order over elements, units, precision, etc. on a field.

	Data consistency checkers which confirm a given bunch of scientific data does indeed conform to the
mathematical and physical description that has been ascribed to it by its model. For example, that a volume or mass
fraction field is indeed between 0.0 and 1.0, everywhere in its base-space.

	MPI-like parallel communication routines pitched in terms of sets and fields rather than data structures.

And many others.

While each of these areas shows promise, our first goal has been to demonstrate that we can apply this technology
to do the same job we previously achieved with mesh-object I/O libraries like Silo and Exodus II. In other words,
our first and foremost goal is to demonstrate that we can read and write shareable scientific data files with
good performance. Such a capability is fundamental to the success of any organization involved in scientific computing.
If we cannot demonstrate that, there is little point in trying to address these other areas of interest.

Environment

A number of environment variables affect the operation of SAF [https://github.com/markcmiller86/SAF] such as error detections and reporting as
well as where predefined types are obtained.

Members

	SAF_ASSERT_DISABLE [Public symbol]

	SAF_ERROR_REPORTING [Public symbol]

	SAF_POSTCOND_DISABLE [Public symbol]

	SAF_PRECOND_DISABLE [Public symbol]

	SAF_REGISTRIES [Public symbol]

	SAF_REGISTRY_SAVE [Public symbol]

	SAF_TRACING [Public symbol]

Control Assertion Checking

SAF_ASSERT_DISABLE is a symbol defined in init.c.

Synopsis:

	
SAF_ASSERT_DISABLE

	

Description: There are three environment variables that control, independently, the level or pre-, post- and assert-
condition checking done by SAF [https://github.com/markcmiller86/SAF]. They are…

	1

	 SAF_ASSERT_DISABLE

	1

	 SAF_PRECOND_DISABLE

	1

	 SAF_POSTCOND_DISABLE

These three environment variables control the level of assertion, pre-condition and post-condition checking,
respectively, that SAF [https://github.com/markcmiller86/SAF] does during execution. Each is a string valued environment variable with possible values
“none”, “high”, “medium”, and “all”. For example, a value of “none” for SAF__ASSERT_DISABLE means that none
of the assertion checking is disabled. A value of “high” means that all high cost assertions are disabled but
medium and low cost assertions are still enabled. A value “medium” means that all high and medium cost
assertions are disabled but low cost assertions are still enabled. A value of “all” means that all assertions
are disabled. Likewise, SAF__PRECOND_DISABLE controls pre-condition checking and SAF__POSTCOND_DISABLE
controls post-condition checking.

The cost of an assertion, pre-condition or post-condition is specified in terms relative to the SAF [https://github.com/markcmiller86/SAF] function
in which the condition is checked. This means that a simple test for a null pointer in a very simple SAF [https://github.com/markcmiller86/SAF]
function, such as saf_setProps_LibComm, is considered high cost while in a saf_declare_field it is considered
low cost. This is so because the test for a null pointer in saf_setProps_LibComm relative to the other work
saf_setProps_LibComm does is high cost while that same test in saf_declare_field is relatively low cost.

In addition to controlling SAF [https://github.com/markcmiller86/SAF]’s assertion, pre-condition and post-condition checking, these environment
variables also control similar checks that go on in the lower layers of SAF [https://github.com/markcmiller86/SAF]. These lower layers do not
have high, medium and low check costs. Instead, they can either be turned on or off. The checks are performed
if SAF__ASSERT_DISABLE is “none”, and not performed otherwise.

Assertion, pre-condition and post-condition checking has a marked effect on performance. To obtain maximum
performance, all checks should be turned off using

	1
2
3

	 setenv SAF_ASSERT_DISABLE all
 setenv SAF_PRECOND_DISABLE all
 setenv SAF_POSTCOND_DISABLE all

or

	1
2
3

	 env SAF_ASSERT_DISABLE=all \
 SAF_PRECOND_DISABLE=all \
 SAF_POSTCOND_DISABLE=all a.out ...

For each of these environment variables, if it does not exist, SAF [https://github.com/markcmiller86/SAF] will set the default values depending
on whether the library was compiled for production or development. For a production compile, the default
values for all three environment settings are “all” meaning that the error checking for assertion,
pre-condition and post-condition checking is set for maximal performance. For a development compile, the
default setting for all three is “none” meaning it is set for maximal error checking.

See Also:

	saf_declare_field: 16.12: Declare a field

	saf_setProps_LibComm: 5.7: Set the MPI communicator for the library

	Environment: Introduction for current chapter

Control Reporting of Error Messages

SAF_ERROR_REPORTING is a symbol defined in init.c.

Synopsis:

	
SAF_ERROR_REPORTING

	

Description: This is a string valued environment variable that may be set to one of the following values…

	1

	 none

Means no error reporting. SAF [https://github.com/markcmiller86/SAF] does not print error messages. This is the default
for a production compile but may be overridden at anytime by use of this environment variable.

	1

	 stderr

Means SAF [https://github.com/markcmiller86/SAF] sends its error messages to the stderr stream. This is the default for
a serial, development compile. See below for the default for a parallel, development compile.
If this mode is selected in parallel, SAF [https://github.com/markcmiller86/SAF] will prepend each message with the rank of the
MPI task in the communicator used to initialize SAF [https://github.com/markcmiller86/SAF] (see saf_init) to each line of output
in this file.

	1

	 file: /name/ // no white space

Where name is a file name, this means SAF [https://github.com/markcmiller86/SAF] will open a stream by
this name and send its error messages to this stream. In parallel, SAF [https://github.com/markcmiller86/SAF] will prepend the rank
of the task in the communicator used to initialize SAF [https://github.com/markcmiller86/SAF] (see saf_init) to each line
of output to this file. However, the order of task’s output to this file is indeterminate.

	1

	 procfile: /prefix/,/fmt/,/suffix/ // no white space

where prefix and suffix are parts of a name and fmt is a printf
style integer format designation for including the task number in the name. For example, in
‘procfile:saf_,%03d,.log”, the prefix is ‘saf_’, task number format designation is ‘%03d’ and the
suffix is ‘.log’. If this mode is selected in a serial run, the task number format designation will
be ignored. A minor issue with this form of error logging is that it generates one file for each
task. If you have a 1,000 task run, you get 1000 files. However, it does keep each task’s
outputs separate, unlike the preceding mode. However, the following mode gets around this problem by
generating only a single log file and forcing each proc to write to only a given segment of the file.

See Also:

	saf_init: 4.3: Initialize the library

	Environment: Introduction for current chapter

Control Postcondition Checking

SAF_POSTCOND_DISABLE is a symbol defined in init.c.

Synopsis:

	
SAF_POSTCOND_DISABLE

	

Description: See SAF__ASSERT_DISABLE

See Also:

	Environment: Introduction for current chapter

Control Precondition Checking

SAF_PRECOND_DISABLE is a symbol defined in init.c.

Synopsis:

	
SAF_PRECOND_DISABLE

	

Description: See SAF__ASSERT_DISABLE

See Also:

	Environment: Introduction for current chapter

Specify location of SAF’s standard types database

SAF_REGISTRIES is a symbol defined in init.c.

Synopsis:

	
SAF_REGISTRIES

	

Description: This is a string valued environment variable that holds colon (‘:’) separated list of pathnames files from where
SAF [https://github.com/markcmiller86/SAF] will obtain predefined type definitions. If this variable is not set, SAF [https://github.com/markcmiller86/SAF] will build an use a transient
database containing a minimal set of pre-defined types. In typical usage, this variable need not be set.

By default, SAF [https://github.com/markcmiller86/SAF] will generate a minimal, memory resident registry that is destroyed when saf is finalized. This
permits SAF [https://github.com/markcmiller86/SAF] to operate in such a way that it does not need to access some registry file on disk somewhere to
properly initialize. However, other, disk resident registry files can be opened if either the env. variable,
SAF__REGISTRIES, is set and/or the client has specified a specific registry with the initialization properties.

Files specified by the SAF__REGISTRIES env. variable are first in the list followed by those specified by the
initialization properties. In this way, if SAF__REGISTRIES is specified, the definitions of symbols there take
precedence over those that may also exist in the file(s) specified by the initialization properties.

If SAF__REGISTRIES is set to the string “implicit”, it will look for a file named Registry.saf in the
usual places, namely in the current working directory, then in the user’s home directory and finally in the
SAF [https://github.com/markcmiller86/SAF] installation directory.

Errors will be reported for registries specified explicitly by environment variables
and/or calls to saf_SetProps_Registry, but not for the implicit locations. A warning will be issued if no
registry can be found at all.

Finally, if SAF__REGISTRIES is set to the string “none”, then no registries will be
opened, not even the minimal, memory resident one. If SAF__REGISTRIES is set to the string “default” then only the
minimal registry will be opened. That is, you can force SAF [https://github.com/markcmiller86/SAF] to ignore all registries specified by a client through
the initialization properties by setting SAF__REGISTRIES to “default”.

Note that the order in which filenames are specified is important. When SAF [https://github.com/markcmiller86/SAF] needs to look up a pre-defined
datatype, it searches its known registries in the order in which they were specified in SAF__REGISTRIES,
then those specified with saf_setProps_Registry. SAF [https://github.com/markcmiller86/SAF] returns the first matching referenced type.

See Also:

	Environment: Introduction for current chapter

Built-in registry name

SAF_REGISTRY_SAVE is a symbol defined in init.c.

Synopsis:

	
SAF_REGISTRY_SAVE

	

Description: Normally SAF [https://github.com/markcmiller86/SAF] will create a minimal object registry that exists only in memory. However, if this environment
variable is set to the name of a file, then SAF [https://github.com/markcmiller86/SAF] will save the built-in object registry in that file. This is
intended only to be used for debugging to make sure that the object registry file’s contents are what is
expected.

See Also:

	Environment: Introduction for current chapter

Trace SAF API calls and times

SAF_TRACING is a symbol defined in init.c.

Synopsis:

	
SAF_TRACING

	

Description: This is a string valued environment variable used to control API call tracing in SAF [https://github.com/markcmiller86/SAF]. It may be set to
any one of the values described below. Note that API call tracing is logged to the same file specified
by SAF__ERROR_REPORTING. However, if SAF__ERROR_REPORTING is set to “none” and SAF__TRACING is not also
“none”, SAF [https://github.com/markcmiller86/SAF] will log its API tracing to stderr. Currently, SAF [https://github.com/markcmiller86/SAF] only logs entrances to SAF [https://github.com/markcmiller86/SAF] API calls, not
exits.

Note: Since the bulk of SAF [https://github.com/markcmiller86/SAF]’s API is collective, only processor 0 actually prints any trace information.

	1

	 none

This is the default. It means that no API tracing will be generated.

	1

	 times

This setting will record the cumulative amount of time spent in saf_read_xxx calls and saf_write_xxx calls
as compared to the total time between calls to saf_init and saf_final. The times recorded are wall clock
seconds. Entrances to functions WILL NOT be reported. However, during saf_final, the cumulative timers
for time spent in reads and writes will be reported.

	1

	 public

Public API calls will be logged to whatever file SAF [https://github.com/markcmiller86/SAF] is also reporting errors to.

	1

	 public,times

Same as “public” but SAF [https://github.com/markcmiller86/SAF] will also output wall clock times since the last API call was entered. SAF [https://github.com/markcmiller86/SAF]
will report the delta since the last call and the absolute time, starting from 0. The times reported
are WALL CLOCK seconds, not CPU seconds. Thus, if there are other activities causing SAF [https://github.com/markcmiller86/SAF] to run more slowly
then it will be reflected in the times SAF [https://github.com/markcmiller86/SAF] reports.

	1

	 public,private

Both public and private API calls are logged.

	1

	 public,private,times

Both public and private API calls are logged along with timing information.

Finally, if SAF__TRACING is set to a valid value other than “none”, SAF [https://github.com/markcmiller86/SAF] will also invoke HDF5’s tracing
facilities. However, HDF5’s tracing facilities WILL NOT take effect unless the environment var H5_DEBUG is
also defined in the environment. Thus, HDF5’s tracing can be turned on/off separately by setting or unsetting
the H5_DEBUG environment variable.

See Also:

	saf_final: 4.2: Finalize access to the library

	saf_init: 4.3: Initialize the library

	Environment: Introduction for current chapter

Error Handling

SAF can be used either in an exception-catching programming paradigm or test the return code programming paradigm.
SAF [https://github.com/markcmiller86/SAF] will either throw exceptions or return error codes depending on a library property
(see saf_setProps_ErrorMode).

See *Environment* section where environment variables affecting error checking, etc. are discussed.

In addition, the client can control if and how error messages are reported and whether certain kinds of
errors are detected. In every function, SAF [https://github.com/markcmiller86/SAF] does work to detect problematic conditions. However, the cost
of this detection work is weighted relative to the real work of the function using a low, medium and
high weighting scheme.

There are several macros available to use in an exception handling programming style rather than a
test the return value style. The basic structure of an exception handling style is…

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 SAF_TRY_BEGIN { // begin an exception/catch block
 ... // put your saf calls here
 } SAF_CATCH { // begin the catch block
 // catch a particular error
 SAF_CATCH_ERR(SAF_WRITE_ERROR) {
 ... // specific error handling here
 }
 SAF_CATCH_ALL { // catch any error here
 ... // generic error handling here
 }
 } SAF_TRY_END; // end the exception/catch block

Members

	SAF_CATCH [Public symbol]

	SAF_CATCH_ALL [Public symbol]

	SAF_CATCH_ERR [Public macro]

	SAF_TRY_BEGIN [Public symbol]

	SAF_TRY_END [Public symbol]

	SAF_error_t [Public datatype]

	saf_error_str [Public function]

Begin a the CATCH part of a TRY/CATCH block

SAF_CATCH is a symbol defined in saf.h.

Synopsis:

	
SAF_CATCH

	

Description: Use this macro to demarcate the beginning of the error catching portion of a TRY/CATCH block

See Also:

	Error Handling: Introduction for current chapter

Begin a block of error handling code for all errors

SAF_CATCH_ALL is a symbol defined in saf.h.

Synopsis:

	
SAF_CATCH_ALL

	

Description: Use this macro to demarcate the beginning of a block of code that catches all errors in the
error catching portion of a TRY/CATCH block

See Also:

	Error Handling: Introduction for current chapter

Begin a block of error handling code

SAF_CATCH_ERR is a macro defined in saf.h.

Synopsis:

	
SAF_CATCH_ERR(err)

	

Description: Use this macro to demarcate the beginning of a block of code that catches a specific error, err, in the
error catching portion of a TRY/CATCH block

Issues: I am not sure I have confirmed that the catching does, in fact, fall through from a specific catch
to a next specific catch or to the ALL case?

If we changed the SAF__CATCH_ERR macro to test the bit(s) of the argument, rather than equality
we’d be able to catch several specific errors in that block.

See Also:

	Error Handling: Introduction for current chapter

Begin a TRY/CATCH block

SAF_TRY_BEGIN is a symbol defined in saf.h.

Synopsis:

	
SAF_TRY_BEGIN

	

Description: Use this macro to demarcate the beginning of a block of code in which exceptions shall be caught.

Issues: We should be clear about what happens in this block if the library properties are set to SAF__ERRMODE_RETURN
rather than SAF__ERRMODE_THROW.

Should we add code here to check to make sure saf_init is called first. I think that would make some sense.

See Also:

	saf_init: 4.3: Initialize the library

	Error Handling: Introduction for current chapter

End a TRY/CATCH block

SAF_TRY_END is a symbol defined in saf.h.

Synopsis:

	
SAF_TRY_END

	

Description: Use this macro to end a TRY/CATCH block

See Also:

	Error Handling: Introduction for current chapter

Error codes returned by the library

SAF_error_t is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_FATAL_ERROR: Any fatal error.

SAF_MEMORY_ERROR: A memory-related error.

SAF_FILE_ERROR: File-related errors.

SAF_CONTEXT_ERROR: Context errors.

SAF_LOOKUP_ERROR: Name lookup errors.

SAF_MAPPING_ERROR: Mapping errors.

SAF_WRITE_ERROR: File write errors.

SAF_DEBUG_ERROR: Debugging messages.

SAF_CONSTRAINT_ERROR: Failed constraints.

SAF_PARAMETER_ERROR: Function parameter errors.

SAF_COMMUNICATION_ERROR: MPI-related errors.

SAF_READ_ERROR: File read errors.

SAF_NOTIMPL_ERROR: Functionality has not been implemented.

SAF_BADHNDL_ERROR: Object handle errors.

SAF_MISC_ERROR: Miscellaneous errors.

SAF_SIZE_ERROR: Size-related errors.

SAF_PMODE_ERROR: Errors in the parallel mode argument to a function.

SAF_ASSERTION_ERROR: Failed assertions.

SAF_PRECONDITION_ERROR: Failed preconditions.

SAF_POSTCONDITION_ERROR: Failed postconditions.

SAF_GENERIC_ERROR: Generic errors.

SAF_SSLIB_ERROR: SSlib related errors

Description: These C preprocessor symbols define an integer bitmask where each bit represents an error condition.

See Also:

	Error Handling: Introduction for current chapter

Return a pointer to an error string

saf_error_str is a function defined in error.c.

Synopsis:

	
char * saf_error_str(void)

	

Description: saf_error_str returns a pointer to a string containing the most recent error message.

See Also:

	Error Handling: Introduction for current chapter

Library Initialization

To interact with SAF [https://github.com/markcmiller86/SAF], the client must call saf_init. To end interaction with SAF [https://github.com/markcmiller86/SAF], the client must call
saf_final.

In parallel, SAF [https://github.com/markcmiller86/SAF] will not call MPI_Init or MPI_Finalize on behalf of the client. It is the client’s
responsibility to initialize and finalize MPI. MPI should be initialized before calling saf_init and
finalized after calling saf_final.

The only SAF [https://github.com/markcmiller86/SAF] functions that can be called outside of an enclosing saf_init/saf_final pair are functions
to create and set library properties (see *Library Properties*).

SAF provides a link-time library and include file consistency check that will generate an undefined reference
link-time error for a symbol whose name is of the form “SAF__version_X_Y_Z”, if the library and include files are
not consistent.

Members

	_saf_gen_stdtypes [Public function]

	saf_final [Public function]

	saf_init [Public macro]

Initialize the built-in object registry

_saf_gen_stdtypes is a function defined in init.c.

Synopsis:

	
static herr_t _saf_gen_stdtypes(ss_file_t *stdtypes)

	

Description: The built-in object registry is a SAF [https://github.com/markcmiller86/SAF] file that contains definitions for objects that are frequently used.
This function also caches some of those objects in global variables.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library communicator.

Issues: Since other files probably point into the built-in registry and they do so by specifying a table row number,
we have to be sure that we always create the built-in registry the same way. It is important that we don’t
move objects around in the tables over the life of the file–only add new objects to the end of the table.

See Also:

	Library Initialization: Introduction for current chapter

Finalize access to the library

saf_final is a function defined in init.c.

Synopsis:

	
void saf_final(void)

	

Description: A call to saf_final terminates the client’s interaction with the SAF [https://github.com/markcmiller86/SAF] library. Any open databases and
supplemental files are closed and all memory allocated by the library is freed. Calling this function when the
library is already in a finalized state has no effect. This function should not be called before the library
has been initialized.

This call is mainly just a wrapper for a call to _saf_final so that we can distinguish between a situation
in which saf_final is called by exit and one in which the client made the call explicitly.

Parallel Notes: This function must be called collectively across all processes in the library’s communicator, which was set in
the saf_init call. Furthermore, the client should not call MPI_Finalize prior to calling saf_final.
SAF [https://github.com/markcmiller86/SAF] does try to detect this condition and report its occurrence before aborting. However, on some platforms,
this is simply not possible and the client might silently hang with no indication as to the cause.

See Also:

	saf_init: 4.3: Initialize the library

	Library Initialization: Introduction for current chapter

Initialize the library

saf_init is a macro defined in SAFinit.h.

Synopsis:

	
saf_init(PROPERTIES)

	

Description: The saf_init function must be called by the client to initialize the client’s interaction with the library
and should be called before any other SAF [https://github.com/markcmiller86/SAF]-API function except functions that set the properties to be passed
in the saf_init call.

Calling saf_init when the library is initialized has absolutely no effect, even when a new, different list
of properties is specified.

The counterpart of saf_init is saf_final, which releases all resources held by the library. The saf_init
function must be called after saf_final if the client desires to interact with the library again.

Since all SAF [https://github.com/markcmiller86/SAF] clients are required to call saf_init, we’ve chosen to wrap that
function in a macro which also makes a reference to a global variable whose name is derived from the SAF [https://github.com/markcmiller86/SAF]
version number. This variable is declared in the SAF [https://github.com/markcmiller86/SAF] library so that if an application is compiled with SAF [https://github.com/markcmiller86/SAF]
header files which have a different version than the SAF [https://github.com/markcmiller86/SAF] library a link-time error will result. A version
mismatch will result in an error similar to undefined reference to ``SAF__version_1_4_0`’ from the linker.

Return Value: The constant SAF__SUCCESS is returned for success; errors are returned as other values or by exception,
depending on the setting of the error handling property in PROPERTIES (the default is to return an error number).

Parallel Notes: In parallel, saf_init is collective and must be called by all processes in the library’s communicator, which
is MPI_COMM_WORLD by default. All processes must initialize the library with the same property values,
although each may pass its own PROPERTIES argument.

If a new communicator is specified in the PROPERTIES argument then it will become the communicator for any
database which doesn’t override this communicator. It is the maximal communicator in the sense that no
database can be opened on a set of processors which is not a subset of those in the communicator declared in
the properties passed here.

Issues: Verify that the set of processors which must participate in this call is either MPI_COMM_WORLD or the
communicator passed in the PROPERTIES.

We might want to communicate to confirm that all procs pass the same properties.

See the private function, _saf_init, for the real implementation of this function

Calling saf_init after saf_final is currently not supported.

See Also:

	saf_final: 4.2: Finalize access to the library

	Library Initialization: Introduction for current chapter

Library Properties

There are a number of properties that affect the behavior of the library. For a general description of how
properties are used (See *Properties*).

The functions to set library properties are the only functions that may be called prior to calling saf_init.

Members

	saf_createProps_lib [Public function]

	saf_freeProps_lib [Public function]

	saf_setProps_DontAbort [Public function]

	saf_setProps_ErrFunc [Public function]

	saf_setProps_ErrorLogging [Public function]

	saf_setProps_ErrorMode [Public function]

	saf_setProps_LibComm [Public function]

	saf_setProps_Registry [Public function]

	saf_setProps_StrMode [Public function]

	saf_setProps_StrPoolSize [Public function]

Create a new library property list with default values

saf_createProps_lib is a function defined in libprops.c.

Synopsis:

	
SAF_LibProps * saf_createProps_lib(void)

	

Description: This function creates a library property list which can be passed to the saf_init function. All properties
in this list are set to their default values…

	1

	 ErrFunc = NULL;

	1

	 ErrMsgMode = <ignored>;

	1

	 ErrLoggingMode = none;

	1

	 ErrorMode = SAF_ERRMODE_RETURN;

	1

	 LibComm = MPI_COMM_WORLD;

	1

	 StrMode = SAF_STRMODE_LIB;

	1

	 StrPoolSize = 4096;

Return Value: A handle to a new library properties list initialized to default values. NULL on failure or an exception is
thrown depending on the error handling library property currently in effect (See *Properties*).

Parallel Notes: This function must be called collectively by all processors in MPI_COMM_WORLD.

Issues: Since this function is called before saf_init, the only communicator we can use to work correctly is
MPI_COMM_WORLD. However, it we allowed the client to pass a communicator here, then we could avoid that.

See Also:

	saf_init: 4.3: Initialize the library

	Library Properties: Introduction for current chapter

Free library property list

saf_freeProps_lib is a function defined in libprops.c.

Synopsis:

	
SAF_LibProps * saf_freeProps_lib(SAF_LibProps *properties)

	

Description: Releases resources inside the library property list and frees the property list that was allocated in
saf_createProps_lib.

Return Value: Always returns null.

Parallel Notes: Independent

Issues: Releasing the resources used by the property list was never implemented and so is not implemented here yet
either.

See Also:

	saf_createProps_lib: 5.1: Create a new library property list with default values

	Library Properties: Introduction for current chapter

Turn off aborts

saf_setProps_DontAbort is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_DontAbort(SAF_LibProps *properties)

	

Formal Arguments:

	properties: The library property list which will be modified by this function

Description: In certain cases, the library will abort when it encounters an error condition. This function turns that
behavior off.

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Parallel Notes: This function can be called independently. Nonetheless, properties passed to saf_init must be consistent
on all processors.

See Also:

	Library Properties: Introduction for current chapter

Specify a callback for error conditions

saf_setProps_ErrFunc is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_ErrFunc(SAF_LibProps *properties, SAF_ErrFunc func)

	

Formal Arguments:

	properties: The library property list which will be modified by this function
(See *Properties*).

	func: The callback to invoke when an error occurs.

Description: The specified function (or no function if func is the null pointer) will be called when the library is
recovering from an error condition. The default is that no callback is invoked.

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Not implemented yet (always returns SAF__NOTIMPL_ERROR).

See Also:

	Library Properties: Introduction for current chapter

Set the error logging mode

saf_setProps_ErrorLogging is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_ErrorLogging(SAF_LibProps *properties, const char *mode)

	

Formal Arguments:

	properties: The library property list which will be modified by this function
(See *Properties*).

	mode: The error logging mode.

Description: This library property controls how the library reports errors. See section on environment variables where
the environment variable SAF__ERROR_REPORTING is described.

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Library Properties: Introduction for current chapter

Set the library error handling mode

saf_setProps_ErrorMode is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_ErrorMode(SAF_LibProps *properties, SAF_ErrMode mode)

	

Formal Arguments:

	properties: The library property list which will be modified by this function
(See *Properties*).

	mode: The new error handling mode. Valid values are SAF__ERRMODE_RETURN (the
default) and SAF__ERRMODE_THROW.

Description: The library normally handles error conditions by causing the erring function to return a non-zero error
number. However, the error mode can be set to SAF__ERRMODE_THROW which causes the erring function to throw an
exception instead.

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

Known Bugs: This function sometimes returns an error instead of throwing an exception when the library error mode is
SAF__ERRMODE_THROW.

See Also:

	Library Properties: Introduction for current chapter

Set the MPI communicator for the library

saf_setProps_LibComm is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_LibComm(SAF_LibProps *properties, MPI_Comm communicator)

	

Formal Arguments:

	properties: The library property list which will be modified by this function
(See *Properties*).

	communicator: The new MPI communicator.

Description: This function sets the MPI communicator in the specified library property list to communicator (the default is
MPI_COMM_WORLD). After this property list is used to initialize the library by calling saf_init, it will
become the communicator for all collective calls. However, a database can override this communicator in the
saf_open_database call.

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently. It is not defined in a non-parallel version of the library.

Issues: Should this function even be defined if the library is not compiled for parallel. My reasoning is that it
would only be called if the client is compiled for parallel and therefore it only makes sense to link the
application if the SAF [https://github.com/markcmiller86/SAF]-API is also compiled for parallel. Getting a link error is probably better than a
runtime error for two reasons: the error comes earlier (what if the application did a day of number crunching
before trying I/O), and we can guarantee that it’s an error (what if the client failed to check return values).

Known Bugs: This function sometimes returns an error instead of throwing an exception when the library error mode is
SAF__ERRMODE_THROW.

See Also:

	saf_init: 4.3: Initialize the library

	saf_open_database: 7.3: Open a database

	Library Properties: Introduction for current chapter

Specify registry file

saf_setProps_Registry is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_Registry(SAF_LibProps *properties, const char *name)

	

Formal Arguments:

	properties: Library properties (See *Properties*)

	name: Name of object registry file

Description: The registry consists of one or more SAF [https://github.com/markcmiller86/SAF] databases which will be consulted when an object query cannot
be satisfied from the primary database. For instance, if the client performed a saf_find_one_unit to obtain a
handle for something called “millimeter” and the find operation could not find any matching definition in the
specified database, then each SAF [https://github.com/markcmiller86/SAF] registry database will be queried until a definition can be found or all
registered registry files have been exhausted.

The library consults registries in the following order: First all files specified with the SAF__REGISTRIES
environment variable (if the variable is set to the word none’ then no registries are consulted). The
environment variable can specify multiple registries by separating them from one another with colons. Second,
all files registered with ``saf_setProps_Registry` are searched in the order they were specified. Third, a file
by the name of Registry.saf in the current working directory, then the home directory (as specified by the
environment variable `HOME’). Last, SAF [https://github.com/markcmiller86/SAF] will check for a file named Registry.saf in the data installation
directory specified during the saf configuration with the –datadir’ switch (defaults to `/usr/local/share``).

Preconditions:

	properties must be a valid library properties handle. (low-cost)

	name is required to be non-empty. (low-cost)

Return Value: A non-negative value on success. Otherwise this function either returns a negative error number or throws an
exception, depending on the value of the library’s error handling property.

Issues: The library does not attempt to open the registry file until a database is opened. Therefore,
specifying an invalid file name here will not result in an error until the call to saf_open_database is
made.

See Also:

	saf_find_one_unit: 21.4: Convenience function for finding a unit

	saf_open_database: 7.3: Open a database

	Library Properties: Introduction for current chapter

Set string allocation style

saf_setProps_StrMode is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_StrMode(SAF_LibProps *properties, SAF_StrMode mode)

	

Formal Arguments:

	properties: The library property list which will be modified by this function
(See *Properties*).

	mode: The string allocation mode, one of SAF__STRMODE_LIB, SAF__STRMODE_CLIENT, or
SAF__STRMODE_POOL.

Description: By default, the library allocates memory for returned strings and the client is expected to free that memory
when it is no longer needed. However, by calling saf_setProps_StrMode the client can set library properties
which change this mode of operation. Possible values are SAF__STRMODE_LIB, the default; SAF__STRMODE_CLIENT,
which means that the client will always allocate space for the string return value (and free it also); and
SAF__STRMODE_POOL, which means that the library will allocate space for the string return values from a
recirculating pool, freeing the memory which has been least recently allocated. The saf_setProps_StrPoolSize
function can be used to change the default size of the pool. (See *Returned Strings*).

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

See Also:

	saf_setProps_StrPoolSize: 5.10: Set the pool size for string return value allocations

	Library Properties: Introduction for current chapter

Set the pool size for string return value allocations

saf_setProps_StrPoolSize is a function defined in libprops.c.

Synopsis:

	
int saf_setProps_StrPoolSize(SAF_LibProps *properties, int size)

	

Formal Arguments:

	properties: The library property list which will be modified by this function (See
Properties).

	size: The new pool size.

Description: If the library string mode property is SAF__STRMODE_POOL then string return values are allocated by the library
from a pool with some number of entries (4096 by default). When all entries of the pool have been allocated for
return values then the library begins freeing the least recently allocated entry.

Preconditions:

	properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

Known Bugs: This function sometimes returns an error instead of throwing an exception when the library error mode is
SAF__ERRMODE_THROW.

The pool and its entries are not freed by saf_final.

See Also:

	saf_final: 4.2: Finalize access to the library

	Library Properties: Introduction for current chapter

Path Info

These functions are designed to permit a SAF [https://github.com/markcmiller86/SAF] client to obtain information about a named file without
actually requiring the client to succesfully open the file with a call to saf_open_database. This is
particularly useful for clients that need to be responsive to different versions of SAF [https://github.com/markcmiller86/SAF] databases.

All the functions in this part of the interface return information about the file identified in the
saf_readInfo_path call and how that file was generated. The typical usage of these functions is to first
obtain information about the given file with a call to saf_readInfo_path. Then, use the various query functions
here to obtain specific information about the file name (path) passed into saf_readInfo_path and finally
to free up any resources with a call to saf_freeInfo_path.

Members

	saf_freeInfo_path [Public function]

	saf_getInfo_errmsg [Public function]

	saf_getInfo_hdfversion [Public function]

	saf_getInfo_isHDFfile [Public function]

	saf_getInfo_isSAFdatabase [Public function]

	saf_getInfo_libversion [Public function]

	saf_getInfo_mpiversion [Public function]

	saf_getInfo_permissions [Public function]

	saf_getInfo_staterror [Public function]

	saf_readInfo_path [Public function]

Free SAF_PathInfo

saf_freeInfo_path is a function defined in info.c.

Synopsis:

	
void saf_freeInfo_path(SAF_PathInfo info)

	

Formal Arguments:

	info: a SAF__PathInfo object obtained from a saf_readInfo_path call.

Description: This function is used to free a SAF__PathInfo object.

Preconditions:

	info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Get stat error message

saf_getInfo_errmsg is a function defined in info.c.

Synopsis:

	
const char * saf_getInfo_errmsg(const SAF_PathInfo info)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns error message associated with any stat errors on the path specified in saf_getInfo_path.
Caller should not free the returned string.

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Get the HDF5 version

saf_getInfo_hdfversion is a function defined in info.c.

Synopsis:

	
void saf_getInfo_hdfversion(const SAF_PathInfo info, int *major, int *minor, int *patch, char *annot)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

	major: [OUT] major version number. Ignored if NULL.

	minor: [OUT] minor version number. Ignored if NULL.

	patch: [OUT] patch (aka “release”) version number. Ignored if NULL.

	annot: [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL.

Description: This function is used to obtain HDF5 library version information from a given path queried with
saf_getInfo_path.

Preconditions:

	info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Check if path is an HDF5 file

saf_getInfo_isHDFfile is a function defined in info.c.

Synopsis:

	
int saf_getInfo_isHDFfile(const SAF_PathInfo info)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns true if the path queried with saf_getInfo_path is an HDF5 file. That is, if
H5Fopen can succeed on it.

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Check if path is a SAF database

saf_getInfo_isSAFdatabase is a function defined in info.c.

Synopsis:

	
int saf_getInfo_isSAFdatabase(const SAF_PathInfo info)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns true if the path queried with saf_getInfo_path is a SAF [https://github.com/markcmiller86/SAF] database (of any version).

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Get the SAF library version

saf_getInfo_libversion is a function defined in info.c.

Synopsis:

	
void saf_getInfo_libversion(const SAF_PathInfo info, int *major, int *minor, int *patch, char *annot)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

	major: [OUT] major version number. Ignored if NULL.

	minor: [OUT] minor version number. Ignored if NULL.

	patch: [OUT] patch (aka “release”) version number. Ignored if NULL.

	annot: [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL.

Description: This function is used to obtain SAF [https://github.com/markcmiller86/SAF] library version information from a given path queried with saf_getInfo_path.

Preconditions:

	info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Get the MPI library version

saf_getInfo_mpiversion is a function defined in info.c.

Synopsis:

	
void saf_getInfo_mpiversion(const SAF_PathInfo info, int *major, int *minor, int *patch, char *annot)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

	major: [OUT] major version number. Ignored if NULL.

	minor: [OUT] minor version number. Ignored if NULL.

	patch: [OUT] patch (aka “release”) version number. Ignored if NULL.

	annot: [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL.

Description: This function is used to obtain MPI library version information from a given path queried with saf_getInfo_path.

Preconditions:

	info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Obtain permissions of path

saf_getInfo_permissions is a function defined in info.c.

Synopsis:

	
int saf_getInfo_permissions(const SAF_PathInfo info)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns the permissions of the path queried with saf_getInfo_path.

Parallel Notes: Independent semantics only

See Also:

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Check if any stat errors occured

saf_getInfo_staterror is a function defined in info.c.

Synopsis:

	
int saf_getInfo_staterror(const SAF_PathInfo info)

	

Formal Arguments:

	info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns true if any errors occured stating the path specified in saf_readInfo_path.

Parallel Notes: Independent semantics only

See Also:

	saf_getInfo_errmsg: 6.2: Get stat error message

	saf_readInfo_path: 6.10: Load information from the specified path

	Path Info: Introduction for current chapter

Load information from the specified path

saf_readInfo_path is a function defined in info.c.

Synopsis:

	
SAF_PathInfo saf_readInfo_path(const char *path, int independent)

	

Formal Arguments:

	path: [IN] path of a file to get the info for

	independent: [IN] A flag for independent operation. If non-zero, perform the work and return the results only on
the calling processor. Otherwise, this function must be called collectively by all processors in
the communicator used to init the SAF [https://github.com/markcmiller86/SAF] library. In other words, call this function from one processor
with a non-zero value for this argument or call it an all processors with a zero argument on all
processors. Note also that if this call is made independently, then all succeeding calls involving
the returned SAF__PathInfo object must be made independently and by the same processor.

Description: This function is used to query a file in the filesystem to obtain information about it. The information is
returned in the SAF__PathInfo object. Once this object is obtained, one can query a number of things about
the database using various query functions. Once you are done, remember to free the resources with
saf_freeInfo_path.

Note that any path, except NULL, is acceptable to pass here. This function will obtain as much information about
the specified path as possible. If the path either does not exist or the user does not have permission to
read it, that fact can be obtained from saf_getInfo_permissions. Likewise, if the path does exist, is
readable and is a SAF [https://github.com/markcmiller86/SAF] database, the particular version information, etc. can be obtained from functions
like saf_getInfo_libversion, etc. A variety of failure modes are detectable by calling various functions
in this part of the interface to learn about the kind of file to which path refers.

Preconditions:

	Path must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

	saf_freeInfo_path: 6.1: Free SAF_PathInfo

	saf_getInfo_libversion: 6.6: Get the SAF library version

	saf_getInfo_permissions: 6.8: Obtain permissions of path

	Path Info: Introduction for current chapter

Databases

A database is an abstraction used to represent the container in which all data that is part of a common,
aggregate collection is stored. For a typical simulation code, the database abstraction represents a single container in which
all fields from all time steps for a given run of the simulation are stored. If, in fact, there are many simulation runs that
are part of some larger ensemble of runs, then the database abstraction ought to represent a single container in which
all fields from all time steps from all simulations are stored.

In our current software, there are two serious limitations with respect to how we implement the database abstraction.

First, no matter what container abstraction we introduce for our clients to read/write SAF [https://github.com/markcmiller86/SAF] field data, they ultimately
interact with the resulting data via a number of other tools outside the current scope of the SAF [https://github.com/markcmiller86/SAF] effort. Many of these tools
interact with the data as files in the filesystem. Examples are rm, cp, ls, f_stat, ftp, diff, etc. Granted, as files get
larger and larger, these tools become unwieldy. These tools provide a view of the data in terms of files. Because of this, our
customers have an expectation and a serious requirement to have control over how a database gets implemented in terms of files.

We have no saf_del_xxx_handle functions for databases because the client always must call saf_open_database to obtain a
database handle and saf_close_database to free a database handle

Members

	SAF_NOT_SET_DB [Public symbol]

	saf_close_database [Public function]

	saf_open_database [Public function]

	saf_update_database [Public function]

Database information not available

SAF_NOT_SET_DB is a symbol defined in SAFdb.h.

Synopsis:

	
SAF_NOT_SET_DB

	

Description: This constant can be used to indicate that the database is not available or is unknown.

See Also:

	Databases: Introduction for current chapter

Close a database

saf_close_database is a function defined in db.c.

Synopsis:

	
int saf_close_database(SAF_Db *database)

	

Formal Arguments:

	database: The open database to be closed.

Description: This function closes an open database, database, freeing all resources associated with that database.

Preconditions:

	database must be a database handle. (low-cost)

	database must currently be open. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This is a collective, SAF__ALL mode function which should be called across all processes in the database’s
communicator.

See Also:

	Databases: Introduction for current chapter

Open a database

saf_open_database is a function defined in db.c.

Synopsis:

	
SAF_Db * saf_open_database(const char *path, SAF_DbProps *properties)

	

Formal Arguments:

	path: The name of the database.

	properties: This argument, if not null, provides database
properties that will override the default properties provided by
saf_createProps_database.

Description: Opens or creates a database for read and/or write access (depending on properties)
using the communicator specified in properties. The name of the database, path, is a file name. The
properties argument, if not SAF__DEFAULT_DBPROPS, provides database properties that will
override the default properties set by saf_createProps_database.

Preconditions:

	path must be non-null. (low-cost)

	properties must be a valid handle if supplied. (high-cost)

Return Value: Returns a new handle to the opened database on success; NULL on failure (or an exception is raised).

Parallel Notes: This is a collective, SAF__ALL mode, call in the communicator specified by the properties passed in the call.

Issues: It would be nice to identify the current processor decomposition, if possible. At the moment, we can’t. But
the idea would be that if we’re opening an already existing database, we should search for a PROCESSOR
collection on the top set(s) such that the size of that collection is equal to the value returnd by
MPI_Comm_size above. In this way, the database could “know” which sets are associated with which processors.
At present we don’t do this.

See Also:

	saf_createProps_database: 8.2: Create a new database property list with default values

	Databases: Introduction for current chapter

Update database contents

saf_update_database is a function defined in db.c.

Synopsis:

	
int saf_update_database(SAF_Db *database)

	

Formal Arguments:

	database: The database to update

Description: This function is used to force the library to update the contents of the database to the most recent
operation issued by the client. In the case of file I/O, all pending writes will be flushed so that files
are consistent with the most recent operation.

Preconditions:

	database must be a database handle. (low-cost)

	database must not be open for read-only access. (no-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This call is collective across all processes in the MPI communicator used to open the database.

See Also:

	Databases: Introduction for current chapter

Database Properties

There are a number of properties that affect the behavior of a database. Each member function of this
portion of the API sets a property to be associated with a database to a given value. See the individual
member functions for a more detailed description of the database properties and their meaning.
For a general description of how properties are used (See *Properties*).

Members

	SAF_DEFAULT_DBPROPS [Public symbol]

	saf_createProps_database [Public function]

	saf_freeProps_database [Public function]

	saf_setProps_Clobber [Public function]

	saf_setProps_DbComm [Public function]

	saf_setProps_MemoryResident [Public function]

	saf_setProps_ReadOnly [Public function]

Default properties

SAF_DEFAULT_DBPROPS is a symbol defined in SAFdbprops.h.

Synopsis:

	
SAF_DEFAULT_DBPROPS

	

Description: Identifiers for default properties for databases.

See Also:

	Database Properties: Introduction for current chapter

Create a new database property list with default values

saf_createProps_database is a function defined in dbprops.c.

Synopsis:

	
SAF_DbProps * saf_createProps_database(void)

	

Description: This function creates a database property list which can be passed to the saf_open_database function. All
properties in this list are set to their default values:

	1
2
3
4
5
6
7

	 Clobber = false;
 DbComm = LibComm;
 ImportFile = $SAF_STD_TYPES_PATH //or
 std_types.saf //or
 FILE:~/.std_types.saf //or
 FILE:$SAF_INSTALL/share/std_types.saf;
 ReadOnly = false;

Return Value: A handle to a new database properties list initialized to default values. Otherwise either an error value is
returned or an exception is thrown depending on the error handling library property currently in effect
(See *Properties*).

Known Bugs: This function sometimes return an error instead of throwing an exception when the library error mode is
SAF__ERRMODE_THROW.

See Also:

	saf_open_database: 7.3: Open a database

	Database Properties: Introduction for current chapter

Free database property list

saf_freeProps_database is a function defined in dbprops.c.

Synopsis:

	
SAF_DbProps * saf_freeProps_database(SAF_DbProps *properties)

	

Description: Releases resources inside the database property list and frees the property list that was allocated in
saf_createProps_database.

Return Value: Always returns null.

Parallel Notes: Independent

Issues: Releasing the resources used by the property list was never implemented and so is not implemented here yet
either.

See Also:

	saf_createProps_database: 8.2: Create a new database property list with default values

	Database Properties: Introduction for current chapter

Clobber an existing database on open

saf_setProps_Clobber is a function defined in dbprops.c.

Synopsis:

	
int saf_setProps_Clobber(SAF_DbProps *properties)

	

Formal Arguments:

	properties: The database property list which will be modified by this function
(See *Properties*).

Description: When saf_open_database is called with the name of an existing database the default action is to open that
database. New data will be appended to it. However, if this property is set, then the existing database will
be unlinked before it is opened.

Preconditions:

	properties must not be null. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

Known Bugs: This function sometimes return an error instead of throwing an exception when the library error mode is
SAF__ERRMODE_THROW.

See Also:

	saf_open_database: 7.3: Open a database

	Database Properties: Introduction for current chapter

Specify MPI database communicator

saf_setProps_DbComm is a function defined in dbprops.c.

Synopsis:

	
int saf_setProps_DbComm(SAF_DbProps *properties, MPI_Comm communicator)

	

Formal Arguments:

	properties: The database property list which will be modified by this function
(See *Properties*).

	communicator: The MPI communicator.

Description: When a database is opened it uses the library communicator by default. However, this function can be called to
set up a different MPI communicator to open a database. However, that communicator must be a subset of
the communicator used to initialize the library.

Preconditions:

	properties must not be null. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently. It is not defined in serial installations of the library.
This function does not duplicate the communicator. It simply copies it to the properties. When these properties
are used in a saf_open_database call, the communicator will at that time be duplicated. So, don’t free the
MPI communicator between the time this property is set in a given SAF__DbProps structure and the time that
SAF__DbProps structure is used in a saf_open_database call.

Issues: If the client is going to override the MPI communicator that would ordinarily be associated with the database
handle, we have a minor problem with calls to set other properties whose behavior might require special
action for parallel: which communicator should they use?

See Also:

	saf_open_database: 7.3: Open a database

	Database Properties: Introduction for current chapter

Create an memory-resident database

saf_setProps_MemoryResident is a function defined in dbprops.c.

Synopsis:

	
int saf_setProps_MemoryResident(SAF_DbProps *properties)

	

Description: Setting this property permits the creation of a memory-resident database. A memory-resident database is convenient
for creating objects that you would like to be transient. All objects created in a memory-resident database will
be lost when the database is closed.

Preconditions:

	properties must not be null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently, however all tasks must agree whether promise mode is to be used for
a particular database when that database is opened.

See Also:

	Database Properties: Introduction for current chapter

Specify read-only database access

saf_setProps_ReadOnly is a function defined in dbprops.c.

Synopsis:

	
int saf_setProps_ReadOnly(SAF_DbProps *properties)

	

Formal Arguments:

	properties: The database property list which will be modified by this function
(See *Properties*).

Description: By default a database is opened for read/write access. This function changes the access property
so the database is opened for read-only access.

Opening for read-only when the client is, in fact, only reading the database can potentially have
a dramatic impact on parallel performance. The reason is that the lower level data modeling kernel, VBT,
can duplicate the metadata tables on all processors and wholly eliminate all MPI communication involved
in interacting with the database. At present, VBT does not actually do this but will, in the future, be
modified to do so.

Preconditions:

	properties must not be null. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

See Also:

	Database Properties: Introduction for current chapter

Sets

Sets in SAF [https://github.com/markcmiller86/SAF] represent infinite point sets. As discussed in the chapter on collections (see *Collections*),
in theory all nodes, edges, faces, volumes, etc. are sets.

However, in SAF [https://github.com/markcmiller86/SAF], set objects (e.g. something created with a call to saf_declare_set) are instantiated
only to represent infinite point sets that are decomposed into other, more primitive entities. Examples
are materials, processor pieces, domains, parts in an assembly, blocks, nodesets, etc.

Members

	SAF_NULL_SET [Public macro]

	SAF_UNIVERSE [Public macro]

	saf_declare_set [Public function]

	saf_describe_set [Public function]

	saf_find_matching_sets [Public function]

	saf_find_sets [Public function]

	saf_get_set_att [Public function]

	saf_put_set_att [Public function]

The null set handle

SAF_NULL_SET is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_SET(Db)

	

Description: This macro evaluates to the set handle for the null set of the database. The null set handle is most often
only used in a SAF__ONE parallel call where many processors are participating solely for the sake of collectivity
(See *Constants*).

See Also:

	Sets: Introduction for current chapter

The universe set handle

SAF_UNIVERSE is a macro defined in saf.h.

Synopsis:

	
SAF_UNIVERSE(Db)

	

Description: This macro evaluates to the set handle for the universe set of the database (See *Constants*).

See Also:

	Sets: Introduction for current chapter

Declare a set

saf_declare_set is a function defined in set.c.

Synopsis:

	
SAF_Set * saf_declare_set(SAF_ParMode pmode, SAF_Db *db, const char *name, int max_topo_dim, SAF_SilRole role, SAF_ExtendMode extmode, SAF_Set *set)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database handle in which to create the set.

	name: The name of the set being declared.

	max_topo_dim: The topological dimension of the set. If the set will contain sets of different
topological dimensions then this must be the maximum topological dimension of any
set in the subset inclusion lattice rooted below set.

	role: The role of the set. Possible values are SAF__SPACE for a spatial set, SAF__TIME for
a time-base set, SAF__PARAM for a parameter space set, or SAF__USERD for a user-defined
role.

	extmode: Indicates whether or not the base-space represented by the set is extendible. Possible
values are SAF__EXTENDIBLE_TRUE or SAF__EXTENDIBLE_FALSE

	set: [OUT] Optional memory for link to the newly declared set.

Description: Every set has a maximum topological dimension indicating how the infinity of points that are the set
are organized. Are they organized along some curve (1D), surface (2D), volume (3D), etc.? More formally,
the maximum topological dimension of a set indicates the maximum rank of local coordinate systems over
all neighborhoods of the infinite point set.

Note that a maximum topological dimension of 0 does not mean that the set contains a single point or
no points. It means that the set contains only a finite number of points. That is the set is not an infinite
point set but a finite one.

Preconditions:

	pmode must be valid. (low-cost)

	DATABASE must be a valid handle. (low-cost)

	name cannot be NULL. (low-cost)

	name must not begin with a leading ‘@’. (low-cost)

	max_topo_dim must be positive. (low-cost)

	role must be SAF__TIME, SAF__SPACE, or SAF__PARAM. (low-cost)

	If role is SAF__TIME then max_topo_dim must be 1. (low-cost)

	extmode must be either SAF__EXTENDIBLE_TRUE or SAF__EXTENDIBLE_FALSE. (low-cost)

Return Value: Returns a pointer to a set link on success; null on failure. The set argument is the successful return value,
or if set is null, a new set link is allocated for the return.

Issues: Eventually roles specific to the creation of algebraic types and cell types will be added.

I think we can eliminate the role argument here and instead deduce it from the SAF__Quantity associated
with the default coordinates for the set. For example, if the default coordinates represent a length quantity,
then the role must be SAF__SPACE. If they represent a time quantity, then the role must be SAF__TIME.

See Also:

	Sets: Introduction for current chapter

Obtain a set description

saf_describe_set is a function defined in set.c.

Synopsis:

	
int saf_describe_set(SAF_ParMode pmode, SAF_Set *set, char **name, int *max_topo_dim, SAF_SilRole *role, SAF_ExtendMode *extmode, SAF_TopMode *topmode, int *num_colls, SAF_Cat **cats)

	

Formal Arguments:

	pmode: The parallel mode.

	set: The set to be described.

	name: [OUT] The returned name of the set. Pass NULL if you do not want this
information returned (see *Returned Strings*).

	max_topo_dim: [OUT] The topological dimension of the set. A NULL pointer can be passed if the caller is
not interested in obtaining this information.

	role: [OUT] The subset inclusion lattice role of the set. A NULL pointer can be passed if the
caller is not interested in obtaining this information.

	extmode: [OUT] Whether the set is extendible or not. A NULL pointer can be passed if the
caller is not interested in obtaining this information.

	topmode: [OUT] Whether the set is a top-level set in the SIL or not

	num_colls: [OUT] The number of collections currently defined on the set. A NULL pointer can be
passed if the caller is not interested in obtaining this information.

	cats: [OUT] The list of collection categories of the collections defined on the set. A NULL
pointer can be passed if the caller is not interested in obtaining this
information. cats should point to the NULL pointer if the client wants the library
to allocate space, otherwise cats should point to something allocated by the
caller. In the latter case, the input value of num_colls indicates the number of
handles the cats argument can hold.

Description: This function returns information about a set.

Preconditions:

	pmode must be valid. (low-cost)

	set must be a valid set handle. (low-cost)

	num_colls must be returned if cats is requested. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Sets: Introduction for current chapter

Find set by matching criteria

saf_find_matching_sets is a function defined in set.c.

Synopsis:

	
int saf_find_matching_sets(SAF_ParMode pmode, SAF_Db *db, const char *name_grep, SAF_SilRole srole, int tdim, SAF_ExtendMode extmode, SAF_TopMode topmode, int *num, SAF_Set **found)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database in which to search

	name_grep: The name of the desired set(s) or a limited regular expression that the
set names must match. If this argument begins with a leading “at sign”, ‘@’,
character, the remaining characters will be treated as a limited form of
a regular expression akin to that supported by ‘ed.’ The constant SAF__ANY_NAME
can be passed if the client does not want to limit the search by name.

	srole: The subset inclusion lattice role of the desired set(s). The SAF__ANY_SILROLE
constant can be passed if the client is not interested in restricting the
search on this criteria.

	tdim: The topological dimension of the desired set(s). The SAF__ANY_TOPODIM constant
can be passed if the client is not interested in restricting the search on this
criteria.

	extmode: User to specify if the set is extendible or not (whether it can grow or not).
Pass SAF__EXTENDIBLE_TRUE, SAF__EXTENDIBLE_FALSE, or SAF__EXTENDIBLE_TORF

	topmode: whether the matching sets should be top sets. Pass SAF__TOP_TRUE, SAF__TOP_FALSE,
or SAF__TOP_TORF

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function will find sets by searching the entire database and matching certain criteria.
Because it finds sets by matching criteria, this function does not exploit the subset inclusion lattice to
improve performance.

If the name_grep argument begins with a leading “at sign” character, ‘@’, the remaining characters will be
treated as a limited form of a regular expression akin to that supported in ‘ed’. Otherwise, it will
be treated as a specific name for a set. If the name does not matter, pass SAF__ANY_NAME.

If the library was not compiled with -lgen support library, then if regular expressions are used,
the library will behave as though SAF__ANY_NAME was specified.

Preconditions:

	pmode must be valid. (low-cost)

	DATABASE must be a database handle. (low-cost)

	The srole must be one of SAF__TIME, SAF__SPACE, SAF__PARAM, or SAF__ANY_SILROLE. (low-cost)

	If srole is TIME then tdim must be 1. (low-cost)

	tdim must be SAF__ANY_TOPODIM or positive. (low-cost)

	extmode cannot be arbitrarily non-zero for truth. (low-cost)

	topmode cannot be arbitrarily non-zero for truth. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Sets: Introduction for current chapter

Find sets by traversing the subset inclusion lattice

saf_find_sets is a function defined in set.c.

Synopsis:

	
int saf_find_sets(SAF_ParMode pmode, SAF_FindSetMode fmode, SAF_Set *set, SAF_Cat *cat, int *num, SAF_Set **found)

	

Formal Arguments:

	pmode: The parallel mode.

	fmode: The find mode. Possible values are SAF__FSETS_TOP to find the top-level set in the
subset inclusion lattice in which set is a member; SAF__FSETS_BOUNDARY to find the
boundary of set set; SAF__FSETS_SUBS to find all sets which are immediate subsets of set
by the specified collection category; SAF__FSETS_SUPS to find all sets which are
immediate supersets of set by the specified collection category; and
SAF__FSETS_LEAVES to find all leaf sets in the subset inclusion lattice rooted at
set (a leaf set is a set that is a descendent of set by the specified collection
category and which has no sets below it).

	set: The set in the subset inclusion lattice at which to begin searching.

	cat: The collection category upon which to search for subsets, supersets, or leaf sets.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: There are two ways to search for sets. One is to simply search the whole database looking for sets that
match a particular search criteria such as a name, base dimension, etc. which is handled by
saf_find_matching_sets. The other is to search for sets by traversing the subset inclusion lattice which is
handled by this function. This latter approach is typically faster as it involves only a portion of all sets in
the database.

The possible modes to the find call are described below.

	1

	 FMODE==SAF_FSETS_TOP

This mode of the find will find the top-most ancestor of a given set.

	1

	 FMODE==SAF_FSETS_BOUNDARY

This mode of the find will find the boundary set of a given set. Note, currently this mode will return
a boundary only if one exists in the file. It will not attempt to compute a boundary.

	1

	 FMODE==SAF_FSETS_SUBS

This mode will find all sets that are immediate subsets of the given set by the specified collection category,
if any is specified. If the specified collection category is SAF__ANY_CAT, then all immediate subsets will
be returned, regardless of category.

	1

	 FMODE=SAF_FSETS_SUPS

This mode will find all sets that are immediate supersets of the given set by the specified collection category,
if any is specified. If the specified collection category is SAF__ANY_CAT, then all immediate supersets will
be returned, regardless of category. Note, in typical cases, there is often only one superset of a given set
by a given collection category.

	1

	 FMODE=SAF_FSETS_LEAVES

This mode finds all leaf sets in the subset inclusion lattice rooted at set (a leaf set is a set that is a
descendent of set by the specified collection category and which has no sets below it. SAF__ANY_CAT is allowed
to be the specified collection category.

Preconditions:

	pmode must be valid. (low-cost)

	set must be a valid set handle. (low-cost)

	fmode must be SAF__FSETS… _TOP, _SUBS, _SUPS, _LEAVES or _BOUNDARY. (low-cost)

	cat arg applicable only for SAF__FSETS_SUPS, SAF__FSETS_SUBS and SAF__FSETS_LEAVES modes. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

	num is required in a top-level SAF__FSETS_LEAVES mode call. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: If fmode is SAF__FSETS_TOP, the memory allocation rules for SAF [https://github.com/markcmiller86/SAF] become irrelevant. If we confine ourselves to
topological information (e.g. statements about base-space sets without respect to fields, particularly coordinate
fields), then there is only ever one top (maximal ancestor) for any set. Of course, if we have two totally
independent objects, say a hammer and a wall, such that the hammer has interpenetrated the wall, then the
set that represents the intersection between the hammer and the wall is a subset of both. However, this
intersection is a result of the fact that the hammer’s coordinate field places it inside the wall. In the purely
topological setting, the sets that represent the hammer and the wall are each top sets. Thus, in theory
the set that represents their intersection has two maximal ancestors. We do not worry about this case here.
Thus, a query for SAF__FSETS_TOP is always a single set and so either the client asks for the single set handle
to be allocated, or it does not.

If fmode is SAF__FSETS_BOUNDARY, some similar arguments apply. There is only ever one boundary of another set.
Thus, if the client queries for the boundary, it is assumed the client has either allocated a single set handle
or the library will and simply fill it in.

For the SAF__FSETS_TOP and SAF__FSETS_BOUNDARY cases, cat must be SAF__NOT_APPLICABLE_CAT.

This function looks for Relations only in the same scope that stores set and thus cannot traverse a subset
inclusion lattice that extends outside that scope. [rpm 2004-06-21]

For a SAF__FSETS_LEAVES search with a null collection category (SAF__ANY_CAT) this function will return a list
of unique sets by pruning out the duplicates. However, the pruning occurs down at the leaves and not in the
internal nodes of the graph, and therefore we may end up traversing portions of the graph repeatedly.
[rpm 2004-06-21]

See Also:

	saf_find_matching_sets: 9.5: Find set by matching criteria

	Sets: Introduction for current chapter

Get an attribute from a set

saf_get_set_att is a function defined in set.c.

Synopsis:

	
int saf_get_set_att(SAF_ParMode pmode, SAF_Set *set, const char *key, hid_t *type, int *count, void **value)

	

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__Set objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	Sets: Introduction for current chapter

Put an attribute to a set

saf_put_set_att is a function defined in set.c.

Synopsis:

	
int saf_put_set_att(SAF_ParMode pmode, SAF_Set *set, const char *key, hid_t type, int count, const void *value)

	

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__Set objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	Sets: Introduction for current chapter

Collection Categories

Collection categories are used to categorize collections of sets or cells. Each collection on a set is one of a particular
category. There is only ever one collection of a particular category on a set. Typically, collection categories are used
to categorize, for example collections of nodes, elements, processors, blocks, domains, etc. However, collection categories
may be used however the client wishes to categorize different collections of sets or cells.

Members

	SAF_SELF [Public macro]

	saf_declare_category [Public function]

	saf_describe_category [Public function]

	saf_find_categories [Public function]

	saf_get_cat_att [Public function]

	saf_put_cat_att [Public function]

The self decomposition of a set

SAF_SELF is a macro defined in saf.h.

Synopsis:

	
SAF_SELF(Db)

	

Description: This macro evaluates to the collection category handle for the self decomposition of a set (See *Constants*).

See Also:

	Collection Categories: Introduction for current chapter

Declare a collection category

saf_declare_category is a function defined in cat.c.

Synopsis:

	
SAF_Cat * saf_declare_category(SAF_ParMode pmode, SAF_Db *db, const char *name, SAF_Role *role, int tdim, SAF_Cat *cat)

	

Formal Arguments:

	db: The database handle.

	name: The collection category name.

	role: Role of collections of this category (see *Collection Roles*).

	tdim: The maximum topological dimension of the members of collections of this category.

	cat: [OUT] The returned collection category handle.

Description: This function declares a collection category.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	The database must not be open for read-only access. (no-cost)

	A name must be supplied for the category. (low-cost)

	role must be a valid collection role. (low-cost)

	Topological dimension, tdim, must be positive. (low-cost)

Return Value: The new category handle is returned on success; NULL on failure. If cat is non-null then it will be initialized
and used as the return value.

Parallel Notes: This call must be collective across the database communicator.

See Also:

	Collection Categories: Introduction for current chapter

Get a description of a collection category

saf_describe_category is a function defined in cat.c.

Synopsis:

	
int saf_describe_category(SAF_ParMode pmode, SAF_Cat *cat, char **name, SAF_Role *role, int *tdim)

	

Formal Arguments:

	cat: A collection category handle.

	name: If non-NULL, the returned name of the collection category (see *Returned Strings*).

	role: If non-NULL, the returned role of the collection category (see *Collection Roles*).

	tdim: If non-NULL, the returned maximum topological dimension of members of collections
of this category.

Description: This call describes a collection category.

Preconditions:

	pmode must be valid. (low-cost)

	cat must be a valid category handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This call must be collective across the database communicator in which the category is defined.

See Also:

	Collection Categories: Introduction for current chapter

Find collection categories

saf_find_categories is a function defined in cat.c.

Synopsis:

	
int saf_find_categories(SAF_ParMode pmode, SAF_Db *db, SAF_Set *containing_set, const char *name, SAF_Role *role, int tdim, int *num, SAF_Cat **found)

	

Formal Arguments:

	db: Database on which to restrict the search.

	containing_set: The set upon which to restrict the search. The special macro ``SAF__UNIVERSE``(db)
(which takes a database handle as an argument) allows the search to span
all categories of the specified database.

	name: The name of the categories upon which to restrict the search. The constant
SAF__ANY_NAME allows the search to span categories with any name.

	role: The role of the categories upon which to restrict the search. A null pointer
allows the search to span categories with any role (see
Collection Roles).

	tdim: The topological dimension of the categories upon which to restrict the
search. The constant SAF__ANY_TOPODIM allows the search to span categories
with any topological dimension.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function will find collection categories matching the specified name, role and tdim. It searches
collection categories defined on the containing_set, which can be set to ``SAF__UNIVERSE``(db), implying that all
collection categories in the entire database should be searched. Since the number of collection categories is
relatively small, and global, such a search should not take much time.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

	role must be a valid role handle or NULL. (low-cost)

	containing_set must be a valid set handle or NULL. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function must be called collectively across the database communicator of the containing_set.

See Also:

	Collection Categories: Introduction for current chapter

Get an attribute with a cat

saf_get_cat_att is a function defined in cat.c.

Synopsis:

	
int saf_get_cat_att(SAF_ParMode pmode, SAF_Cat *cat, const char *name, hid_t *datatype, int *count, void **value)

	

Formal Arguments:

	cat: Collection category owning the attribute for which we’re searching.

	name: Name of the attribute.

	datatype: [OUT] Datatype of the attribute as it is stored.

	count: [OUT] Number of elements contained in the attribute.

	value: [OUT] On successful return this will point to an allocated array containing
count elements each of type datatype.

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__Cat objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	Collection Categories: Introduction for current chapter

Put an attribute with a cat

saf_put_cat_att is a function defined in cat.c.

Synopsis:

	
int saf_put_cat_att(SAF_ParMode pmode, SAF_Cat *cat, const char *name, hid_t datatype, int count, const void *value)

	

Formal Arguments:

	pmode: Parallel mode for adding the new attribute.

	cat: Collection category for which the new attribute is added.

	name: The name of the attribute.

	datatype: The datatype of each element of the value for the attribute.

	count: The number of elements pointed to by value, each of type datatype.

	value: The array of count elements each of type datatype to use for the
attribute’s value.

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__Cat objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	Collection Categories: Introduction for current chapter

Collections

In theory, all nodes, edges, faces, elements, blocks, materials, processor pieces etc. are just sets. See saf_declare_set
for more of a description of sets. In practice, we have a need to distinguish between two kinds of sets: primitive ones
such as the elements of a mesh, and aggregate ones, such as material or block sets. We call these two classes of sets,
Cells and Sets respectively. Cells are primitive sets such as the nodes or elements of a mesh. What makes them primitive?
They are not decomposed into any other sets, whose union can form them. In lattice theory terms, cells are
Join Irreducible Members (or JIMS) of the subset inclusion lattice.

Sets are aggregate sets such as a processor piece or a block. In lattice theory terms, sets are Join Reducible Members (or
JRMS pronounced “germs”). The key point here is that cells are never instantiated as first class sets in this API
(e.g. using the saf_declare_set call). Instead cells only ever exist as members of collections.

On the other hand, collections themselves may be composed of either cells or sets. When a collection is declared, the
client either specifies a cell-type for the members, implying the collection is composed of cells, or not, implying the
collection is composed of sets.

Since collections are defined by their containing set and a collection category, this pair serves to define a collection
and there is no specific SAF__Xxxx handle explicitly for collections.

Members

	saf_declare_collection [Public function]

	saf_describe_collection [Public function]

	saf_extend_collection [Public function]

	saf_find_collections [Public function]

	saf_same_collections [Public function]

Declare a collection

saf_declare_collection is a function defined in coll.c.

Synopsis:

	
int saf_declare_collection(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat, SAF_CellType ctype, int count, SAF_IndexSpec ispec, SAF_DecompMode is_decomp)

	

Formal Arguments:

	pmode: The parallel mode.

	containing_set: The containing set of the collection. In SAF__ONE parallel mode, all
processes except the process identified by the rank argument of the SAF__ONE
macro are free to pass SAF__NULL_SET with the set’s database handle.

	cat: The collection category.

	ctype: The cell type of the members of the collection. If this is a non-primitive
collection, pass SAF__CELLTYPE_SET. If this is a primitive collection of
mixed cell type, pass SAF__CELLTYPE_MIXED. If this is a primitive collection
of arbitrarily connected cells, pass SAF__CELLTYPE_ARB. Otherwise, it must
be a primitive collection of homogeneous type and the caller should pass
one of the cell types specified by SAF__CellType.

	count: The number of members of the collection. If the containing set is an
extendible set, the count can be changed by a call to
saf_extend_collection.

	ispec: The indexing scheme of the collection (e.g., how are members of the collection
identified within the collection). We have predefined some macros for common
cases: SAF__1DC, SAF__2DC, and SAF__3DC for C-ordered and indexed arrays and
likewise for Fortran-ordered and indexed arrays (replace the “C” with
an “F” in the macro name).

	is_decomp: Indicates if the specified collection is a decomposition of its containing set.
That is, if we take the union of all the members of the collection do we form
a set that is equal to the containing set?

Description: Collections are contained in sets. Thus there is no explicit object handle for a collection. Instead, a
collection is referenced by a pair: the containing set handle and the category handle.

If the set is extendible, then any collection declared on it is considered extendible.

Preconditions:

	pmode must be valid. (low-cost)

	containing_set must be a valid set handle for participating processes. (low-cost)

	cat must be a valid category handle for participating processes. (low-cost)

	is_decomp must be either SAF__DECOMP_TRUE or SAF__DECOMP_FALSE for participating processes. (low-cost)

	ispec rank and sizes must be valid for participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: As currently implemented, the count and ispec args are redundant. However, in general, the indexing schema
used to identify members of the collection is nearly totally independent of the count. A common example SAF [https://github.com/markcmiller86/SAF]
does not yet support is the case in which the indexing ids for the members of the collection is some other
arbitrary list of ints (or character string names, etc). For example, all of the nodes on the top set is not
necessarily indexed 0…``num_nodes``-1. Under these conditions, the indexing scheme is another, problem sized
array of ints. However, to handle this, we probably need a saf_write_collection_indexing function to actually
write that data to a file. Writing it in this call would violate our current policy where problem-sized disk
I/O occurs only on calls with “write” or “read” in their names.

See Also:

	saf_extend_collection: 11.3: Add members to a collection

	Collections: Introduction for current chapter

Describe a collection

saf_describe_collection is a function defined in coll.c.

Synopsis:

	
int saf_describe_collection(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat, SAF_CellType *t, int *count, SAF_IndexSpec *ispec, SAF_DecompMode *is_decomp, SAF_Set **member_sets)

	

Formal Arguments:

	pmode: The parallel mode.

	containing_set: The containing set of the desired collection. In SAF__ONE parallel
mode, all processes except the process identified by the rank
argument of the SAF__ONE macro are free to pass SAF__NULL with the
set’s database handle.

	cat: The collection category of the desired collection.

	t: [OUT] The cell-type of the members of the collection. Pass NULL if
this return value is not desired.

	count: [OUT] The returned count of the collection. Pass NULL if this
return value is not desired.

	ispec: [OUT] The returned indexing specification for the collection. Pass
NULL if this return value is not desired.

	is_decomp: [OUT] Whether the collection is a decomposition of the containing
set. Pass NULL if this return value is not desired.

	member_sets: If the collection is non-primitive, this argument is used to return
the specific set handles for the sets that are in the collection.
Pass NULL if this return value is not desired. Otherwise, if
member_sets points to NULL, the library will allocate space for the
returned set handles. Otherwise the caller allocates the space and
the input value of count indicates the size of the space in
number of set handles.

Description: Returns information about a collection.

Preconditions:

	pmode must be valid. (low-cost)

	The containing_set must be valid for all participating processes. (low-cost)

	cat must be a valid category handle for participating processes. (low-cost)

	NUM_SETS and member_sets must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: having both arguments NULL will cause _saf_valid_memhints to return false, but in this particular case, having both
arguments NULL is ok, so we dont call _saf_valid_memhints if both are 0.

See Also:

	Collections: Introduction for current chapter

Add members to a collection

saf_extend_collection is a function defined in coll.c.

Synopsis:

	
int saf_extend_collection(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat, int add_count, SAF_IndexSpec add_ispec)

	

Formal Arguments:

	pmode: The parallel mode.

	containing_set: The containing set of the collection.

	cat: The collection category of the collection.

	add_count: The number of members to add to the collection.

	add_ispec: The new indexing scheme.

Description: This function allows the client to add members to an existing collection. While you can extend a collection, you
cannot change the number of dimensions in the indexing scheme. You can only change the size in each dimension
and then you can only increase it. That is, if the collection was indexed using 2 dimensional indexing, it
cannot be changed to 3 dimensional indexing.

Preconditions:

	pmode must be valid. (low-cost)

	containing_set must be a valid set handle for participating processes. (low-cost)

	cat must be a valid category handle for participating processes. (low-cost)

	add_ispec sizes must be valid, total add_count and be compatible with the existing indexing. (med-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Collections: Introduction for current chapter

Find collections

saf_find_collections is a function defined in coll.c.

Synopsis:

	
int saf_find_collections(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Role *role, SAF_CellType cell_type, int topo_dim, SAF_DecompMode decomp_mode, int *num, SAF_Cat **found)

	

Formal Arguments:

	pmode: The parallel mode.

	containing_set: The containing set in which to search for collections. In SAF__ONE
parallel mode, all processes except the process identified by the
rank argument of the SAF__ONE macro are free to pass SAF__NULL_SET
with the set’s database handle.

	role: The role of the collection. Pass NULL if you do not wish to
limit the search by this parameter.

	cell_type: The cell-type of the members of the collection. Pass SAF__ANY_CELLTYPE if you
do not wish to limit the search by this parameter.

	topo_dim: The topological dimension of the collection. Pass SAF__ANY_TOPODIM if you do not
wish to limit the search by this parameter.

	decomp_mode: Whether the found collections must be a decomposition of the containing set.
Pass SAF__DECOMP_TORF if it does not matter.

	num: For this and the succeeding argument, (see *Returned Handles*).

	found: For this and the preceding argument, (see *Returned Handles*).

Description: This function is used to search for collections on a given set. In addition, the client
can limit the search to collections of a given role, with a given cell-type or those which are or are not a
decomposition of the containing set.

Preconditions:

	pmode must be valid. (low-cost)

	containing_set must be a valid set handle for participating processes. (low-cost)

	NUM_COLLS and CATS must be compatible for return value allocation. (low-cost)

	role must be a valid role handle if supplied. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: The documentation for this function originally said it would return all collections in the whole database
if the containing_set arg passed was ``SAF__UNIVERSE``(db). However, it is clear from the implementation that
it cannot do that.

See Also:

	Collections: Introduction for current chapter

Compare two collections

saf_same_collections is a function defined in coll.c.

Synopsis:

	
hbool_t saf_same_collections(SAF_Set *Sa, SAF_Cat *Ca, SAF_Set *Sb, SAF_Cat *Cb)

	

Formal Arguments:

	Sa: The set component of the first or left operand of the equality comparison operator.

	Ca: The category component of the first or left operand of the equality comparison
operator.

	Sb: The set component of the second or right operand of the equality comparison operator.

	Cb: The category component of the second or right operand of the equality comparison
operator.

Description: Compare two given collections for equality. Note that each collection is specified as a set-category pair.
These pairs are equal if they have “the same” sets and “the same” categories.

Parallel Notes: Independent

See Also:

	Collections: Introduction for current chapter

Subset Relations

Subset relations are used to define a relationship between two sets in which one set, the intended
subset, is the subset of the other set, the intended superset. In order to define a subset relation
both sets require a common, decomposing collection. That is, there must exist a collection of the same
category on both sets and that collection must be a decomposition of its containing set. For more information,
see *Relation Notes* and saf_declare_subset_relation.

Members

	SAF_BOUNDARY [Public macro]

	SAF_COMMON [Public macro]

	SAF_EMBEDBND [Public macro]

	SAF_GENERAL [Public macro]

	saf_declare_subset_relation [Public function]

	saf_describe_subset_relation [Public function]

	saf_find_subset_relations [Public function]

	saf_get_count_and_type_for_subset_relation [Public function]

	saf_read_subset_relation [Public function]

	saf_target_subset_relation [Public function]

	saf_use_written_subset_relation [Public function]

	saf_write_subset_relation [Public function]

Conveniently specify a boundary subset

SAF_BOUNDARY is a macro defined in saf.h.

Synopsis:

	
SAF_BOUNDARY(P, B)

	

Description: This macro provides a convenient way to specify four of the args, sup_cat , sub_cat , sbmode,
and cbmode of the saf_declare_subset_relation call. Use it when the subset is the boundary of the superset.
The arguments P and B represent collection categories of collections on superset and subset, respectively. See
saf_declare_subset_relation for a more detailed description.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Subset Relations: Introduction for current chapter

Conveniently specify a typical subset

SAF_COMMON is a macro defined in saf.h.

Synopsis:

	
SAF_COMMON(C)

	

Description: This macro provides a convenient way to specify four of the args, sup_cat , sub_cat , sbmode,
and cbmode of the saf_declare_subset_relation call. Use it when you have a typical subset. The argument C is
meant to be a collection category in common to both sup and sub sets. See saf_declare_subset_relation for a
more detailed description.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Subset Relations: Introduction for current chapter

Conveniently specify an embedded boundary subset

SAF_EMBEDBND is a macro defined in saf.h.

Synopsis:

	
SAF_EMBEDBND(P, B)

	

Description: This macro provides a convenient way to specify four of the args, supcat , sub_cat , sbmode,
and cbmode of the saf_declare_subset_relation call. Use it when the subset is some internal boundary in the
superset but is NOT the boundary of the superset. The arguments P and B represent collection categories of collections
on superset and subset, respectively.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Subset Relations: Introduction for current chapter

Conveniently specify an general subset

SAF_GENERAL is a macro defined in saf.h.

Synopsis:

	
SAF_GENERAL(BND)

	

Description: This macro provides a convenient way to specify four of the args, sup_cat , sub_cat , sbmode,
and cbmode of the saf_declare_subset_relation call. Use it when all that is known is that the subset is indeed
a subset of the superset, but the details of their relationship are unknown (e.g. no data). The argument BND is a
boolean meant to indicate if the subset is the boundary of the superset.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Subset Relations: Introduction for current chapter

Declare a subset relation

saf_declare_subset_relation is a function defined in rel.c.

Synopsis:

	
SAF_Rel * saf_declare_subset_relation(SAF_ParMode pmode, SAF_Db *db, SAF_Set *sup, SAF_Set *sub, SAF_Cat *sup_cat, SAF_Cat *sub_cat, SAF_BoundMode sbmode, SAF_BoundMode cbmode, SAF_RelRep *srtype, hid_t A_type, void *A_buf, hid_t B_type, void *B_buf, SAF_Rel *rel)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database in which to place the new relation.

	sup: The superset. In SAF__ONE parallel mode, all processors except the
one identified by the SAF__ONE argument should pass the null set of
the database by using the SAF__NULL macro.

	sub: The subset. In SAF__ONE parallel mode, all processors except the one
identified by the SAF__ONE argument should pass the null set of the
database by using the SAF__NULL macro.

	sup_cat: The collection category on the sup set upon which
the subset relation is being defined. Note that collections of this
category must have already been defined on sup. Otherwise, an
error is generated. Note, the four args, sup_cat, sub_cat, sbmode,
cbmode, are typically passed using one of the macros described above,
SAF__COMMON``(C), ``SAF__BOUNDARY``(``P,``B``), SAF__EMBEDBND``(``P,``B``) or
SAF__GENERAL``(``BND)

	sub_cat: The collection category on the sub set upon which the subset relation
is being defined. Note that collections of this category must have
already been defined on sub. Otherwise an error is generated.

	sbmode: Indicates whether sub is the boundary of sup. Pass either
SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE

	cbmode: Indicates whether members of collection on sub are on the
boundary of members of the collection on sup. Pass either
SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE

	srtype: Subset relation types. This argument describes how the data in ABUF
represents the subset. Valid values are SAF__HSLAB meaning that ABUF
points to a hyperslab specification and SAF__TUPLES meaning that ABUF
points to a list of N-tuples.

	A_type: The type of the data in A_buf

	A_buf: This buffer contains references, one for each member of the domain
collection (on sub), to members of the range collection (on sup).
The client may pass NULL here meaning that the raw data will be bound
to the object during write, rather than declaration.

	B_type: The type of the data in B_buf

	B_buf: This buffer is valid only when the members of the domain collection
(on sub) are on the boundaries of the members of the range collection
(on sup). In this case, the data contained in this buffer identifies
“which piece” of the boundary each member of the domain collection is.
Otherwise, the client should pass NULL here.
As with ABUF, the client may pass also NULL here meaning the raw data
will be bound to the object during write, rather than declaration.

	rel: [OUT] Optional returned relation handle.

Description: This call is used to declare a subset relation between two sets. The relation is specified in terms of
collections on both sets. The subset, sub, can be either a boundary of sup or not. Which case is indicated
by the sbmode argument which can be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE.

In addition, The members of the collection on the sub set are either on the boundary of the
members of the collection on the sup set or not (the only other acceptable case is one in which the members
of the collection on the sub are equal to the members of the collection on sup). Which case is indicated by
the value of the cbmode argument, can be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE.

Thus, there are two statements made about boundary information. One about the sets, sup and sub and one
about the members of the collections on sup and sub. Furthermore, the statement about the sets, indicated
by sbmode, is that sub is the boundary of sup or it is not. The statement about the collections,
indicated by cbmode, is that the members of the sub collection are on the boundary of the members of
the sup collection or not.

The values in ABUF enumerate the members of the collection on sub that are either on the boundaries of or
equal to the members of the collection on sup. In the on the boundary of case (e.g. cbmode``==``SAF__BOUNDARY_TRUE)
the values in BBUF, if non-NULL, indicate “which” piece of the sup collection member’s boundary each member
of sub collection is. For example, if the sub collection is faces and the sup collection is a bunch of hexes,
BBUF can be used to identify which of the 6 faces each member of sub collection is. This information is
optional.

The group of four formal arguments sup_cat, sub_cat, sbmode, cbmode select from the various cases described
above. For convenience, we provide a number of macros for these four arguments for the common cases…

:ref:`SAF_COMMON <SAF_COMMON>`(C) : a subset relationship in which the subset is specified by enumerating those members of
the superset that are in the subset. This is the most common case. Argument C is the collection
category both sets have in common.

SAF_BOUNDARY <SAF_BOUNDARY>`(``P`,``B``) : a subset relationship in which sub is the boundary of sup and the
members of B on sub are on the boundaries of the members of P on sup.

SAF_EMBEDBND <SAF_EMBEDBND>`(``P`,``B``) : a subset relationship in which sub is some embedded boundary in sup and
members of the collection B on sub are on the boundaries of the members of collection P on sup.

SAF_GENERAL <SAF_GENERAL>`(``BND`) : a subset relationship in which all that is known is that sub is indeed a subset of sup
The details of the relationships are not known. In this case, the BND is a boolean indicating
if sub is the boundary of sup.

Finally, there is the subset relation representation type, srtype…

By and large, the details of the relation data can be derived from knowledge of the indexing schemes used in
the domain and range collections of the relation. For example, if the range is indexed using some N
dimensional indexing scheme, then the relation will either be an N dimensional hyperslab or a list of N-tuples.

In the case of SAF__HSLAB, it is assumed the memory pointed to by ABUF contains 3 N-tuples of the form (starts,
counts, strides) where starts, counts, and strides indicate the starting point of the hyperslab in N
dimensions, the number of items in each dimension and the stride (through the range collection) in each
dimension respectively. The order of dimensional axes in each of these arrays is assumed to match the terms in
which the range collection’s indexing is specified.

In the case of SAF__TUPLES, it is assumed the memory pointed to by ABUF contains a list of N-tuples where each N
tuple identifies one member of the range collection. The offsets argument to SAF__TUPLES, if present, indicates
a fixed N-tuple offset to be associated with each N-tuple in ABUF.

There are two ways the client may pass the data buffer holding the relation data; either here as the ABUF
argument of the declare call or later as the ABUF argument of the write call. The client cannot do both. It
must choose. This flexibility was provided to aim the API for in-memory communications as well as persistent
file writes. By and large, the client should pass NULL for the ABUF arg here and pass the buffer in the write
call whenever it is writing persistent data to the file. However, whenever the client is planning to do
in-memory communication, it should specify ABUF here.

Preconditions:

	pmode must be valid. (low-cost)

	sup must be a valid set handle. (low-cost)

	sub must be a valid set handle. (low-cost)

	sbmode must be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE. (low-cost)

	cbmode must be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE. (low-cost)

	cbmode must be SAF__BOUNDARY_TRUE if sbmode is SAF__BOUNDARY_TRUE for all participating processes. (low-cost)

	Either A_buf is null and both sup_cat and sub_cat are not valid cat handles or. (low-cost)

	B_buf can be non-NULL only when cbmode is SAF__BOUNDARY_TRUE. (low-cost)

	On the reserved, “self” collection, cbmode and sbmode must be SAF__BOUNDARY_FALSE. (low-cost)

	srtype must be a valid relation representation handle. (low-cost)

	srtype must be either SAF__HSLAB or SAF__TUPLES. (low-cost)

	rel must be non-NULL. (low-cost)

	A_type must be an integer type if supplied. (low-cost)

	B_type must be an integer type if supplied. (low-cost)

Return Value: On success returns either the supplied rel argument or a pointer to a newly allocated relation link. Returns
the null pointer on failure.

Issues: We may want to have separate datatypes for ABUF and BBUF as BBUF’s values are likely to always fit in
a byte though I don’t know any clients that actually store them that way.

At present, we assert that for any boundary case, the range collection (on sup) must be of a primitive
type (e.g. not SAF__CELLTYPE_SET). However, this really need not be the case. Any set which has a boundary set
can then have “pieces” of that boundary that could be referred to use the local address space of that
boundary. It just so happens that the most common case for this is when we are referring to cell-types.

If we could guarantee all processors’ is_top member were identical, we could wrap this call so that we don’t try
to put the set record if its already NOT a top set.

See Also:

	Subset Relations: Introduction for current chapter

Get a description of a subset relation

saf_describe_subset_relation is a function defined in rel.c.

Synopsis:

	
int saf_describe_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_Set *sup, SAF_Set *sub, SAF_Cat *sup_cat, SAF_Cat *sub_cat, SAF_BoundMode *sbmode, SAF_BoundMode *cbmode, SAF_RelRep *srtype, hid_t *data_type)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation handle.

	sup: [OUT] The superset. Pass NULL if you do not want this value returned.

	sub: [OUT] The subset. Pass NULL if you do not want this value returned.

	sup_cat: [OUT] The collection category on the sup set upon which the subset
relation is defined. Note that collections of this category must
have already been defined on sup. Otherwise, an error is generated.
Note that the four args sup_cat, sub_cat, sbmode, and cbmode are
typically passed using one of the macros described in the
saf_declare_subset_relation call, SAF__COMMON, SAF__BOUNDARY,
SAF__EMBEDBND or SAF__GENERAL. Pass NULL if you do not want this
value returned.

	sub_cat: [OUT] The collection category on the sub set upon which the subset
relation is defined. Again, pass NULL if you do not want this value
returned.

	sbmode: [OUT] Indicates whether sub is the boundary of sup. A value of
SAF__BOUNDARY_TRUE, indicates that the sub is a boundary of sup. A
value of SAF__BOUNDARY_FALSE indicates sub is not a boundary of
sup. Pass NULL if you do not want this value returned.

	cbmode: [OUT] Indicates whether members of collection on sub are on the
boundaries of members of the collection on sup. A value of
SAF__BOUNDARY_TRUE indicates they are. A value of SAF__BOUNDARY_FALSE
indicates they are not. Pass NULL if you do not want this value
returned.

	srtype: [OUT] The representation specification. Pass NULL if you do not want
this handle returned. See saf_declare_subset_relation for the
meaning of values of this argument.

	data_type: [OUT] The data-type of the data stored with the relation. Pass NULL
if you do not want this value returned.

Description: Returns information about a subset relation.

Preconditions:

	pmode must be valid. (low-cost)

	The rel argument must be a valid handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Subset Relations: Introduction for current chapter

Find subset relations

saf_find_subset_relations is a function defined in rel.c.

Synopsis:

	
int saf_find_subset_relations(SAF_ParMode pmode, SAF_Db *db, SAF_Set *sup, SAF_Set *sub, SAF_Cat *sup_cat, SAF_Cat *sub_cat, SAF_BoundMode sbmode, SAF_BoundMode cbmode, int *num, SAF_Rel **found)

	

Formal Arguments:

	pmode: The parallel mode.

	db: Database in which to limit the search.

	sup: The superset to limit search to.

	sub: The subset to limit search to.

	sup_cat: The collection category on the superset to limit search to. Pass
SAF__ANY_CAT if you do not want to limit the search to any particular
category.

	sub_cat: The collection category on the subset to limit search to. Pass SAF__ANY_CAT
if you do not want to limit the search to any particular category.

	sbmode: If SAF__BOUNDARY_TRUE, limit search to relations in which the subset is the
boundary of the superset.

	cbmode: If SAF__BOUNDARY_TRUE, limit search to relations in which the members of the
subset are on the boundaries of the members of the superset.

	num: For this and the succeeding argument, (see *Returned Handles*).

	found: For this and the preceding argument, (see *Returned Handles*).

Description: This function finds any subset relations that might exist between two sets or a subset relation
on a specific collection category.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	sup_cat must either be a valid category handle or SAF__ANY_CAT. (low-cost)

	sub_cat must either be a valid category handle or SAF__ANY_CAT. (low-cost)

	sub must be a valid set handle. (low-cost)

	sup must be a valid set handle. (low-cost)

	num and found must be compatible for the return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Subset Relations: Introduction for current chapter

Get datatype and size for a subset relation

saf_get_count_and_type_for_subset_relation is a function defined in rel.c.

Synopsis:

	
int saf_get_count_and_type_for_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_RelTarget *target, size_t *abuf_sz, hid_t *abuf_type, size_t *bbuf_sz, hid_t *bbuf_type)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation handle.

	target: Optional relation targeting information.

	abuf_sz: [OUT] The number of items that would be placed in
the A-buffer by a call to the
saf_read_subset_relation function. The caller
may pass value of NULL for this parameter if this
value is not desired.

	abuf_type: [OUT] The type of the items that would be placed in
the A-buffer by a call to the
saf_read_subset_relation function. The caller
may pass value of NULL for this parameter if this
value is not desired.

	bbuf_sz: [OUT] The number of items that would be placed in
the B-buffer by a call to the
saf_read_subset_relation function. The caller
may pass value of NULL for this parameter if this
value is not desired.

	bbuf_type: [OUT] The type of the items that would be placed in
the B-buffer by a call to the
saf_read_subset_relation function. The caller
may pass value of NULL for this parameter if this
value is not desired.

Description: This function is used to retrieve the number and type of A-buffer and B-buffer data items that would be retrieved
by a call to the saf_read_subset_relation function. This function may be used by the caller to determine
the sizes of the buffers needed when pre-allocation is desired or to determine how to traverse the buffer(s)
returned by the saf_read_subset_relation function.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Relation targeting is not yet implemented.

See Also:

	saf_read_subset_relation: 12.9: Read the data for a subset relation

	Subset Relations: Introduction for current chapter

Read the data for a subset relation

saf_read_subset_relation is a function defined in rel.c.

Synopsis:

	
int saf_read_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_RelTarget *target, void **abuf, void **bbuf)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation whose data is to be read.

	target: Relation targeting information.

	abuf: The data representing those members in the range collection (on the superset)
that are related to the members in the domain collection (on the subset).

	bbuf: Optional data for boundary subsets indicating which local piece of boundary
each member in the domain collection represents in each member of the
range collection (see saf_declare_subset_relation)

Description: Read the data associated with a subset relation. Note that there is no information about the buffers passed as
formal arguments to this call. Why? Because any information about the “native” buffers is known via the
saf_describe_subset_relation call. The client may “target” the data read in this call for a particular
data-type, etc. by using the saf_target_subset_relation call.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle. (low-cost)

	abuf cannot be null for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: If the client requests bbuf but none was written, is that an error? Unfortunately, the only answer that
works in all cases is to declare this an error. This is so because it is not possible to notify the client
that none was written except by returning ``bbuf``==``NULL`` and that is **not* possible in the case that the client
has pre-allocated bbuf (except if we opt to free the pre-allocated bbuf, and then set it to NULL which I
don’t think would be a good idea). We limit returning error to only this case. The other case returns
bbuf``==``NULL

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	saf_describe_subset_relation: 12.6: Get a description of a subset relation

	saf_target_subset_relation: 12.10: Set the destination form of a subset relation

	Subset Relations: Introduction for current chapter

Set the destination form of a subset relation

saf_target_subset_relation is a function defined in rel.c.

Synopsis:

	
int saf_target_subset_relation(SAF_RelTarget *target, SAF_RelRep *srtype, hid_t type)

	

Formal Arguments:

	target: [OUT] Relation targeting information to be initialize herein.

	srtype: Target subset relation types.

	type: Target data types.

Description: This function establishes the target (destination) form of subset relation data during either read or write.
When used prior to a write call, it establishes the form of data in the file. When used prior to a read call,
it establishes the form of data as desired in memory.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Not implemented yet.

See Also:

	Subset Relations: Introduction for current chapter

Reuse data in a subset relation

saf_use_written_subset_relation is a function defined in rel.c.

Synopsis:

	
int saf_use_written_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_Rel *oldrel, hid_t A_buf_type, hid_t B_buf_type, SAF_Db *file)

	

Formal Arguments:

	pmode: the parallel mode.

	rel: The handle for the relation to be updated.

	oldrel: The handle for the relation pointing to the data to be re-used.

	A_buf_type: The type of data that would be written for the A buffer (see
saf_write_subset_relation) if this call was actually doing any
writing.

	B_buf_type: The type of data that would be written for the B buffer (see
saf_write_subset_relation) if this call was actually doing any
writing.

	file: The file the data would be written to if this call was actually
doing any writing.

Description: This call binds data for an existing relation to a new relation. This call can be used in place of a
saf_write_subset_relation call if the data that would have been written in the subset relation is
identical to some other relation data already written to the database.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle. (low-cost)

	oldrel must be a valid relation handle. (low-cost)

	oldrel must be same as rel to re-use data written to it. (no-cost)

	oldrel must be same as rel to re-use data written to it. (no-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_write_subset_relation: 12.12: Write a subset relation

	Subset Relations: Introduction for current chapter

Write a subset relation

saf_write_subset_relation is a function defined in rel.c.

Synopsis:

	
int saf_write_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, hid_t A_type, void *A_buf, hid_t B_type, void *B_buf, SAF_Db *file)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation whose data is to be written.

	A_type: The type of A_buf (if not already supplied through the
saf_declare_subset_relation call).

	A_buf: The data (if not already supplied through the
saf_declare_subset_relation call).

	B_type: The type of B_buf (if not already supplied through the
saf_declare_subset_relation call.

	B_buf: The data (if not already supplied through the
saf_declare_subset_relation call).

	file: The optional destination file to write the data to. A null pointer for this
argument indicates that the data is to be written to the same file as rel.

Description: This call writes relation data to the specified file.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle. (low-cost)

	A_buf should be specified either here or in the saf_declare_subset_relation. (low-cost)

	B_buf, if present, should be specified either here or in the. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: SAF_EACH mode is a collective call where each of the N tasks provides a unique relation. SAF [https://github.com/markcmiller86/SAF] will create a
single HDF5 dataset to hold all the data and will create N blobs to point into nonoverlapping regions in that
dataset.

Issues: Overwrite is not currently allowed.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Subset Relations: Introduction for current chapter

Topology Relations

Topology relations are used to define the inter-relationships between the members of a collection
and how those members are knitted together to form a mesh. For more information, see *Relation Notes* and
saf_declare_topo_relation. Also, see this detailed discussion of the difference between
mapping of degrees of freedom of a field to the members of a collection and the mapping of
the members of a collection to themselves to indicate topological relationships,
(github.com/markcmiller86/SAF/blob/master/src/safapi/docs/dof_maps_and_topo_rels.pdf [http://github.com/markcmiller86/SAF/blob/master/src/safapi/docs/dof_maps_and_topo_rels.pdf])

Members

	saf_declare_topo_relation [Public function]

	saf_describe_topo_relation [Public function]

	saf_find_topo_relations [Public function]

	saf_get_count_and_type_for_topo_relation [Public function]

	saf_is_self_stored_topo_relation [Public function]

	saf_read_topo_relation [Public function]

	saf_target_topo_relation [Public function]

	saf_write_topo_relation [Public function]

Declare a topological relation

saf_declare_topo_relation is a function defined in rel.c.

Synopsis:

	
SAF_Rel * saf_declare_topo_relation(SAF_ParMode pmode, SAF_Db *db, SAF_Set *set, SAF_Cat *pieces, SAF_Set *range_set, SAF_Cat *range_cat, SAF_Cat *storage_decomp, SAF_Set *my_piece, SAF_RelRep *trtype, hid_t A_type, void *A_buf, hid_t B_type, void *B_buf, SAF_Rel *rel)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The dataset where the new relation will be created.

	set: The containing set of the collection whose members are being sewn
together by the relation.

	pieces: The collection of members that are being sewn together.

	range_cat: Together, range_set and range_cat identify the range of the relation
(e.g., collection used to glue the pieces together). There are
really only two valid values for RANGES_S: the set set or the set
my_piece.

	storage_decomp: The decomposition of set upon which the relation is stored.

	my_piece: The piece of the decomposition being declared here.

	trtype: The relation types. One of SAF__STRUCTURED, SAF__UNSTRUCTURED, or
SAF__ARBITRARY.

	A_type: The type of the data in A_buf.

	A_buf: The buffer. Pass NULL if you would rather provide this in
the write call.

	B_type: The type of the data in B_buf.

	B_buf: The buffer. Pass NULL if you would rather provide this in
the write call.

	rel: [OUT] Optional memory that will be initialized (and returned) to
point to the new relation.

Description: A topology relation describes how the individual members of a collection are sewn together to form a mesh. A
topology relation is composed of one or more steps. Each step in the relation represents a portion of the
dimensional cascade in representing an N dimensional set in terms of a bunch of N-1 dimensional sets that form
its boundary, which are, in turn, represented by a bunch of N-2 dimensional sets, etc. The last step is
always on zero dimensional sets (e.g., SAF__CELLTYPE_POINT cells). Typically, there is only ever one step from a
primitive decomposition to SAF__CELLTYPE_POINT cells (nodes). In this case, the topology relation is a list
describing the nodal connectivity for each element in the decomposition.

In the case of SAF__STRUCTURED, all other arguments are currently ignored and rectangular structure is assumed.
Later, different types of structure will be supported. In the case of SAF__UNSTRUCTURED, ABUF is a pointer to
one value of type DATA_TYPE representing the number of range references for each member of the domain
collection and BBUF is an array of type DATA_TYPE containing that number of range references for each member
of the domain. In the case of SAF__ARBITRARY, ABUF is a pointer to an array of values of type DATA_TYPE equal
to the size of the domain collection. Each value in the ABUF array represents the number of range references
for the corresponding number of the domain collection. BBUF is a pointer to the range references.

By convention, a topology relation should be declared on the maximal set in the subset inclusion lattice (e.g.,
the top-most set in the subset inclusion lattice) for which it makes sense to define the topology. If the
topology relation is, in fact, stored in non-contiguous chunks, then the client should use the storage_decomp
argument of the topology relation to declare that the relation data is stored in pieces on the given
decomposition.

Preconditions:

	pmode must be valid. (low-cost)

	set must be a valid set handle. (low-cost)

	pieces must be a valid category. (low-cost)

	range_set must be a valid set. (low-cost)

	range_cat must be a valid category. (low-cost)

	MY_PIECES must be a valid handle. (low-cost)

	storage_decomp must be either the self decomposition or a valid cat handle. (low-cost)

	trtype must be a consistent relation representation handle. (low-cost)

	trtype must be a valid topology representation. (low-cost)

	If supplied, A_type must be an integer type (or SAF__HANDLE if decomposed). (low-cost)

	A_type must be supplied if A_buf is supplied. (low-cost)

	B_type must be an integer type or handle type. (low-cost)

	B_type must be supplied if B_buf if supplied. (low-cost)

	A_type must be handle if storage decomposition is not self. (low-cost)

Return Value: On success, returns a pointer to the new relation: either the rel argument or an allocated relation. Returns
the null pointer on failure.

See Also:

	Topology Relations: Introduction for current chapter

Get description of topological relation

saf_describe_topo_relation is a function defined in rel.c.

Synopsis:

	
int saf_describe_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_Set *set, SAF_Cat *pieces, SAF_Set *range_set, SAF_Cat *range_cat, SAF_Cat *storage_decomp, SAF_RelRep *trtype, hid_t *data_type)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation to be described.

	set: [OUT] The containing set of the collection that is sewn together by the
relation.

	pieces: [OUT] The collection of members that are sewn together.

	range_cat: [OUT] Together the RANGE_S and RANGE_C pair identifies the collection
used to glue the pieces together.

	storage_decomp: [OUT] The decomposition of set upon which the relation is actually
stored.

	trtype: [OUT] The topology relation type.

	data_type: [OUT] The type of the data.

Description: This function returns information about a topological relation.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Topology Relations: Introduction for current chapter

Find topological relations

saf_find_topo_relations is a function defined in rel.c.

Synopsis:

	
int saf_find_topo_relations(SAF_ParMode pmode, SAF_Db *db, SAF_Set *set, SAF_Set *topo_ancestor, int *num, SAF_Rel **found)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database in which to search for topology relations.

	set: The set whose topology is sought.

	topo_ancestor: [OUT] In many cases, the topology for a given set is known only on some
ancestor of the set. This return value indicates that ancestor. If
SAF__EQUIV for set and topo_ancestor is true, then the topology
relations found by this call are indeed those defined on the
specified set. Otherwise, they are defined on the topo_ancestor.

	num: For this and the succeeding argument, (see *Returned Handles*).

	found: For this and the preceding argument, (see *Returned Handles*).

Description: This function will find the topological relations governing a given set. Note that if the given set
is one that is the subset of where the topological relations are actually declared, this call will return
that set and the topological relation(s) defined on that set.

Preconditions:

	pmode must be valid. (low-cost)

	set must be a valid handle. (low-cost)

	topo_ancestor must be non-null. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: What if there are multiple topological relations governing a given set which are declared on different sets?
The topo_ancestor argument needs to be of length *Pnum_rels.

The topo_ancestor argument is not actually referenced or returned by this function.

See Also:

	Topology Relations: Introduction for current chapter

Get datatype and size for a topological relation

saf_get_count_and_type_for_topo_relation is a function defined in rel.c.

Synopsis:

	
int saf_get_count_and_type_for_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_RelTarget *target, SAF_RelRep *PrepType, size_t *abuf_sz, hid_t *abuf_type, size_t *bbuf_sz, hid_t *bbuf_type)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation handle.

	target: Targeting information.

	PrepType: [OUT] The mapping representation type (arbitrary, structured, or
unstructured). The caller may pass value of NULL for this
parameter if this value is not desired.

	abuf_sz: [OUT] The number of items that would be placed in the A-buffer by
a call to the saf_read_topo_relation function. The caller
may pass value of NULL for this parameter if this value is not
desired.

	abuf_type: [OUT] The type of the items that would be placed in the
A-buffer by a call to the saf_read_topo_relation
function. The caller may pass value of NULL for this
parameter if this value is not desired.

	bbuf_sz: [OUT] The number of items that would be placed in the B-buffer by
a call to the saf_read_topo_relation function. The caller
may pass value of NULL for this parameter if this value is not
desired.

	bbuf_type: [OUT] The type of the items that would be placed in the
B-buffer by a call to the saf_read_topo_relation
function. The caller may pass value of NULL for this
parameter if this value is not desired.

Description: This function is used to retrieve the number and type of A-buffer and B-buffer data items that would be retrieved
by a call to the saf_read_topo_relation function. This function may be used by the caller to determine
the sizes of the buffers needed when pre-allocation is desired or to determine how to traverse the buffer(s)
returned by the saf_read_topo_relation function.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle. (low-cost)

	If targeting of storage decomposition is used, the read must be a SAF__ALL mode read. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_read_topo_relation: 13.6: Read topological relation data

	Topology Relations: Introduction for current chapter

Is topological relation stored on self

saf_is_self_stored_topo_relation is a function defined in rel.c.

Synopsis:

	
int saf_is_self_stored_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, hbool_t *Presult)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The handle of the topological relation which is to be examined.

	Presult: [OUT] A pointer to caller supplied memory which is to receive the
result of the test: true if the relation is self stored or false if
it is stored on a decomposition. Note that it is permitted for the
caller to pass a value of NULL for this parameter.

Description: This function is used by a client to test if a topology relation is stored on self. The boolean
result is returned by reference.

Preconditions:

	pmode must be valid. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Topology Relations: Introduction for current chapter

Read topological relation data

saf_read_topo_relation is a function defined in rel.c.

Synopsis:

	
int saf_read_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_RelTarget *target, void **abuf, void **bbuf)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The topology relation to be read.

	target: Relation targeting information.

	abuf: The returned data. See saf_declare_topo_relation.

	bbuf: The returned data. See saf_declare_topo_relation.

Description: This function reads topological relation data from the database.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid relation handle. (low-cost)

	abuf must be non-null. (low-cost)

	Either both abuf and bbuf point to NULL or both abuf and bbuf do not point to NULL. (low-cost)

	If targeting of storage decomposition is used, the read must be a SAF__ALL mode read. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_declare_topo_relation: 13.1: Declare a topological relation

	Topology Relations: Introduction for current chapter

Set the destination form of a topological relation

saf_target_topo_relation is a function defined in rel.c.

Synopsis:

	
int saf_target_topo_relation(SAF_RelTarget *target, SAF_Set *range_set, SAF_Cat *range_cat, SAF_Cat *decomp, SAF_RelRep *trtype, hid_t data_type)

	

Formal Arguments:

	target: [OUT] Relation targeting information to be initialized by this
function.

	range_set: Optional set.

	range_cat: Together the range_set this identifies the target collection to be
used to glue the pieces together. Currently both of these
parameters are ignored.

	decomp: The optional target decomposition.

	trtype: The optional target relation types. Currently this parameter is
ignored.

	data_type: The optional target data type.

Description: This function establishes the target (destination) form of topo relation data during either read or write.
When used prior to a write call, it establishes the form of data in the file. When used prior to a read call,
it establishes the form of data as desired in memory.

Preconditions:

	Must pass non-null target information. (low-cost)

	decomp must be either NOT_SET, SELF_DECOMP or a valid cat handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Not all features have been implemented yet.

See Also:

	Topology Relations: Introduction for current chapter

Write topological relation data

saf_write_topo_relation is a function defined in rel.c.

Synopsis:

	
int saf_write_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, hid_t A_type, void *A_buf, hid_t B_type, void *B_buf, SAF_Db *file)

	

Formal Arguments:

	pmode: The parallel mode.

	rel: The relation handle.

	A_type: See saf_declare_topo_relation.

	A_buf: See saf_declare_topo_relation.

	B_type: See saf_declare_topo_relation.

	B_buf: See saf_declare_topo_relation.

	file: The optional destination file. By default (if null) the data is written to
the same file to which rel belongs.

Description: This function writes topological relation data to the given file.

Preconditions:

	pmode must be valid. (low-cost)

	rel must be a valid rel handle. (low-cost)

	A_type must be supplied if A_buf is supplied. (low-cost)

	A- and B-buffers and types must be set appropriately. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: SAF_EACH mode is a collective call where each of the N tasks provides a unique relation. SAF [https://github.com/markcmiller86/SAF] will create a
single HDF5 dataset to hold all the data and will create N blobs to point into nonoverlapping regions in that
dataset.

See Also:

	saf_declare_topo_relation: 13.1: Declare a topological relation

	Topology Relations: Introduction for current chapter

Relations

No description available.

Members

	SAF_NULL_REL [Public macro]

The null relation handle

SAF_NULL_REL is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_REL(Db)

	

Description: This macro evaluates to the relation handle for the null relation of the database. The null relation handle is
most often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of
collectivity (See *Constants*).

See Also:

	Relations: Introduction for current chapter

Field Templates

A field template represents all the abstract features of a field. That is, those features that are immutable
as the data is exchanged between one scientific computing client and another. By contrast, a field (which
is defined in terms of a field template) represents all the features of a field that might possibly change
as the field is exchanged between scientific computing clients.

By and large, a field template can be viewed as defining a class of fields.

Members

	SAF_NULL_FTMPL [Public macro]

	saf_declare_field_tmpl [Public function]

	saf_describe_field_tmpl [Public function]

	saf_find_field_tmpls [Public function]

	saf_get_field_tmpl_att [Public function]

	saf_put_field_tmpl_att [Public function]

The null field template handle

SAF_NULL_FTMPL is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_FTMPL(Db)

	

Description: This macro evaluates to the field template handle for the null field template of the database. The null field
template handle is most often only used in a SAF__ONE parallel call where many processors are participating
solely for the sake of collectivity (See *Constants*).

See Also:

	Field Templates: Introduction for current chapter

Declare a field template

saf_declare_field_tmpl is a function defined in ftempl.c.

Synopsis:

	
SAF_FieldTmpl * saf_declare_field_tmpl(SAF_ParMode pmode, SAF_Db *db, const char *name, SAF_Algebraic *atype, SAF_Basis *basis, SAF_Quantity *quantity, int num_comp, SAF_FieldTmpl *ctmpl, SAF_FieldTmpl *ftmpl)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database handle in which to create the template.

	name: The name of the field template.

	atype: The algebraic type: SAF__ALGTYPE_SCALAR, SAF__ALGTYPE_VECTOR,
SAF__ALGTYPE_TENSOR, SAF__ALGTYPE_SYMTENSOR, SAF__ALGTYPE_FIELD. If
the algebraic type is SAF__ALGTYPE_FIELD, then all we know about the
field is that it references other fields (i.e., an indirect field).
Therefore, the next four arguments are not applicable. More
generalized user defined type definitions will be available in later
implementations.

	basis: The basis. Not implemented yet. Pass null

	quantity: The quantity. See saf_declare_quantity for quantity definitions and how
to define new quantities.

	num_comp: Number of components. Although this may often be inferred from atype,
SAF [https://github.com/markcmiller86/SAF] currently does no work to infer it. Pass SAF__NOT_APPLICABLE_INT if
this template will be used in the declaration of an inhomogeneous field.
Otherwise, pass the number of components. For a simple scalar field, the
number of components is 1. See Fields for further discussion of
inhomogeneous fields.

	ctmpl: This is an array of NUM_COMPS field template handles that comprise the
composite field template or NULL if there are no component field
templates. Pass NULL if this field template will be used in the
declaration of an INhomogeneous field.

	ftmpl: Returned field template handle for composite fields. If the algebraic
type (atype) is SAF__ALGTYPE_FIELD, then the returned field template
may be used as a state template (see *State Templates*).

Description: This function declares a field template. A field template defines the implementation independent features
of a field such as its algebraic type, the quantity it represents, etc.

Preconditions:

	pmode must be valid. (low-cost)

	ftmpl must be non-null. (low-cost)

	name must be non-null. (low-cost)

	num_comp >= 1. (low-cost)

	ctmpl must be non-NULL if num_comp > 1. (low-cost)

	atype must be a valid algebraic type handle. (low-cost)

	ctmpl may be NULL only if num_comp == 1 and atype must be direct. (low-cost)

	ctmpl must be NULL if components are not appropriate. (low-cost)

	basis must be a valid basis handle or NULL. (low-cost)

	quantity must be a valid quantity handle if supplied. (low-cost)

Return Value: A pointer to the new field template handle is returned on success, either the ftmpl argument if non-null or a
freshly allocated handle. A null pointer is returned on failure.

Issues: It would be better if we could create new field types (templates) from old ones, or alternatively,
construct new algebriac types from old ones. This is most apparent when the alg-type is SAF__FIELD. This is
the C-language equivalent of a void . It tells us only that it is a reference to a field (in fact, the lib
doesn’t care if you pass ``SAF__Rel`` objects here) but does not say what kind of fields (e.g. field templates)
it should reference. One might be inclined to think that the component fields templates can serve to define
the type of references of a ``SAF__FIELD`` entity. However, this is not so. The component field templates define
the *component fields. We can illustrate by an example.

Suppose we have a time series of the coordinate field of an airplane. Each instant in time of the coordinate
field is a field on SPACE. To create the coordinates as a function of time, we create a field on TIME whose
alg-type is SAF__FIELD. What are its component fields? If we want somehow to use the component fields to define
the kinds of field this SAF__FIELD entity refers to, we’d specify the field template for coordinate fields
on SPACE as the component field template here. However, if we do that, how do we then specify the components
of coordinates as a function of time, namely x(t), y(t), and z(t) whose field template is on TIME. We can’t!
In essence, we need to be able to say what kind of SAF__FIELD this entity is by passing a list of field
templates as the algebraic type. Or, more specifically, we need to generalize the notion of algebraic type
and allow the client to build new types from old ones. That will be deferred to a later release. For now,
the best we can do with this is equivalent to a void* field reference.

We could extend the API and allow a list of field templates for the atype argument. Alternatively, would
could allow the member field types to come in via the component fields of the component fields of a SAF__FIELD
template. However, that is rather convoluted.

See Also:

	saf_declare_quantity: 20.9: Declare a new quantity

	Field Templates: Introduction for current chapter

Get a description of a field template

saf_describe_field_tmpl is a function defined in ftempl.c.

Synopsis:

	
int saf_describe_field_tmpl(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, char **name, SAF_Algebraic *alg_type, SAF_Basis *basis, SAF_Quantity *quantity, int *num_comp, SAF_FieldTmpl **ctmpl)

	

Formal Arguments:

	pmode: The parallel mode.

	ftmpl: The field template to be described.

	name: [OUT] The returned name. Pass NULL if you do not want the name returned.
(see *Returned Strings*).

	alg_type: [OUT] The returned algebraic type. Pass NULL if you do not want the type
returned.

	basis: [OUT] The returned basis. Pass null if you do not want the basis returned.

	quantity: [OUT] The returned quantity. Pass null if you do not want the name returned.

	num_comp: [OUT] The returned number of components. Pass NULL if you do not want the name
returned. Note that if the field template is assocaited with an INhomogeneous
field, the returned value will always be SAF__NOT_APPLICABLE_INT.

	ctmpl: [OUT] The returned array of component field template handles. Pass NULL if you
do not want the array returned. If the field template is associated with
an INhomogeneous field, the returned value, if requested, will always be
NULL. (If the field template does not point to other field templates then
this argument will be untouched by this function.)

Description: This function returns information about a field template.

Preconditions:

	pmode must be valid. (low-cost)

	ftmpl must be a valid field template handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Field Templates: Introduction for current chapter

Find field templates

saf_find_field_tmpls is a function defined in ftempl.c.

Synopsis:

	
int saf_find_field_tmpls(SAF_ParMode pmode, SAF_Db *db, const char *name, SAF_Algebraic *atype, SAF_Basis *basis, SAF_Quantity *quantity, int *num, SAF_FieldTmpl **found)

	

Formal Arguments:

	pmode: The parallel mode.

	db: the database context for this search (previously retrieved from base_space)

	name: The name of the field template.

	atype: The algebraic type to limit the search to. Pass NULL if you do
not want to limit the search by this parameter.

	basis: The basis to limit the search to. Pass NULL if you do not want to
limit the search by this parameter.

	quantity: The quantity to search for. Pass NULL if you do not want to
limit the search by this parameter.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function finds field templates according to specific search criteria.

Preconditions:

	pmode must be valid. (low-cost)

	atype must be a valid algebraic handle if supplied. (low-cost)

	basis must be a valid basis handle if supplied. (low-cost)

	quantity must be a valid quantity handle if supplied. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Field Templates: Introduction for current chapter

Get an attribute with a field template

saf_get_field_tmpl_att is a function defined in ftempl.c.

Synopsis:

	
int saf_get_field_tmpl_att(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, const char *name, hid_t *type, int *count, void **value)

	

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__FieldTmpl objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	Field Templates: Introduction for current chapter

Put an attribute with a field template

saf_put_field_tmpl_att is a function defined in ftempl.c.

Synopsis:

	
int saf_put_field_tmpl_att(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, const char *name, hid_t type, int count, const void *value)

	

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__FieldTmpl objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	Field Templates: Introduction for current chapter

Fields

A field is some physical phenomenon known or expected to have value at every point in the set over which the field
is defined. In other words, a field represents some continuous (as opposed to discrete) function which is defined over
the infinite point set specified as the base space for the field.

In SAF [https://github.com/markcmiller86/SAF], we divide the notion of a field into two pieces; a wholly abstract piece free of the details of how a field is
is implemented, and an implementation specific piece. The abstract piece is called a field template. See
saf_declare_field_tmpl for more information. Essentially, a field template defines a class of fields. The implementation
specific piece of a field is called, simply, a field.

Presently, SAF [https://github.com/markcmiller86/SAF] requires the client to create a new scientific modeling primitive (e.g. a field object) for each instance
of a field’s data. For example, if you have a pressure field that is evolving with time, each time the field’s data is
written to the database, the client needs to declare a new field object. The client is not simply writing more data for
the same field object. As more experience is gained with the data model and implementation, this behavior will be modified
to be more natural. It is ok for a client to simply create a field with the same name, etc. This will not cause any problems
in SAF [https://github.com/markcmiller86/SAF]. For example, if a client creates several pressure fields, all of which are instances of the same field at different
points in time, that is ok. However, the client will probably want to organize those fields into a more aggregate
field of fields (e.g. a field whose “values” are other fields on other base spaces). We call such a field an indirect field.
In fact, the states and suites interface is provided as a conventient way to construct an indirect field representing
various states of the problem output by the client. See *States* or saf_declare_state_group. However, there are a variety of
situations in which a client may want to define an indirect field. The remaining portions of this chapter introduction
discuss these situations in some detail. We’ll begin with some definitions.

Degrees Of Freedom**(**dofs): The degrees of freedom or dofs of a field is the name we give to the data associated with
the field. Typically, the dofs are the problem sized arrays of floats or doubles representing some independent (or dependent)
variables of a simulation. We call these datums degrees of freedom because, within the context of SAF [https://github.com/markcmiller86/SAF], they are the
degrees of freedom in the representation of the field. It is important to recognize this context of
the representation of the field. That is what SAF [https://github.com/markcmiller86/SAF] is solely concerned with: representing fields so that other clients
can read and interpret them. In this context, every datum represents a degree of freedom. This sense of degree of freedom
should not be confused with, for example, similar terminology in the linear system of equations a client might be solving.
That is an entirely different context in which similar terminology is used to describe those datums that effect the solution
of the system of equations being solved. SAF [https://github.com/markcmiller86/SAF] is concerned with data that effects the representation of the field.
Why don’t we call these values? Because the word “values” implies that the field is, in fact, equal to these numbers for
some (maybe many) points in the base-space. And, this is only true when the field’s evaluation function is interpolating.
That is, the interpolation functions pass through the dofs controlling the interpolation. This is most certainly not true for
a field represented by, for example, a Fourier series.

Indirect Field: An indirect field is any field whose algebraic type is SAF__ALGTYPE_FIELD. Equivalently, this means that
if you were to call saf_read_field for such a field, you would obtain a bunch of SAF__Field field handles. Likewise, when
the algebraic type of a field is not SAF__ALGTYPE_FIELD, the field is not an indirect field and we, instead, call it a
direct field. Note that indirection is, in general, recursive. An indirect field can refer to fields that are themselves
indirect fields. An example of an indirect field is the pressure over a mesh as a function of time for 9 time instances.
There would be 9 instances of pressure fields on the mesh, one for each time instant. Each of these fields is just one
of the instances of the pressure on the mesh. To characterize the pressure field’s variation over time, we would define
another field on the time base space having 9 dofs. Each dof would be a different one of the pressure fields over the
mesh as illustrated in figure “indirect field-1.gif”.

[image: ../../_images/indirect_field-1.gif]

Homogeneous Field: A homogeneous field is any field whose defining characteristics do not vary over the base space upon
which the field is declared. We include in “defining characteristics” all those parameters used to declare a field and its
field template such as algebraic type, number of components, quantity, units, component interleave, component order, evaluation
function and even its storage.

Any field that is not homogeneous is inhomogeneous. An example of an inhomogeneous field is
a stress tensor defined over a 3D rocket body and its 2D fins. Over the 3D body, the field is a 3D symmetric tensor and over
the 2D fins it is a 2D symmetric tensor. This is illustrated in “indirect field-2.gif”.

[image: ../../_images/indirect_field-2.gif]

Another example is a coordinate field of a mesh whose storage is decomposed into separate chunks, one for each processor in a
parallel decomposition. This is illustrated in “indirect field-3.gif”.

[image: ../../_images/indirect_field-3.gif]

SAF deals with inhomogeneous fields by breaking them up, recursively in general, into homogeneous pieces. Thus, the data
for an inhomogeneous field is the handles to these field pieces. An inhomogeneous field is, therefore, also an indirect field.
Furthermore, if a field is inhomogeneous, all bets are off about any of the field’s defining characteristics. All that can
be said, for sure, about an inhomogeneous field is that there is some decomposing collection of the field’s base-space upon
which it is presumably piecewise homogeneous. We say presumably here because any piece of an inhomogeneous field can itself
be inhomogeneous so that, in general, its decomposition into homogeneous pieces is recursive.

With all of this information, we can construct a pseudo class-hierarchy for these various kinds of fields.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 Field
 |

 | |
 INdirect Direct
 | |
 ------------------- |
 | | |
 INhomogeneous Homogeneous Homogeneous
 |
 |
 |
 State Field

Because an inhomogeneous field is also an indirect field, it is often convenient when talking about both inhomogeneous indirect
fields and homogeneous indirect fields to simply refer to the two as inhomogeneous and indirect fields, respectively. There are
some important conceptual differences between inhomogeneous and indirect fields worth mentioning here.

First, one requirement of the various fields comprising an inhomogeneous field is that the union of the base-spaces of all
the homogeneous pieces must form a decomposition of the base-space of the inhomogeneous aggregate. SAF [https://github.com/markcmiller86/SAF] enforces
this condition and will not permit a client to construct an inhomogeneous field for which this is not true.

Second, it does not make sense to conceive of interpolating between the pieces of an inhomogeneous field in the same way we
might want to interpolate between the pieces of an indirect field. For example, it doesn’t make sense to try to interpolate
between the stress tensor on the fins and the stress tensor on the rocket body of the inhomogeneous field in
“indirect field-2.gif” while it does make sense to try to interpolate between the 4th and 5th instances of the pressure field
in “indirect field-1.gif”.

Third, for all homogeneous fields, the number of dofs read from and written to a field is the product of the number
of components in the field, the size of the collection the field’s dofs are associated with and the association ratio
(see saf_declare_field). This is true for homogeneous, direct fields where the dofs might be floats or doubles as well as
homogeneous, indirect fields where the dofs are handles to other fields. However, for inhomogenous fields, the number of
field handles to be read and written is determined by the size of the decomposing collection upon which the field is presumably
piecewise homogeneous. That collection is what determines the number of pieces the field is decomposed into.

FIELD TARGETING: SAF [https://github.com/markcmiller86/SAF] now offers some limited ability to transform a field during read. Currently, this capability is
available only during read. Transformations during write will be made available later. Currently, on read, a client
can invoke the following transformations:

	changes in precision (single<–>double)

	changes in interleave (vector<–>component)

	changes in storage decomposition (self<–>other immediate). By immediate we mean a decomposition which is
immediately below the self set in the subset relation graph.

The targeting function, saf_target_field, is used to tell SAF [https://github.com/markcmiller86/SAF] to invoke such transforms during read. The intent is that a
reader will call saf_target_field before making a call to read the field. The target call will indicate the intended form
of the field in the destination. Once targeting has been setup with a call to saf_target_field, a call to
saf_read_field will do the right thing resulting in the altered field in the destination’s buffers.
This is an experimental capability and interface. Field targeting will only work on serial SAF [https://github.com/markcmiller86/SAF] clients or single processor
parallel SAF [https://github.com/markcmiller86/SAF] clients (i.e. SAF [https://github.com/markcmiller86/SAF] clients that have opened the database on just one processor).

Soon, SAF [https://github.com/markcmiller86/SAF] will offer some limited ability to transform a field during read or write.
The intent is that a reader or writer will call saf_target_field before making a call to
read or write the field. The target call will indicate the intended form of the field in the destination (the database during
write or the client’s memory during read). Once targeting has been setup with a call to saf_target_field, a call to
saf_read_field or saf_write_field will do the right thing resulting in the altered field in the destination’s buffers.

Members

	SAF_CONSTANT [Public macro]

	SAF_DECOMP [Public macro]

	SAF_NODAL [Public macro]

	SAF_NULL_FIELD [Public macro]

	SAF_WHOLE_FIELD [Public symbol]

	SAF_ZONAL [Public macro]

	_saf_find_parent_field [Public function]

	saf_data_has_been_written_to_comp_field [Public function]

	saf_data_has_been_written_to_field [Public function]

	saf_declare_coords [Public function]

	saf_declare_default_coords [Public function]

	saf_declare_field [Public function]

	saf_describe_field [Public function]

	saf_find_coords [Public function]

	saf_find_default_coords [Public function]

	saf_find_fields [Public function]

	saf_get_count_and_type_for_field [Public function]

	saf_get_field_att [Public function]

	saf_is_self_stored_field [Public function]

	saf_put_field_att [Public function]

	saf_read_field [Public function]

	saf_target_field [Public function]

	saf_write_field [Public function]

Conveniently specify a constant field

SAF_CONSTANT is a macro defined in saf.h.

Synopsis:

	
SAF_CONSTANT(db)

	

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have a constant field. The db argument is meant
to represent the database handle. See saf_declare_field for a more detailed description.

See Also:

	saf_declare_field: 16.12: Declare a field

	Fields: Introduction for current chapter

Conveniently specify a decomposition-centered field

SAF_DECOMP is a macro defined in saf.h.

Synopsis:

	
SAF_DECOMP(D)

	

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have a field in which you have 1 degree of
freedom for each set in a collection of sets forming a decomposition of their parent set. For example, if you
have a collection of sets where each set represents one processor’s piece and you wish to characterize a field
that represents the min (or max) of some field over each piece. The argument D is meant to be a collection
category for a non-primitive collection of set known to form a decomposition of the set upon which the field is
being defined.

See Also:

	saf_declare_field: 16.12: Declare a field

	Fields: Introduction for current chapter

Conveniently specify a node-centered field

SAF_NODAL is a macro defined in saf.h.

Synopsis:

	
SAF_NODAL(N, Z)

	

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have what is often referred to as a
node centered field. The argument N is meant to be a collection category representing collections of
SAF__CELLTYPE_POINT (nodes) cells. The argument Z is meant to be a collection category representing
collections of element cells.

See Also:

	saf_declare_field: 16.12: Declare a field

	Fields: Introduction for current chapter

The null field handle

SAF_NULL_FIELD is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_FIELD(Db)

	

Description: This macro evaluates to the field handle for the null field of the database. The null field handle is most
often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of
collectivity (See *Constants*).

See Also:

	Fields: Introduction for current chapter

More meaningful alias for SAF_TOTALITY

SAF_WHOLE_FIELD is a symbol defined in saf.h.

Synopsis:

	
SAF_WHOLE_FIELD

	

Description: The SAF__TOTALITY subset relation representation is most often only ever used during a saf_write_field call
to indicate the entire field is being written rather than just a portion. However, in that context, the meaning
of a totality is obscured. So, we provide SAF__WHOLE_FIELD as a more meaningful alias for that value. In
addition, this macro replaces the three args, MEMBER_COUNT, REQUEST_TYPE, MEMBER_IDS, used in a partial
saf_write_field call.

See Also:

	saf_write_field: 16.23: Write the data for a field

	Fields: Introduction for current chapter

Conveniently specify a zone-centered field

SAF_ZONAL is a macro defined in saf.h.

Synopsis:

	
SAF_ZONAL(Z)

	

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have what is often referred to as a
zone centered field. The argument Z is meant to be a collection category representing collections of element
cells.

See Also:

	saf_declare_field: 16.12: Declare a field

	Fields: Introduction for current chapter

Find the parent of a component field

_saf_find_parent_field is a function defined in field.c.

Synopsis:

	
SAF_Field * _saf_find_parent_field(SAF_ParMode pmode, SAF_Field *component_field, SAF_Field *retval)

	

Formal Arguments:

	component_field: Field for which we are searching for a parent.

	retval: [OUT] Optional buffer in which to store the result. If this is NULL
then a buffer will be allocated for the return value.

Description: Find the parent of a component field. Find the field who has the input field as a component.
This function caches the parent field in the component field in order to keep the performance good.

Preconditions:

	pmode must be valid. (low-cost)

See Also:

	Fields: Introduction for current chapter

Queries whether data has been written

saf_data_has_been_written_to_comp_field is a function defined in field.c.

Synopsis:

	
int saf_data_has_been_written_to_comp_field(SAF_ParMode pmode, SAF_Field *field, hbool_t *Presult)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field handle.

	Presult: [OUT] A pointer to caller supplied memory which is to receive the
answer to the question. A value of true is saved at this
location if the field has had data written to it, false if
not.

Description: Does a composite or component field have written data corresponding to this field.

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Fields: Introduction for current chapter

Does field have data

saf_data_has_been_written_to_field is a function defined in field.c.

Synopsis:

	
int saf_data_has_been_written_to_field(SAF_ParMode pmode, SAF_Field *field, hbool_t *Presult)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field handle.

	Presult: [OUT] A pointer to caller supplied memory which is to receive the answer
to the question. A value of true is saved at this location if the
field has had data written to it, false if not.

Description: This function is used to check if a given field has a valid blob id (which it would if it has had data
written to it and doesn’t if it has not).

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Fields: Introduction for current chapter

Declare a field as a candidate coordinate field

saf_declare_coords is a function defined in field.c.

Synopsis:

	
int saf_declare_coords(SAF_ParMode pmode, SAF_Field *field)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field to be characterized as a coordinate field.

Description: Use the function to indicate that a particular field is a coordinate field. This merely identifies a field
as a candidate coordinate field. More than one field may serve as the coordinate field for a set. For example, in
engineering codes, there are the deformed and un-deformed coordinates.

Preconditions:

	pmode must be valid. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Fields: Introduction for current chapter

Declare default coordinates of a given set

saf_declare_default_coords is a function defined in field.c.

Synopsis:

	
int saf_declare_default_coords(SAF_ParMode pmode, SAF_Set *base, SAF_Field *field)

	

Formal Arguments:

	pmode: the parallel mode

	base: the base space set whose default coordinates are being declared

	field: the field to serve as the default coordinates

Description: Many fields might be suitable to serve as a coordinate field. Absolute coordinates and displacements are
just two examples. This reference manual is not the appropriate place to go into the specific mathematical
requirements for a field to serve as a coordinate field. However, recognizing that more than one field
can serve as a coordinate field raises the issue, which field should be used as the coordinate field if
nothing else is specified. This function declares which field ought to be treated as the default coordinates.

Note that in order for a field to be declared as the default coordinate field for a set, the field must
first be declared as a coordinate field.

Preconditions:

	pmode must be valid. (low-cost)

	base must be a valid set handle. (low-cost)

	field must be a valid field handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Fields: Introduction for current chapter

Declare a field

saf_declare_field is a function defined in field.c.

Synopsis:

	
SAF_Field * saf_declare_field(SAF_ParMode pmode, SAF_Db *db, SAF_FieldTmpl *ftmpl, const char *name, SAF_Set *base_space, SAF_Unit *unit, SAF_Cat *homog_decomp, SAF_Cat *coeff_assoc, int assoc_ratio, SAF_Cat *eval_cat, SAF_Eval *eval_func, hid_t data_type, SAF_Field *comp_flds, SAF_Interleave comp_intlv, int *comp_order, void **bufs, SAF_Field *fld)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database where the new field will be created.

	ftmpl: The field template handle for this field. Recall that the field template
describes the abstract features of the field, including the quantity the
field represents, and the algebraic type. The field being created in this
saf_declare_field call is simply an instance of the abstract field
characterized by the field template passed as this argument.

	name: The name of this field. If a writer client declares different fields with
the same name, a reader client that searches for fields by name will find
multiple matches. However, it is ok to declare different fields with the
same name.

	base_space: The base_space of this field

	unit: The specific units of measure. If in the field template, the quantity was
not specified, then the only valid value that can be passed for units is
SAF__NOT_APPLICABLE_UNIT. Otherwise, pass SAF__NOT_SET_UNIT if you do not want
to specify units for the field or pass one of the valid units of
measure.

	homog_decomp: If the field is homogeneous, enter SAF__SELF here. Otherwise, the field is
inhomogenous and this argument must indicate a decomposing collection of the
field’s base-space upon which it is presumably homogeneous. We say
presumably because it is not a requirement that the field be
homogeneous on each of the members of the collection indentified here. The
field pieces defined on any one or all of those members can, in turn, also
be inhomogeneous. The only requirement is that the collection identified
here be a decomposition of the associated set and that, ultimately, the
recursion of defining inhomogeneous fields in terms of other inhomogeneous
fields terminates on a bunch of homogeneous pieces. A common use of this
argument is to indicate that the field is broken into independent chunks of
storage (either within a single processor or distributed across other
processors). In fact, prior to SAF [https://github.com/markcmiller86/SAF]-1.2.1, that was all this argument was
used for and documented as supporting. Any collections contained in the
base space set for which the IS_DECOMP argument in the
saf_declare_collection call was SAF__DECOMP_TRUE, can be passed
here. See the chapter introduction for fields for further information (see
Fields).

	coeff_assoc: This argument identifies the category of a collection in the base space set
which the field’s coefficients are n:1 associated with. For example, for a
field whose coefficients are 1:1 with a collection of a category
representing the nodes, you would identify that collection category with
this argument. Likewise, for a field whose coefficients are 4:1 with a
collection of a category representing the elements in the problem, you
would identify that collection with this argument. Note, if the
coefficients are associated with the base space itself, and not the members
of a collection in the base-space set, you would pass SAF__SELF for
this argument.

	assoc_ratio: This argument specifies the n in the n:1 association described above. For
example, if for every member of the collection representing the elements,
you have 1 coefficient, then this value would be 1. This value is always
non-negative.

	eval_cat: This argument specifies the collection whose members represent the pieces in
the piecewise evaluation of the field. If there is only a single piece
(e.g. the whole base space), then pass SAF__SELF. For example, a
collection category identifying the nodes for the coeff_assoc argument and
an assoc_ratio of 1 indicates only that we have 1 coefficient for each
member of the collection of nodes. It does not indicate which collection
in the base space (for example the elements), the field is actually
piecewise evaluated on.

	eval_func: This argument identifies one of several evaluation functions currently known
to SAF [https://github.com/markcmiller86/SAF]. Again, SAF [https://github.com/markcmiller86/SAF] does not yet actually evaluate a field. It only stores
the descriptive information to support its evaluation. See definition of
SAF__EvalFunc enum for the possible values. Also, we have provided some
convenience macros for this and coeff_assoc, assoc_ratio, and eval_cat
arguments for common cases; node centered and zone centered
fields. Pass SAF__NODAL for a node centered field, SAF__ZONAL for a zone
centered field, SAF__DECOMP for a field that is piecewise constant over
some decomposing collection (e.g. domains) or SAF__CONSTANT for a
constant field.

	data_type: The type of data in bufs if bufs are provided.

	comp_flds: Array of component field handles. Pass null only if there are no
components to this field (the field is a scalar field).

	comp_intlv: The particular fashion in which components are interleaved. Currently there
are really only two: SAF__INTERLEAVE_VECTOR and SAF__INTERLEAVE_COMPONENT.
These represent the XYZXYZ…``XYZ`` and the XXX…``XYYY``…``YZZZ``…``Z`` cases. Note
that interleave really only deals within a single blob of storage. In the
case of a composite field whose coefficients are stored independently on
the component fields, interleave really has no meaning (use
SAF__INTERLEAVE_INDEPENDENT). Interleave only has meaning on fields with
storage. In the case of a scalar field interleave is also meaningless,
both cases degenerate to the same layout: XXX…``X`` (use
SAF__INTERLEAVE_NONE).

	comp_order: Only relevant for fields with component fields. This value indicates the
order of the fields in the comp_flds relative to the registered
order. Pass NULL if the permutation is the identity.

	bufs: The field data buffers. Pass NULL if you would rather provide this on the
write call. Note that the number and size of buffers (if any) is specified
by the interleave and number of components. If the field has vector
interleave then there may only be 1 buffer, if the field has component
interleave then there must be num_components buffers. The number of
components is defined in the field template specified by ftmpl.

	fld: [OUT] The optional returned field handle. If NULL is passed here then this
function allocates the field handle before returning it.

Description: This function is used to declare a field. A field is some physical quantity known to have value at every point
in the infinite set of points that serves as the field’s base space. That is, a field is some continuous (as
opposed to discrete) quantity that exists and has value everywhere over the base space the field is defined
on - that is, at every point in the infinite set of points that is the field’s base space.

We apologize for the large number of arguments in this function call. We have developed prototype interfaces
that reduce this complexity significantly but introduce other issues. As more experience is gained with this
software and data model, we’ll have a better idea how to proceed.

In SAF [https://github.com/markcmiller86/SAF], the description of a field is done in two parts; a field template (see saf_declare_field_tmpl) and
an instance of a field. The field template object describes all the abstract information about a field. The field
object itself describes the implementation details of an instance of a field. For example, the field template
object describes the abstract quantity of measure the field represents, such as length (see *Quantities*) while
the field object describes specific units of measure for that quantity such as meters (see *Units*).

You will notice that the base space upon which the field is defined is not part of the field object. Instead
it is part of the field template object. This allows the field template object to classify fields according
to which pieces of the base space they are defined on.

In the hierarchy of sets that serve as candidate base spaces for fields, the idea is to declare a field on
the top-most set in the hierarchy which contains all points the field is defined on but contains no points
the field is not defined on. Such a set is also called the maximal set of the field. It could also be
thought of as the region of support of the field.

There is a big difference between declaring
a field that is identically zero over portions of a set and declaring the field only over the
subset(s) for which it is non-zero. The former indicates that the field is known everywhere on the set and
is zero in some places. The latter indicates that the field is known on the subset(s) and undefined (e.g.
does not exist) anywhere else.

At present, SAF [https://github.com/markcmiller86/SAF] really does not do much to interpret the data or descriptive information for a field. Currently,
SAF [https://github.com/markcmiller86/SAF] simply allows a writer client to describe the salient features of a field and a reader client to discover
them. As SAF [https://github.com/markcmiller86/SAF] evolves, SAF [https://github.com/markcmiller86/SAF] will be able to interpret more and more about the field itself.

Preconditions:

	pmode must be valid. (low-cost)

	base_space must be a valid set handle. (low-cost)

	name must be non-null. (low-cost)

	ftmpl must be a valid field template. (low-cost)

	STORAGE_DECOMP must be either SELF_DECOMP or a valid cat handle. (low-cost)

	coeff_assoc must be a valid cat handle. (low-cost)

	eval_cat must be a valid cat handle. (low-cost)

	unit must be a valid unit handle if supplied. (low-cost)

	unit must agree with quantity defined on field template. (low-cost)

	assoc_ratio must be non-negative. (low-cost)

	eval_func must be a valid evaluation type handle if supplied. (low-cost)

	Units of component fields must match units of composite field. (low-cost)

Return Value: Returns a handle to the set on success (either the one passed in by the fld argument or one allocated herein);
returns NULL on failure.

See Also:

	saf_declare_collection: 11.1: Declare a collection

	saf_declare_field_tmpl: 15.2: Declare a field template

	Fields: Introduction for current chapter

Get a description of a field

saf_describe_field is a function defined in field.c.

Synopsis:

	
int saf_describe_field(SAF_ParMode pmode, SAF_Field *field, SAF_FieldTmpl *ftmpl, char **name, SAF_Set *base_space, SAF_Unit *unit, hbool_t *is_coord, SAF_Cat *homog_decomp, SAF_Cat *coeff_assoc, int *assoc_ratio, SAF_Cat *eval_coll, SAF_Eval *eval_func, hid_t *data_type, int *num_comps, SAF_Field **comp_flds, SAF_Interleave *comp_intlv, int **comp_order)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field handle.

	ftmpl: [OUT] The returned field template handle. Pass NULL if you do not want this
value returned.

	name: [OUT] The returned name of the field. Pass NULL if you do not want this
value returned. (see *Returned Strings*).

	base_space: [OUT] The returned base space of the field. Pass NULL if you do not want
this value returned.

	unit: [OUT] The returned unit of measure.

	is_coord: [OUT] A returned boolean indicating if the field is a coordinate field. Pass
NULL if you do not want this value returned.

	homog_decomp: NULL: If the field is homogeneous, the value returned here, if requested,
is always SAF__SELF. That is, SAF__EQUIV``(``SAF__SELF``(db), ``homog_decomp) will
return true. Otherwise, it will return false, the field is inhomogeneous
and this argument is the decomposition on which the field is presumably
piecewise homogeneous. Pass NULL if you do not want this value returned.

	coeff_assoc: [OUT] The collection with which the field coefficients are associated in an
n:1 relationship. Pass NULL if you do not want this value returned.

	assoc_ratio: [OUT] The n’ in the ``n:1` relationship described for the coeff_assoc
argument. Pass NULL if you do not want this value returned.

	eval_coll: [OUT] The collection whose sets decompose the base space set and over which
the field is actually evaluated. Pass NULL if you do not want this value
returned.

	eval_func: [OUT] The evaluation function. Pass NULL if you do not want this value
returned.

	data_type: [OUT] The file datatype of the field. Pass NULL if you do not want this value
returned. The caller is responsible for invoking H5Tclose when the
datatype is no longer needed. A negative returned value indicates no
known file datatype.

	num_comps: [OUT] The number of components in the field. Pass NULL if you do not want
this value returned.

	comp_flds: [OUT] The component fields. Pass NULL if you do not want this value returned.

	comp_intlv: [OUT] The particular fashion in which components are interleaved. Currently
there are really only two: SAF__INTERLEAVE_VECTOR and SAF__INTERLEAVE_COMPONENT.
These represent the XYZXYZ…``XYZ`` and the XXX…``XYYY``…``YZZZ``…``Z`` cases. Note that
interleave really only deals within a single blob of storage. In the case of a
composite field whose coefficients are stored independently on the component
fields then interleave really has no meaning (use SAF__INTERLEAVE_INDEPENDENT).
Interleave only has meaning on fields with storage. In the case of a scalar
field interleave is also meaningless, both cases degenerate to the same layout:
XXX…``X`` (use SAF__INTERLEAVE_NONE).

	comp_order: [OUT] The component ordering in the field. Pass NULL if you do not want this
value returned.

Description: NOT WRITTEN YET.

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Fields: Introduction for current chapter

Find coordinate fields

saf_find_coords is a function defined in field.c.

Synopsis:

	
int saf_find_coords(SAF_ParMode pmode, SAF_Db *db, SAF_Set *base, int *num, SAF_Field **found)

	

Formal Arguments:

	pmode: The parallel mode.

	db: Database in which to limit the search.

	base: The base space for which coordinate fields are desired.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: Use this function to find the coordinate fields of a set. In general, we allow for more than one coordinate
field to be defined. For example, in engineering codes, there are the deformed and undeformed coordinates.
Thus, this function can return multiple fields. Even so, there is only ever one field known as the default
coordinate field for a set. This field is found with a call to saf_find_default_coords.

Preconditions:

	pmode must be valid. (low-cost)

	base must be either a valid set handle or the universe set for all participating processes. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_find_default_coords: 16.15: Find default coordinate fields

	Fields: Introduction for current chapter

Find default coordinate fields

saf_find_default_coords is a function defined in field.c.

Synopsis:

	
SAF_Field * saf_find_default_coords(SAF_ParMode pmode, SAF_Set *base, SAF_Field *field)

	

Formal Arguments:

	pmode: The parallel mode

	base: The set for which the default coordinate field is returned

	field: [OUT] The returned field handle, if found, otherwise SAF__NOT_SET_FIELD

Description: Use this function to find the default coordinate fields of a set. There is only ever one default coordinate field
for a set.

Preconditions:

	pmode must be valid. (low-cost)

	base must be a valid set handle for participating processes. (low-cost)

Return Value: On success, returns a pointer to the default coordinate field. If the field argument was supplied then it is
filled in and becomes the return value, otherwise a new field link is allocated and returned. Returns NULL on
failure. If no default coordinate field has been assigned to the base set then a valid object link is returned
but that link is nil (i.e., a call to :file:`SS_PERS_ISNULL ../sslib_refman.rest/SS_PERS_ISNULL.rst` on the return value is true but the return value is not
a NULL C pointer).

See Also:

	Fields: Introduction for current chapter

Find fields

saf_find_fields is a function defined in field.c.

Synopsis:

	
int saf_find_fields(SAF_ParMode pmode, SAF_Db *db, SAF_Set *base, const char *name, SAF_Quantity *quantity, SAF_Algebraic *atype, SAF_Basis *basis, SAF_Unit *unit, SAF_Cat *coeff_assoc, int assoc_ratio, SAF_Cat *eval_decomp, SAF_Eval *eval_func, int *nfound, SAF_Field **found)

	

Formal Arguments:

	pmode: The parallel mode.

	db: Database in which to limit the search.

	base: The base space to limit the search to. Pass SAF__UNIVERSE or NULL if you
do not want to limit the search to any particular base space.

	name: Limit search to fields with this name. Pass SAF__ANY_NAME if you do not want
to limit the search.

	quantity: Limit search to fields of specified quantity. Pass NULL to not limit search.

	atype: Limit the search to this algebraic type. Pass SAF__ALGTYPE_ANY if you do
not want to limit the search.

	basis: Limit the search to this basis. Pass SAF__ANY_BASIS if you do not want to
limit the search.

	unit: Limit search to fields with these units. Pass SAF__ANY_UNIT to not limit
search.

	coeff_assoc: Limit search. Pass SAF__ANY_CAT to not limit the search.

	assoc_ratio: Limit search. Pass SAF__ANY_RATIO to not limit the search.

	eval_decomp: Limit search. Pass SAF__ANY_CAT to not limit the search.

	eval_func: Limit search. Pass SAF__ANY_EFUNC to not limit the search.

	nfound: For this and the succeeding argument, (see *Returned Handles*).

	found: For this and the preceding argument, (see *Returned Handles*).

Description: This function allows a client to search for fields in the database. The search may be limited by one or
more criteria such as the name of the field, the quantity the field represents, the base space the field is
defined on, etc., etc.

Preconditions:

	pmode must be valid. (low-cost)

	base must either be a valid set handle or the universe set if supplied. (low-cost)

	quantity must either be a valid quantity handle or SAF__ANY_QUANTITY. (low-cost)

	atype must be a valid algebraic type handle or SAF__ANY_ALGEBRAIC. (low-cost)

	basis must be a valid basis handle or SAF__ANY_BASIS. (low-cost)

	unit must either be a valid unit handle or SAF__ANY_UNIT. (low-cost)

	eval_func must be a valid evaluation function handle or SAF__ANY_EVALUATION. (low-cost)

	coeff_assoc must either be a valid cat handle or SAF__ANY_CAT. (low-cost)

	eval_decomp must either be a valid cat handle or SAF__ANY_CAT. (low-cost)

	nfound and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Should SAF [https://github.com/markcmiller86/SAF] traverse up the SIL to find all fields that are actually defined for the given set?

See Also:

	Fields: Introduction for current chapter

Get datatype and size for a field

saf_get_count_and_type_for_field is a function defined in field.c.

Synopsis:

	
int saf_get_count_and_type_for_field(SAF_ParMode pmode, SAF_Field *field, SAF_FieldTarget *target, size_t *Pcount, hid_t *Ptype)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field handle.

	target: Optional field targeting information.

	Pcount: [OUT] The number of items that would be placed in the buffer by a
call to the saf_read_field function. The caller may pass a value
of NULL for this parameter if this value is not desired.

	Ptype: [OUT] The type of the items that would be placed in the buffer by a
call to the saf_read_field function. The caller may pass a value
of NULL for this parameter if this value is not desired. The
returned HDF5 datatype can be closed by the caller when no longer
needed.

Description: This function is used to retrieve the number and type of items that would be retrieved by a call to the
saf_read_field function. This function may be used by the caller to determine the size of the buffer
needed when pre-allocation is desired or to determine how to traverse the buffer returned by the
saf_read_field function.

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle. (low-cost)

	If targeting of storage decomposition is used, the read must be a SAF__ALL mode read or the. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Fields stored on a decomposition must have same datatype. It may be possible to relax this a bit.
Also what if the field has been decomposed into blocks? say triangles and quads, field remapping
may be possible but makes no sense as the DOFs would be all mixed-up some for triangles, some for
quads.

See Also:

	saf_read_field: 16.21: Read the data for a field

	Fields: Introduction for current chapter

Get an attribute from a field

saf_get_field_att is a function defined in field.c.

Synopsis:

	
int saf_get_field_att(SAF_ParMode pmode, SAF_Field *fld, const char *name, hid_t *type, int *count, void **value)

	

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__Field objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	Fields: Introduction for current chapter

Is field stored on self

saf_is_self_stored_field is a function defined in field.c.

Synopsis:

	
int saf_is_self_stored_field(SAF_ParMode pmode, SAF_Field *field, hbool_t *result)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The handle of the field which is to be examined.

	result: [OUT] Optional pointer to memory which is to receive the result of the test:
true if the field is self stored or false if it is stored on a
decomposition.

Description: This function is used by a client to test if a field is stored on self or on a decomposition. The boolean
result is returned by reference.

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Fields: Introduction for current chapter

Put an attribute with a field

saf_put_field_att is a function defined in field.c.

Synopsis:

	
int saf_put_field_att(SAF_ParMode pmode, SAF_Field *field, const char *name, hid_t type, int count, const void *value)

	

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__Field objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	Fields: Introduction for current chapter

Read the data for a field

saf_read_field is a function defined in field.c.

Synopsis:

	
int saf_read_field(SAF_ParMode pmode, SAF_Field *field, SAF_FieldTarget *target, int member_count, SAF_RelRep *req_type, int *member_ids, void **Pbuf)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field which is to be read.

	target: Field targeting information.

	member_count: A count of the number of members of the collection in which the field’s dofs are n:1
associated with that are actually being written in this call. This value is ignored
if you are reading the entire field’s dofs in this call (i.e., req_type =
SAF__TOTALITY). Also note that as a convenience, we provide the macro
SAF__WHOLE_FIELD which expands to a comma separated list of appropriate values for
this argument and the next two, for the case in which the whole field is being read
in this call.

	req_type: The type of I/O request. We use a relation representation type here to specify the
type of the partial request because it captures the necessary information. Pass
SAF__HSLAB if you are reading the dofs of a partial hyperslab of the members of the
associated collection. In this case, member_ids points to 3 N-tuples of starts,
counts and strides of the hyperslab (hypersample) request. Pass SAF__TUPLES, if you
are reading the dofs for an arbitrary list of members of the associated collection.
In this case, the member_ids points to a list of N-tuples. In both cases, ‘N’ is
the number of indexing dimensions in the associated collection. Finally, pass
SAF__TOTALITY if you are reading the entire field’s set of dofs.

	member_ids: Depending on the value of req_type, this argument points to 3 N-tuples storing,
respectively, the starts, counts and strides in each dimension of the associated
collection or to a list of member_count N-tuples, each one identifying a single
member of the associated collection or to NULL in the case of a SAF__TOTALITY request.

	Pbuf: [IN``|``OUT] A pointer to a buffer pointer which is to receive the values read. The
caller may supply a pointer to a value of NULL if this function is to allocate a
buffer. If the caller supplies a pointer to a non-NULL pointer (to a buffer) then
it is up to the caller to ensure that the buffer is of sufficient size to hold all
of the data retrieved. The caller should use saf_describe_field or
saf_get_count_and_type_for_field to determine the datatype of the values read.

Description: This is function is used to read a field’s data. If the field is not an indirect reference to other fields,
this call involves real disk I/O. All functions in SAF [https://github.com/markcmiller86/SAF] with either “read” or “write” in the name potentially
involve real disk I/O.

This function allows a client to read either the entire field’s data or a portion of the field’s data. Recall
that the degrees of freedom (dofs) of a field are n:1 associated with the members of some collection in
the set upon which the field is defined. We call this collection the associated collection.

In order to specify a partial request, the client is required to
specify which members of the associated collection it is reading the dofs for. Ultimately, those members may be
specified using a N dimensional hyperslab (or hypersample) or an arbitrary list of N-tuples. In either case,
the number of dimensions, ‘N’, is the number of indexing dimensions in the associated collection.

At present, there are several limitations. First, the collection must be 1 dimensionally indexed. Next,
only the hyperslab mode or a single member in tuple-mode are supported; not hypersamples and not an
arbitrary list. Also, if the field is a multi-component field, then the only supported interleave mode is
SAF__INTERLEAVE_VECTOR.

Finally, we provide as a convenience the macro SAF__WHOLE_FIELD which expands to a comma separated list of
values, 0, SAF__TOTALITY, NULL, for the three arguments member_count, req_type, member_ids for the case in
which the client is reading the whole field in this call.

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle. (low-cost)

	Pbuf must be non-null. (low-cost)

	If partial I/O request, associated collection must be 1D indexed, req_type must be SAF__HSLAB. (high-cost)

	If field targeting of storage decomposition is used, the read must be a SAF__ALL mode read or the. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: A partial I/O request looks a lot like a subset relation. In fact, we even use the same data type, SAF__SRType,
to identify the type of partial I/O request. It may be difficult for a client to distinguish between making
a partial I/O request and making real subsets. In theory, there really should be no difference. The act
of reading/writing a portion of a field is the act of defining a subset of the base space the field is defined
on and then restricting the field to that subset. In the current implementation, this requires, at a minimum, the
ability to create transient objects such as the subset representing the piece of the field being read/written in
this call. In addition, it really requires decoupling the storage containers into which field’s data goes
from declaring and reading/writing fields.

For an indirect field the the local fields are all “similar”. That is, they have the same algebraic type,
association category, units and such. This function should check for this but doesn’t. In the future
some differences can be smoothed-over (such as units) but some probably can not (such as algebraic
type).

The proper use of pmode is not fully worked out.

Multiple indirection may actually fall out of this solution but that is not at all clear.

When remapping an indirect field we only look in the top-scope of the file containing the
field’s base space when searching for the subset relations. [rpm 2004-05-24]

See Also:

	saf_describe_field: 16.13: Get a description of a field

	saf_get_count_and_type_for_field: 16.17: Get datatype and size for a field

	Fields: Introduction for current chapter

Set the destination form of a field

saf_target_field is a function defined in field.c.

Synopsis:

	
int saf_target_field(SAF_FieldTarget *target, SAF_Unit *targ_units, SAF_Cat *targ_storage_decomp, SAF_Cat *targ_coeff_assoc, int targ_assoc_ratio, SAF_Cat *targ_eval_coll, SAF_Eval *targ_func, hid_t targ_data_type, SAF_Interleave comp_intlv, int *comp_order)

	

Formal Arguments:

	target: [OUT] The target information that will be initialized by this call.

	targ_units: The new units. This parameter is ignored at this time.

	targ_storage_decomp: The new storage decomposition.

	targ_coeff_assoc: This parameter is ignored at this time.

	targ_assoc_ratio: This parameter is ignored at this time.

	targ_eval_coll: This parameter is ignored at this time.

	targ_func: This parameter is ignored at this time.

	targ_data_type: The new destination data type. When the saf_write_field function is called
the datatype of the dataset produced is determined by this parameter. When
the saf_read_field function is called, the datatype of the values placed in
the caller’s memory is determined by this parameter. If a value of
H5I_INVALID_HID is passed for this parameter then datatype targeting is
turned off and the default mechanism for determining the destination
datatype is used.

	comp_intlv: The particular fashion in which components are interleaved. Currently
there are really only two: SAF__INTERLEAVE_VECTOR and SAF__INTERLEAVE_COMPONENT.
These represent the XYZXYZ…``XYZ`` and the XXX…``XYYY``…``YZZZ``…``Z`` cases. Note that
interleave really only deals with a single blob of storage. In the case of a
composite field whose coefficients are stored independently on the component
fields then interleave really has no meaning (use SAF__INTERLEAVE_INDEPENDENT).
Interleave only has meaning on fields with storage. In the case of a scalar
field interleave is also meaningless, both cases degenerate to the same layout:
XXX…``X`` (use SAF__INTERLEAVE_NONE). This parameter is ignored at this time.

	comp_order: Only relevant for fields with component fields. This value indicates the order
of the field IDs in the COMP_FLDS relative to the registered order. Pass NULL
if the permutation is the identity. This parameter is ignored at this time.

Description: Setup targeting information for a field during read or write. Please see the introductory note in the Field’s
chapter for some information on field targeting.

Preconditions:

	STORAGE_DECOMP must be either NOT_SET, SELF_DECOMP or a valid cat handle. (low-cost)

	target must be non-null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_read_field: 16.21: Read the data for a field

	saf_write_field: 16.23: Write the data for a field

	Fields: Introduction for current chapter

Write the data for a field

saf_write_field is a function defined in field.c.

Synopsis:

	
int saf_write_field(SAF_ParMode pmode, SAF_Field *field, int member_count, SAF_RelRep *req_type, int *member_ids, int nbufs, hid_t buf_type, void **bufs, SAF_Db *file)

	

Formal Arguments:

	pmode: The parallel mode.

	field: The field to write.

	member_count: A count of the number of members of the collection in which the field’s dofs are
n:1 associated that are actually being written in this call. This value is
ignored if you are writing the entire field’s dofs in this call (i.e., req_type is
SAF__TOTALITY). Also note that as a convenience, we provide the macro
SAF__WHOLE_FIELD which expands to a comma separated list of appropriate values for
this argument and the next two, for the case in which the whole field is being
written in this call.

	req_type: The type of I/O request. We use a relation representation type here to specify the
type of the partial request because it captures the necessary information. Pass
SAF__HSLAB if you are writing the dofs of a partial hyperslab of the members of the
associated collection. In this case, member_ids points to 3 N-tuples of starts,
counts and strides of the hyperslab (hypersample) request. Pass SAF__TUPLES, if you
are writing the dofs for an arbitrary list of members of the associated collection.
In this case, the member_ids points to a list of N-tuples. In both cases, ‘N’ is
the number of indexing dimensions in the associated collection. Finally, pass
SAF__TOTALITY if you are writing the entire field’s set of dofs.

	member_ids: Depending on the value of req_type, this argument points to 3 N-tuples storing,
respectively, the starts, counts and strides in each dimension of the associated
collection or to a list of member_count N-tuples, each one identifying a single
member of the associated collection or to NULL in the case of a SAF__TOTALITY
request.

	nbufs: The number of buffers. Valid values are either 1 or a value equal to the number of
components of the field. A value greater than 1 indicates that the field is stored
component by component, one buffer for each component. Note, however, that current
limitations of partial requests support only fields that are interleaved by
SAF__INTERLEAVE_VECTOR. This, in turn, means that in a partial I/O request, nbufs
can only ever be one.

	buf_type: The type of the objects in the buffer(s). If the buffer datatype was provided in
the saf_declare_field call that produced the field handle then this parameter
should have a negative value. If however the datatype was not provided in the
saf_declare_field or if the handle was the result of a find operation then the
datatype must be provided in this call.

	bufs: The buffers.

	file: Optional file into which the data is written. If none is supplied then the data is
written to the same file as the field.

Description: This function is used to write a field’s data. If the field is not an indirect reference to other fields,
this call involves real disk I/O. All functions in SAF [https://github.com/markcmiller86/SAF] with either “read” or “write” in the name potentially
involve real disk I/O.

This function allows a client to write either the entire field’s data or a portion of the field’s data. Recall
that the degrees of freedom (dofs) of a field are n:1 associated with the members of some collection in
the set upon which the field is defined. We call this collection the associated collection.

In order to specify a partial request, the client is required to
specify which members of the associated collection it is writing the dofs for. Ultimately, those members may be
specified using a N dimensional hyperslab (or hypersample) or an arbitrary list of N-tuples. In either case,
the number of dimensions, ‘N’, is the number of indexing dimensions in the associated collection.

At present, there are several limitations. First, the collection must be 1 dimensionally indexed. Next,
only the hyperslab mode or a single member in tuple-mode are supported, not hypersamples and not an
arbitrary list. Finally, if the field is a multi-component field, then the only supported interleave mode is
SAF__INTERLEAVE_VECTOR.

For indirect fields, the notion of writing on the composite or component fields is lost. On an indirect,
composite field, the values written must be handles to other composite fields. Likewise for its component
fields. The values written must be handles for other component fields.

Finally, we provide as a convenience the macro SAF__WHOLE_FIELD which expands to a comma separated list of
values, 0, SAF__TOTALITY, NULL, for the three arguments member_count, req_type, member_ids for the case in
which the client is writing the whole field in this call.

Preconditions:

	pmode must be valid. (low-cost)

	field must be a valid field handle. (low-cost)

	bufs must be specified here or in the saf_declare_field call (not both). (low-cost)

	Pass either valid bufs and nbufs``>0 or ``NULL and ``nbufs``==0. (low-cost)

	If partial I/O request, collection must be 1D indexed, req_type must be SAF__HSLAB. (high-cost)

	Buffer datatype must be specified in field declaration or write. (low-cost)

	Buffer datatype must be consistent between field declaration and write. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: SAF_EACH mode is a collective call where each of the N tasks provides a unique relation. SAF [https://github.com/markcmiller86/SAF] will create a
single HDF5 dataset to hold all the data and will create N blobs to point into nonoverlapping regions in that
dataset. In SAF__EACH mode the call must still be collective across the file communicator (or the communicator
of the dataset to which field belongs if file is null). This requirement is due to the fact that an HDF5
dataset may need to be created and such an operation is collective.

Issues: A partial I/O request looks a lot like a subset relation. In fact, we even use the same data type, SAF__SRType,
to identify the type of partial I/O request. It may be difficult for a client to distinguish between making
a partial I/O request and making real subsets. In theory, there really should be no difference. The act
of writing a portion of a field is the act of defining a subset of the base space the field is defined on
and then restricting the field to that subset. In the current implementation, this requires, at a minimum, the
ability to create transient objects such as the subset representing the piece of the field being written in
this call. In addition, it really requires decoupling the storage containers into which field’s data goes
from declaring and writing fields.

For a compound data-type on a composite field, we probably ought to confirm a) the rank of the compound
type is equal to the number of components, b) the type of each member of the compound type is equal to the
type of each of the component fields (assuming both are ordered the same), and c) the names of the member
types are the same as the component fields. Currently we are only checking a).

Computing the actual size of the I/O request here is NO SMALL TASK. It depends on a combination of factors
including the number of buffers, the number of members whose dofs are being written, the association ratio,
the data-type and whether the field is direct or indirect.

Is it possible that a SAF__EACH call will have a different offset and data for each task? If so we’ll have to
do some communicating first otherwise :file:`ss_file_synchronize ../sslib_refman.rest/ss_file_synchronize.rst` will see that each task made incompatible
modifications to this object. This code just checks that for now. [rpm 2004-06-07]

See Also:

	saf_declare_field: 16.12: Declare a field

	Fields: Introduction for current chapter

State Templates

A state template is a pattern for what types of fields can be grouped into a state. This pattern is specified by
a list of field templates.

Members

	SAF_NULL_STMPL [Public macro]

	saf_declare_state_tmpl [Public function]

	saf_describe_state_tmpl [Public function]

	saf_find_state_tmpl [Public function]

	saf_get_state_tmpl_att [Public function]

	saf_put_state_tmpl_att [Public function]

The null state template handle

SAF_NULL_STMPL is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_STMPL(Db)

	

Description: This macro evaluates to the state template handle for the null state template of the database. The null set
handle is most often only used in a SAF__ONE parallel call where many processors are participating solely for the
sake of collectivity (See *Constants*).

See Also:

	State Templates: Introduction for current chapter

Declare a state template

saf_declare_state_tmpl is a function defined in stempl.c.

Synopsis:

	
SAF_StateTmpl * saf_declare_state_tmpl(SAF_ParMode pmode, SAF_Db *database, const char *name, int num_ftmpls, SAF_FieldTmpl *ftmpls, SAF_StateTmpl *stmpl)

	

Formal Arguments:

	pmode: The parallel mode.

	name: The name of the state template.

	num_ftmpls: Number of field templates that will comprise this state template.

	ftmpls: Array of field template handles.

	stmpl: The returned state template handle.

Description: This creates a state template associated with a specified suite.

Return Value: Returns a pointer to the new state template on success; null on failure. If the caller supplies a non-null
stmpl argument then this pointer will be the return value, otherwise a state template link will be allocated.

See Also:

	State Templates: Introduction for current chapter

Get a description of a state template

saf_describe_state_tmpl is a function defined in stempl.c.

Synopsis:

	
int saf_describe_state_tmpl(SAF_ParMode pmode, SAF_StateTmpl *stmpl, char **name, int *num_ftmpls, SAF_FieldTmpl **ftmpls)

	

Formal Arguments:

	pmode: The parallel mode.

	stmpl: The state template handle.

	name: [OUT] The returned name. Pass NULL if you do not want the name
returned.

	num_ftmpls: [OUT] The returned number of field templates which comprise this state
template.

	ftmpls: [OUT] The returned field templates.

Description: Returns a description of a state template.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	State Templates: Introduction for current chapter

Find a state template

saf_find_state_tmpl is a function defined in stempl.c.

Synopsis:

	
int saf_find_state_tmpl(SAF_ParMode pmode, SAF_Db *database, const char *name, int *num_stmpls, SAF_StateTmpl **stmpls)

	

Formal Arguments:

	pmode: The parallel mode.

	database: the database context for this search

	name: The name of the state template you are searching for. Pass SAF__ANY_NAME if you
do not wish to limit your search to just this name.

	num_stmpls: For this and the succeeding argument [see Returned Handles].

	stmpls: For this and the preceding argument [see Returned Handles].

Description: Find state templates in a suite.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	State Templates: Introduction for current chapter

Get an attribute attached to a state template

saf_get_state_tmpl_att is a function defined in stempl.c.

Synopsis:

	
int saf_get_state_tmpl_att(SAF_ParMode pmode, SAF_StateTmpl *stmpl, const char *att_key, hid_t *att_type, int *count, void **value)

	

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__StateTmpl objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	State Templates: Introduction for current chapter

Attach an attribute to a state template

saf_put_state_tmpl_att is a function defined in stempl.c.

Synopsis:

	
int saf_put_state_tmpl_att(SAF_ParMode pmode, SAF_StateTmpl *stmpl, const char *att_key, hid_t att_type, int count, const void *value)

	

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__StateTmpl objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	State Templates: Introduction for current chapter

States

A state is a “slice” through a suite at a fixed parameter value (typically time). For example, a state
contains all the following that is associated with a specific time step of a simulation:

	pointer to the computational mesh (i.e., a set);

	pointer to the default coordinate field (an independent variable) of the mesh;

	the time value (also an independent variable) of the state;

	pointers to all the fields (the dependent variables) attached to the mesh at the specific time step.

What if the desired output changes from state to state?. For example, suppose a client writes various
combintations of Coordinates (C), Pressure (P), Temperature (T), Velocity (V) and Stress (S) fields according
to the following sequence…

	1
2
3
4
5
6
7

	 C C
 C C C C V V
 C C V V V V C C T T
 V V T T T T V V P P
 S S P P P P S S S S
 +---+---+---+---+---+---+---+---+---+
 0 1 2 3 4 5 6 7 8 9 <-- indices

	1

	 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 <-- times

The client should declare a state template that contains field templates for all the fields that will be
referenced at any state. In the example above, the state template should consist of field templates for
C, V, T, P, and S. For the states that don’t contain all the fields, the client should pass a
SAF__NOT_APPLICABLE_FIELD for those fields that aren’t applicable for the state being written.

Members

	SAF_NULL_STATE_GRP [Public macro]

	saf_declare_state_group [Public function]

	saf_describe_state_group [Public function]

	saf_find_state_groups [Public function]

	saf_get_state_grp_att [Public function]

	saf_put_state_grp_att [Public function]

	saf_read_state [Public function]

	saf_write_state [Public function]

The null state group handle

SAF_NULL_STATE_GRP is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_STATE_GRP(Db)

	

Description: This macro evaluates to the state handle for the null state of the database. The null state handle is most
often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of
collectivity (See *Constants*).

See Also:

	States: Introduction for current chapter

Declare a state group

saf_declare_state_group is a function defined in state.c.

Synopsis:

	
SAF_StateGrp * saf_declare_state_group(SAF_ParMode pmode, SAF_Db *db, const char *name, SAF_Suite *suite, SAF_Set *mesh_space, SAF_StateTmpl *stmpl, SAF_Quantity *quantity, SAF_Unit *unit, hid_t coord_data_type, SAF_StateGrp *state_grp)

	

Formal Arguments:

	pmode: The parallel mode.

	db: The database in which to declare the new state group.

	name: The name of this state group.

	suite: The suite that these states are associated with.

	mesh_space: The set representing the computational mesh

	stmpl: A state template that defines the pattern (via a list of field
templates) of fields that can be stored in each state.

	quantity: The quantity associated with the axis of the parametric space.
For example, SAF__TIME_QUANTITY.

	unit: The units associated with the axis of the parametric space.

	coord_data_type: The data type of the coordinates of the parametric space.

	state_grp: The returned handle for a state group.

Description: A state group contains all of the states associated with a suite. It contains:

	1
2
3
4
5
6
7
8

	 - a name
 - pointer to the suite that these states are attached to
 - array of sets that represent the computational meshes associated with each state
 - a coordinate field containing two components
 -- a scalar field whose values are the parametric values (e.g., time values) associated with each state
 -- a field whose values are IDs of the default coordinate fields (the independent variable) of the
 computational mesh associated with each state
 - a field containing IDs of all the fields (dependent variables) attached to the computational mesh at each state

Return Value: Returns a pointer to the new state group on success; null on failure. If the caller supplies a state_grp
argument then that becomes the return value, otherwise a new state group link is allocated herein.

Issues: The new implementation of state group supercedes the current concept of a “state field”. A “state field”,
as currently implemented, is just one component of a state group. Thus, we can delete all references to
SAF__StateFld and add the new type SAF__StateGrp that contains:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 - the name of the state group
 - pointer to the SAF_Suite that the state group is attached to
 - array of pointers to the SAF_Sets that represent the computational meshes associated with each state
 - pointer to a SAF_Field coordinate field containing two components (this field may have to be an indirect field
 if we don't support composite fields with heterogeneous components):
 -- a scalar field whose values are the parametric values (e.g., time values) associated with each state
 -- an indirect field whose values are IDs of the default coordinate fields of the computational mesh
 associated with each state
 - pointer to an indirect SAF_Field containing IDs of all the fields (dependent variables) attached to the
 computational mesh at each state (this indirect field is what is currently a "state field")

See Also:

	States: Introduction for current chapter

Get a description of a state group

saf_describe_state_group is a function defined in state.c.

Synopsis:

	
int saf_describe_state_group(SAF_ParMode pmode, SAF_StateGrp *state_grp, char **name, SAF_Suite *suite, SAF_StateTmpl *stmpl, SAF_Quantity *quantity, SAF_Unit *unit, hid_t *coord_data_type, int *num_states)

	

Formal Arguments:

	pmode: The parallel mode.

	state_grp: The state group to be described.

	name: [OUT] Returned name of the state group. Pass NULL if you do not want this
value returned.

	suite: [OUT] Returned suite the state group is associated with.

	stmpl: [OUT] Returned state template. Pass NULL if you do not want this value
returned.

	quantity: [OUT] The returned quantity associated with the axis of the
parametric space. For example, SAF__TIME_QUANTITY.

	unit: [OUT] The returned units associated with the axis of the parametric
space.

	coord_data_type: [OUT] The returned data type of the coordinates of the parametric
space.

	num_states: [OUT] Returned number of states that have been written to this state
group. Pass NULL if you do not want this value returned.

Description: Returns the description of a state group

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	States: Introduction for current chapter

Find state groups

saf_find_state_groups is a function defined in state.c.

Synopsis:

	
int saf_find_state_groups(SAF_ParMode pmode, SAF_Suite *suite, const char *name, int *num_state_grps, SAF_StateGrp **state_grps)

	

Formal Arguments:

	pmode: The parallel mode.

	suite: The suite within which to search.

	name: The name of the state group for which to search. Pass SAF__ANY_NAME
if you do not want to limit your search.

	num_state_grps: [OUT] Returned number of state groups found.

	state_grps: [OUT] Returned state groups found.

Description: This finds the state groups that match specified criteria.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	States: Introduction for current chapter

Get an attribute attached to a state group

saf_get_state_grp_att is a function defined in state.c.

Synopsis:

	
int saf_get_state_grp_att(SAF_ParMode pmode, SAF_StateGrp *state_grp, const char *key, hid_t *type, int *count, void **value)

	

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__StateGrp objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	States: Introduction for current chapter

Attach an attribute to a state group

saf_put_state_grp_att is a function defined in state.c.

Synopsis:

	
int saf_put_state_grp_att(SAF_ParMode pmode, SAF_StateGrp *state_grp, const char *key, hid_t type, int count, const void *value)

	

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__StateGrp objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	States: Introduction for current chapter

Retrieve a state

saf_read_state is a function defined in state.c.

Synopsis:

	
int saf_read_state(SAF_ParMode pmode, SAF_StateGrp *state_grp, int state_index, SAF_Set *mesh, SAF_Field *deflt_coords, void *coord_data, SAF_Field **fields)

	

Formal Arguments:

	pmode: The parallel mode

	state_grp: The state group from which this state will be read.

	state_index: An index that specifies which state within the state group will be read.
This index is 0-based.

	mesh: [OUT] Returned ID of the mesh associated with this state.

	deflt_coords: [OUT] Returned ID of the default coordinate field of mesh; we may want to
delete this argument since the client can call saf_find_default_coords
for mesh.

	coord_data: [OUT] Returned coordinate of state_index within the state group. For
instance, this is typically the time value of the state.

	fields: The IDs of the fields (the dependent variables) to be read from this state.
The caller may supply a pointer to a value of NULL if this function is to
allocate a buffer. If the caller supplies a pointer to a non-nil pointer,
then it is the responsibility of the caller to ensure that the buffer is of
sufficient size to contain the coordinates. This size (NUM_FIELDS) is the
number of field templates (NUM_FTMPLS) obtained by a call to
saf_describe_state_tmpl.

Description: Read all the elements of a state. This includes the following:

	ID of the computational mesh (i.e., a set ID) associated with this state;

	ID of the default coordinate field of the mesh;

	the parametric value (e.g., the time value) associated with this state;

	IDs of all the fields (the dependent variables) attached to the mesh at this state.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_describe_state_tmpl: 17.3: Get a description of a state template

	saf_find_default_coords: 16.15: Find default coordinate fields

	States: Introduction for current chapter

Write out a state

saf_write_state is a function defined in state.c.

Synopsis:

	
int saf_write_state(SAF_ParMode pmode, SAF_StateGrp *state_grp, int state_index, SAF_Set *mesh_space, hid_t coord_data_type, void *coord_data, SAF_Field *fields)

	

Formal Arguments:

	pmode: The parallel mode.

	state_grp: The state group into which this state will be inserted.

	state_index: The index within the state group at which this state will be written.
This index is 0-based.

	mesh_space: The ID of the mesh associated with this state.

	coord_data_type: The data type of COORD

	coord_data: The coordinate of state_index within the state group. For instance, this
is typically the time value of the state.

	fields: The fields (the dependent variables) to be written to this state.

Description: Write out all the elements of a state. This includes the following:

	ID of the computational mesh (i.e., a set ID) associated with this state;

	ID of the default coordinate field of the mesh;

	the parametric value (e.g., the time value) associated with this state;

	IDs of all the fields (the dependent variables) attached to the mesh at this state.

The state is referenced by an index which is an index into each of the arrays that compose the state group.
See the description of a state group.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: This function does the following actions under the covers to implement the cross-product base space.

	increments the “SAF__SPACE_SLICE” collection

	adds a subset relation between the set identified by the MESH argument and the suite set

See Also:

	States: Introduction for current chapter

Suites

A suite is a cartesian product of two base spaces (i.e., sets): one is the mesh from a simulation (typically
a set with a SIL role of SAF__SPACE) and the other is a base space representing time or some other parametric
space. Fields can be defined on a suite that are either slices through space (at constant times) or slices through
time (at constant locations in space). The former are referred to as states; the latter are histories.

Members

	SAF_NULL_SUITE [Public macro]

	saf_declare_suite [Public function]

	saf_describe_suite [Public function]

	saf_find_suites [Public function]

	saf_get_suite_att [Public function]

	saf_put_suite_att [Public function]

The null suite handle

SAF_NULL_SUITE is a macro defined in saf.h.

Synopsis:

	
SAF_NULL_SUITE(Db)

	

Description: This macro evaluates to the suite handle for the null suite of the database. The null suite is most
often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of
collectivity (See *Constants*).

See Also:

	Suites: Introduction for current chapter

Declare a suite

saf_declare_suite is a function defined in suite.c.

Synopsis:

	
SAF_Suite * saf_declare_suite(SAF_ParMode pmode, SAF_Db *database, const char *name, SAF_Set *mesh_space, SAF_Set *param_space, SAF_Suite *suite)

	

Formal Arguments:

	pmode: The parallel mode.

	database: The SAF [https://github.com/markcmiller86/SAF] database handle.

	name: The name of the suite.

	mesh_space: The set representing the computational mesh.
this is currently only a single set, so assume that the
user cannot supply a list of mesh_space sets when declaring a suite

	param_space: The set representing the parametric space, such as time. If this is NULL,
a set will be created with a SIL role of type TYPE.

	suite: [OUT] Optional memory for the returned handle. If null then a new handle is
allocated by this function.

Description: This creates a suite with the given name.

Return Value: Returns a pointer to a new suite on success; null on failure. If the caller supplies a suite argument then
this will be the pointer that is returned instead of allocating a new suite handle.

Issues: Currently, a SAF__Suite is #typedef’d to a SAF__Set. This may still work if we can identify suites with a new
SIL role (“SAF__SUITE”).

The ability to declare “subsuites” may be needed but won’t be available in this implementation. This
implementation will handle just 1-dimensional parametric spaces, such as time.

This function will create an extendible SAF__Set with two collections: one for associating states
(fields across space at a fixed value of the specified parameter, usually time) and one for associating histories
(fields across the specified parameter, usually time, at a fixed point in space). We will declare two new
categories, “SAF__SPACE_SLICE” and “SAF__PARAM_SLICE”, respectively, that will be used in the declaration of
these collections. These new categories will be a minor enhancement to the current self category.

If param_space is passed as NULL, this function will create a SAF__Set to represent the parametric space.

See Also:

	Suites: Introduction for current chapter

Get a description of a suite

saf_describe_suite is a function defined in suite.c.

Synopsis:

	
int saf_describe_suite(SAF_ParMode pmode, SAF_Suite *suite, char **name, int *num_space_sets, SAF_Set **mesh_space, SAF_Set **param_space)

	

Formal Arguments:

	pmode: The parallel mode.

	suite: A suite handle.

	name: [OUT] The returned name of the suite. Pass NULL if you do not want this value
returned.

	num_space_sets: [OUT] The number of sets returned in mesh_space.

	mesh_space: [OUT] The returned array of sets representing the computational meshes associated
with each state of the suite. This is the list of sets in the “SAF__SPACE_SLICE”
collection.

	param_space: [OUT] The returned array of sets representing the parametric space, such as
time. These are associated with the histories of the suite and are thus
contained in the “SAF__PARAM_SLICE” collection. This will not be
implemented at this time.

Description: Returns the description of a suite. This includes the name of the suite and the sets associated with the
“SAF__SPACE_SLICE” and “SAF__PARAM_SLICE” collections.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Suites: Introduction for current chapter

Find suites

saf_find_suites is a function defined in suite.c.

Synopsis:

	
int saf_find_suites(SAF_ParMode pmode, SAF_Db *database, const char *name, int *num_suites, SAF_Suite **suites)

	

Formal Arguments:

	pmode: The parallel mode.

	database: The database in which to search.

	name: The name to limit the search to. The constant SAF__ANY_NAME can be passed if
the client does not want to limit the search by name.

	num_suites: [OUT] The returned number of suites.

	suites: [OUT] The returned suites.

Description: Find all the suites in a SAF [https://github.com/markcmiller86/SAF] database. Under the cover, this finds all sets with a SIL_ROLE of SAF__SUITE.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Suites: Introduction for current chapter

Get an attribute attached to a suite

saf_get_suite_att is a function defined in suite.c.

Synopsis:

	
int saf_get_suite_att(SAF_ParMode pmode, SAF_Suite *suite, const char *att_key, hid_t *att_type, int *count, void **value)

	

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__Suite objects to provide the client with compile time type checking. For a description,
see saf_get_attribute.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	Suites: Introduction for current chapter

Attach an attribute to a suite

saf_put_suite_att is a function defined in suite.c.

Synopsis:

	
int saf_put_suite_att(SAF_ParMode pmode, SAF_Suite *suite, const char *att_key, hid_t att_type, int count, const void *value)

	

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__Suite objects to provide the client with compile time type checking. For a description,
see saf_put_attribute.

See Also:

	saf_put_attribute: 23.2: Create or update a non-sharable attribute

	Suites: Introduction for current chapter

Quantities

A quantity in the general sense is a property ascribed to phenomena, bodies, or substances that can
be quantified for, or assigned to, a particular phenomenon, body, or substance. The library defines seven
basic quantities (length, mass, time, electric current, thermodynamic temperature, amount of a substance, and
luminous intensity) and additional quantities can be derived as products of powers of the seven basic
quantities (e.g., “volume” and “acceleration”). All quantities are unitless – they describe what can be
measured but not how to measure it.

Unlike many other quantity implementations, this one is able to distinguish between dimensionless things like
mass fractions (mass/mass) and length fractions (length/length). It does so by canceling numerators with
denominators except when the numerator and denominator are equal. That is, mass/mass is considered a different
quantity than length/length.

The library defines the seven basic quantities whose names follow the format “SAF__QX” where “X” is
replaced by one of the words LENGTH, MASS, TIME, CURRENT, TEMP, AMOUNT, or LIGHT. Additional quantities can be
derived from these by first creating an empty quantity and then multiplying powers of other quantities. For
instance, volume per unit time would be defined as

	1
2
3

	 SAF_Quantity *q_vpt = saf_declare_quantity(SAF_ALL, db, "volume per time", "vol/time", NULL);
 saf_multiply_quantity(SAF_ALL, q_vpt, SAF_QLENGTH, 3);
 saf_multiply_quantity(SAF_ALL, q_vpt, SAF_QTIME, -1);

The reader is encouraged to visit physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html] to get more information
about quantities and units.

Members

	SAF_QAMOUNT [Public symbol]

	SAF_QCURRENT [Public symbol]

	SAF_QLENGTH [Public symbol]

	SAF_QLIGHT [Public symbol]

	SAF_QMASS [Public symbol]

	SAF_QNAME [Public macro]

	SAF_QTEMP [Public symbol]

	SAF_QTIME [Public symbol]

	saf_declare_quantity [Public function]

	saf_describe_quantity [Public function]

	saf_divide_quantity [Public macro]

	saf_find_one_quantity [Public function]

	saf_find_quantities [Public function]

	saf_multiply_quantity [Public function]

The quantity Amount

SAF_QAMOUNT is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QAMOUNT

	

Description: A macro which refers to Amount, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

The quantity Current

SAF_QCURRENT is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QCURRENT

	

Description: A macro which refers to Current, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

The quantity Length

SAF_QLENGTH is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QLENGTH

	

Description: A macro which refers to Length, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

The quantity Light

SAF_QLIGHT is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QLIGHT

	

Description: A macro which refers to Light, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

The quantity Mass

SAF_QMASS is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QMASS

	

Description: A macro which refers to Mass, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

An arbitrary named quantity

SAF_QNAME is a macro defined in SAFquant.h.

Synopsis:

	
SAF_QNAME(DB, NAME)

	

Description: A macro which refers to an arbitrary named quantity

See Also:

	Quantities: Introduction for current chapter

The quantity Temperature

SAF_QTEMP is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QTEMP

	

Description: A macro which refers to Temperature, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

The quantity Time

SAF_QTIME is a symbol defined in SAFquant.h.

Synopsis:

	
SAF_QTIME

	

Description: A macro which refers to Time, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html [http://physics.nist.gov/cuu/Units/units.html]

See Also:

	Quantities: Introduction for current chapter

Declare a new quantity

saf_declare_quantity is a function defined in quant.c.

Synopsis:

	
SAF_Quantity * saf_declare_quantity(SAF_ParMode pmode, SAF_Db *db, const char *description, const char *abbreviation, const char *url, SAF_Quantity *quant)

	

Formal Arguments:

	description: A short description of the new quantity (e.g., “volume per time”).

	abbreviation: An optional abbreviation or symbol name for the quantity.

	url: An optional url to the quantity documentation.

	quant: [OUT] Optional quantity handle to initialize (and return).

Description: This function declares a new quantity whose product of powers is unity. The client is expected to
multiply powers of other quantities into this new quantity (via saf_multiply_quantity) in order to complete
its definition.

Preconditions:

	pmode must be valid. (low-cost)

Return Value: A new quantity handle is returned on success. Otherwise a SAF__ERROR_HANDLE value is returned or an exception is
raised, depending on the error handling property of the library.

Parallel Notes: This function must be called collectively in the database communicator.

See Also:

	saf_multiply_quantity: 20.14: Multiply a quantity into a quantity definition

	Quantities: Introduction for current chapter

Query quantity characteristics

saf_describe_quantity is a function defined in quant.c.

Synopsis:

	
int saf_describe_quantity(SAF_ParMode pmode, SAF_Quantity *quantity, char **description, char **abbreviation, char **url, unsigned *flags, unsigned *power)

	

Formal Arguments:

	quantity: Quantity about which to retrieve information.

	description: If non-null then upon return this will point to an allocated copy of the
quantity description.

	abbreviation: If non-null then upon return this will point to an allocated copy of the
quantity abbreviation if one is defined.

	url: If non-null then upon return this will point to an allocated copy of the
quantity documentation url if one is defined.

	flags: If non-null then the special quantity flags are written into the location
indicated by this pointer.

	power: If non-null then upon return this seven-element array will be filled in
with the powers of the seven basic quantities.

Description: Given a quantity this function returns any information which is known about that quantity.

Preconditions:

	pmode must be valid. (low-cost)

	quantity must be a valid quantity handle. (low-cost)

Return Value: A non-negative value is returned on success. Failure is indicated by a negative return value or the raising of
an exception, depending on the error handling property of the library.

Parallel Notes: This function must be called collectively in the database communicator.

See Also:

	Quantities: Introduction for current chapter

Divide a quantity into a quantity definition

saf_divide_quantity is a macro defined in SAFquant.h.

Synopsis:

	
saf_divide_quantity(PMODE, Q, DIVISOR, POWER)

	

Description: This macro simply calls saf_multiply_quantity with a negated POWER argument.

See Also:

	saf_multiply_quantity: 20.14: Multiply a quantity into a quantity definition

	Quantities: Introduction for current chapter

Convenience function for finding a quantity

saf_find_one_quantity is a function defined in quant.c.

Synopsis:

	
SAF_Quantity * saf_find_one_quantity(SAF_Db *database, const char *desc, SAF_Quantity *buf)

	

Formal Arguments:

	database: The database in which to find the specified quantity.

	desc: Quantity description to find.

	buf: [OUT] Optional quantity handle to initialize and return.

Description: This is a simple version of saf_find_quantity that takes fewer arguments.

Return Value: On success, a handle for the first quantity found which has description desc in database database is returned.
Otherwise a SAF__ERROR_HANDLE is returned.

Parallel Notes: This function must be called collectively in the database communicator.

See Also:

	Quantities: Introduction for current chapter

Find quantities

saf_find_quantities is a function defined in quant.c.

Synopsis:

	
int saf_find_quantities(SAF_ParMode pmode, SAF_Db *db, const char *desc, const char *abbr, const char *url, unsigned flags, int *power, int *num, SAF_Quantity **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	desc: Optional quantity description for which to search.

	abbr: Optional abbreviation for which to search.

	url: Optional url for which to search.

	flags: Optional flags for which to search, or SAF__ANY_INT.

	power: Optional base quantity powers for which to search. If the pointer is
non-null then the elements can be SAF__ANY_INT for the ones in which the
caller is not interested.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for quantities in the database. The search may be limited by one or
more criteria such as the name of the quantity, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

	Quantities: Introduction for current chapter

Multiply a quantity into a quantity definition

saf_multiply_quantity is a function defined in quant.c.

Synopsis:

	
int saf_multiply_quantity(SAF_ParMode pmode, SAF_Quantity *quantity, SAF_Quantity *multiplier, int power)

	

Formal Arguments:

	quantity: IN``[``OUT] The quantity which is affected by this operation

	multiplier: What to multiply into quantity

	power: Number of times to multiply multiplier into quantity

Description: After creating a new quantity with saf_declare_quantity, the quantity is defined by multiplying powers
of other quantities into it, one per call to this function. A division can be accomplished by supplying a
negative power (a power of zero has no effect).

Preconditions:

	pmode must be valid. (low-cost)

	quantity must be a valid quantity handle. (low-cost)

	multiplier must be a valid quantity handle. (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value or
raises an exception, depending on the error handling property of the library.

Parallel Notes: Depends on the pmode argument.

See Also:

	saf_declare_quantity: 20.9: Declare a new quantity

	saf_divide_quantity: 20.11: Divide a quantity into a quantity definition

	Quantities: Introduction for current chapter

Units

A unit is a particular physical quantity, defined and adopted by convention, with which other particular
quantities of the same kind are compared to express their value. The library has two classes of units:
basic units and derived units. Basic units measure some arbitrary amount of a specific quantity while
derived units are created by multiplying, scaling, and translating powers of other units (basic and/or
derived). All units are associated with a specific quantity of the database either explicitly or implicitly.
Implicit association is allowed if the appropriate quantity is not ambiguous. The library is able to convert
an array of measurements from one unit to another if the source and destination unit measure the same
specific quantity.

The definition of a basic unit is a two step process. First an empty definition is created with
saf_declare_unit, then the unit is associated with a quantity with saf_quantify_unit. Example: define
meters as a basic unit of length. That is, meters measures some arbitrary amount of length and will be the
basis for deriving all compatible units.

	1
2
3

	 SAF_Unit *m = saf_declare_unit(SAF_ALL,db,"meter","m",NULL);
 saf_quantify_unit(SAF_ALL,m,SAF_QLENGTH,1);
 saf_commit(m,SAF_ALL,database);

The definition of derived units is similar when the new unit measures the same quantity. Example: define
kilometers as 1000 meters (km and m both measure the same quantity).

	1
2

	 SAF_Unit *km = saf_declare_unit(SAF_ALL,db,"kilometer","km",NULL);
 saf_multiply_unit(SAF_ALL,km,1000,m,1);

Another way to define a unit is to multiply other units together. When this happens the new unit measures a
different quantity than its unit divisors. In most cases the library can figure out what specific quantity to
use for the unit, but this is not possible when the library contains multiple quantity definitions for similar
quantities (e.g., `molecular amount’ and `monetary amount’ are both amount-of-a-substance quantities, but the
library has two separate quantity definitions because it should should not be possible to convert between
moles and dollars). Example: define coulomb as an ampere second instead of some arbitrary amount of charge:

	1
2
3
4
5

	 SAF_Unit *C = saf_declare_unit(SAF_ALL,db,"coulomb","C",NULL);
 saf_multiply_unit(SAF_ALL,C,1,A,1); // ampere
 saf_multiply_unit(SAF_ALL,C,1,s,1); // second
 SAF_Quantity *charge = saf_find_one_quantity(db,"electric charge",NULL);
 saf_quantify_unit(SAF_ALL,C,charge,1);

In the previous example the saf_quantify_unit could have been omitted since the library only defines one
electric charge quantity and there is no ambiguity.

Two notable units are thermodynamic temperature measured in absolute Celsius and Fahrenheit. Both of these
are the same amount as a degree Kelvin or a degree Rankine, but are offset by some amount. These units can be
declared with saf_offset_unit:

	1
2
3

	 SAF_Unit *absC = saf_declare_unit(SAF_ALL,db,"absolute Celceus","absC",NULL);
 saf_multiply_unit(SAF_ALL,absC,1,k,1); // degree Kelvin
 saf_offset_unit(SAF_ALL,absC,273.5); // 0 deg C is 273.15 k

Another special type of unit is one which uses a logarithmic scale instead of a linear scale. For example,
a decibel is a dimensionless measure of the ratio of two powers, equal to ten times the logarithm to the base
ten of the ratio of two powers. In acoustics the decibel is 20 times the common log of the ratio of sound
pressures, with the denominator usually being 2e-5 pascal. The saf_log_unit can be used to define such a
unit:

	1
2
3
4

	 SAF_Unit *dB = saf_declare_unit(SAF_ALL,db,"decibel","dB",NULL);
 SAF_Quantity *spr = saf_find_one_quantity(db,"sound pressure ratio",NULL);
 saf_quantify_unit(SAF_ALL,dB,spr,1);
 saf_log_unit(SAF_ALL,dB,10,20);

The saf_offset_unit and saf_log_unit can only be applied to a unit after all multiplications have been
performed, and such a unit cannot be used to derive other units.

Members

	saf_declare_unit [Public function]

	saf_describe_unit [Public function]

	saf_divide_unit [Public macro]

	saf_find_one_unit [Public function]

	saf_find_unit_not_applicable [Public function]

	saf_find_units [Public function]

	saf_log_unit [Public function]

	saf_multiply_unit [Public function]

	saf_offset_unit [Public function]

	saf_quantify_unit [Public function]

Declare a new unit

saf_declare_unit is a function defined in unit.c.

Synopsis:

	
SAF_Unit * saf_declare_unit(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *abbr, const char *url, SAF_Unit *unit)

	

Formal Arguments:

	db: The database in which to create the new unit.

	name: Optional singular unit name.

	abbr: Optional singular abbreviation

	url: Optional documentation url.

	unit: [OUT] Optional unit handle to initialize and return.

Description: This function declares a new unit whose product of quantity powers is unity. The client is expected to
multiply powers of other quantities or units into this new unit via saf_multiply_unit.

Preconditions:

	pmode must be valid. (low-cost)

Return Value: A new unit handle is returned on success. Otherwise a SAF__ERROR_HANDLE is returned or an exception
is raised, depending on the error handling property of the library.

See Also:

	saf_multiply_unit: 21.8: Multiply a unit into a unit definition

	Units: Introduction for current chapter

Query unit characteristics

saf_describe_unit is a function defined in unit.c.

Synopsis:

	
int saf_describe_unit(SAF_ParMode pmode, SAF_Unit *unit, char **name, char **abbr, char **url, double *scale, double *offset, double *logbase, double *logcoef, SAF_Quantity *quantity)

	

Formal Arguments:

	unit: Unit about which to retrieve information.

	name: If non-null then upon return this will point to an allocated copy of the
unit singular name.

	abbr: If non-null then upon return this will point to an allocated copy of the
unit singular abbreviation.

	url: If non-null then upon return this will point to an allocated copy of the
url for the unit’s documentation.

	scale: If non-null then upon return *scale will be the scale factor for the unit.

	offset: If non-null then upon return *offset will be the offset for the unit.

	logbase: If non-null then upon return *logbase will be the logarithm base for the
unit. The returned value zero indicates no logarithm is applied.

	logcoef: If non-null then upon return *logcoef will be the multiplier of the
logarithmic scale.

	quantity: If non-null then upon return this will point to the handle of the quantity
on which this unit is based. If the unit has not been defined yet (such as
calling this function immediately after saf_declare_unit) then the
quantity handle will be initialized to a null link.

Description: Given a unit, this function returns any information which is known about that unit.

Preconditions:

	pmode must be valid. (low-cost)

	unit must be a valid unit handle. (low-cost)

Return Value: A non-negative value is returned on success. Failure is indicated by a negative return value or the raising of
an exception, depending on the error handling property of the library.

See Also:

	saf_declare_unit: 21.1: Declare a new unit

	Units: Introduction for current chapter

Divide a unit into a unit definition

saf_divide_unit is a macro defined in SAFunit.h.

Synopsis:

	
saf_divide_unit(U, SCALE, DIVISOR, POWER)

	

Description: This macro simply calls saf_multiply_unit with a negated POWER argument and the reciprocal of the SCALE
argument.

See Also:

	saf_multiply_unit: 21.8: Multiply a unit into a unit definition

	Units: Introduction for current chapter

Convenience function for finding a unit

saf_find_one_unit is a function defined in unit.c.

Synopsis:

	
SAF_Unit * saf_find_one_unit(SAF_Db *database, const char *name, SAF_Unit *buf)

	

Formal Arguments:

	database: The database in which to find the specified unit.

	name: The singular name of the unit to find, e.g., “meter”.

	buf: [OUT] Optional unit handle to initialize and return.

Description: This is a simple version of saf_find_unit that takes fewer arguments.

Return Value: On success, a handle for the first unit found which has name name or abbreviation name in database database.
Otherwise a SAF__ERROR_HANDLE is returned.

See Also:

	Units: Introduction for current chapter

Find the not applicable unit

saf_find_unit_not_applicable is a function defined in unit.c.

Synopsis:

	
SAF_Unit * saf_find_unit_not_applicable(void)

	

Description: Find and return the not applicable unit.

Return Value: On success, a handle for the first unit found.
Otherwise a SAF__ERROR_HANDLE is returned.

See Also:

	Units: Introduction for current chapter

Find units

saf_find_units is a function defined in unit.c.

Synopsis:

	
int saf_find_units(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *abbr, const char *url, double scale, double offset, double logbase, double logcoef, SAF_Quantity *quant, int *num, SAF_Unit **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	name: Optional unit description for which to search.

	abbr: Optional abbreviation for which to search.

	url: Optional url for which to search.

	scale: Optional scale for which to search (or pass SAF__ANY_DOUBLE).

	offset: Optional offset for which to search (or pass SAF__ANY_DOUBLE).

	logbase: Optional logorithm base for which to search (or pass SAF__ANY_DOUBLE).

	logcoef: Optional logorithm coefficient for which to search (or pass
SAF__ANY_DOUBLE).

	quant: Optional quantity for which to search.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for units in the database. The search may be limited by one or more
criteria such as the name of the unit, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

	Units: Introduction for current chapter

Apply a logarithmic scale to a unit

saf_log_unit is a function defined in unit.c.

Synopsis:

	
int saf_log_unit(SAF_ParMode pmode, SAF_Unit *unit, double logbase, double logcoef)

	

Formal Arguments:

	unit: The unit which is being translated by OFFSET.

	logbase: The base of the logarithm

	logcoef: The amount by which to multiply the unit after taking the log.

Description: Some units of measure use a logarithmic scale. An example is decibels. This function sets the base for the
logarithm. A logbase of zero implies a linear scale and is the default for all units. This function should
only be called after any calls to saf_multiply_unit and saf_offset_unit for unit.

	1

	 U' = LOGCOEF *log* UNIT

where log is to the base logbase.

Preconditions:

	pmode must be valid. (low-cost)

	unit must be a valid unit handle. (low-cost)

	logbase must be non-negative. (low-cost)

	logcoef must be non-zero if a logarithmic scale is used. (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value or
raises an exception, depending on the error handling property of the library.

See Also:

	saf_multiply_unit: 21.8: Multiply a unit into a unit definition

	saf_offset_unit: 21.9: Translate unit by an offset

	Units: Introduction for current chapter

Multiply a unit into a unit definition

saf_multiply_unit is a function defined in unit.c.

Synopsis:

	
int saf_multiply_unit(SAF_ParMode pmode, SAF_Unit *unit, double coef, SAF_Unit *multiplier, int power)

	

Formal Arguments:

	unit: The unit which is being modified by multiplying multiplier into it.

	coef: A real coefficient multiplied into unit

	multiplier: The optional multiplicand unit

	power: The power to which multiplier is raised before multiplying it into unit

Description: After creating a new unit with saf_declare_unit, the unit is defined by multiplying scaled powers of
other units into it, one per call to this function. A division by multiplier can be accomplished by supplying a
negative power, although coef is always multiplied into U. Essentially, the result is:

	1

	 UNIT' = UNIT * COEF * (MULTIPLIER ^ POWER)

If multiplier is NULL then it is assumed to be unity. In other words, the scale factor can be
adjusted for the unit by calling this function with only a coef value.

Preconditions:

	pmode must be valid. (low-cost)

	unit must be a valid unit handle. (low-cost)

	unit must have a zero offset (the default). (low-cost)

	unit must not have a logarithm base assigned (the default). (low-cost)

	coef must be positive. (low-cost)

	multiplier must be a valid unit handle if supplied. (low-cost)

	multiplier must have a zero offset if supplied. (low-cost)

	multiplier must not use a logarithmic scale if supplied. (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value or
raises an exception, depending on the error handling property of the library.

See Also:

	saf_declare_unit: 21.1: Declare a new unit

	saf_divide_unit: 21.3: Divide a unit into a unit definition

	Units: Introduction for current chapter

Translate unit by an offset

saf_offset_unit is a function defined in unit.c.

Synopsis:

	
int saf_offset_unit(SAF_ParMode pmode, SAF_Unit *unit, double offset)

	

Formal Arguments:

	unit: The unit which is being translated by offset.

	offset: The amount by which to translate the unit.

Description: Some units of measure have a scale which is translated from the origin by some amount. The most notable
examples are absolute degrees Celsius and Fahrenheit.

	1
2
3

	 SAF_Unit absC = saf_declare_unit("Celsius","absC");
 SAF_multiply_unit(absC, 1, kelvin, 1);
 SAF_offset_unit(absC, 273.15);

Preconditions:

	pmode must be valid. (low-cost)

	unit must be a valid unit handle. (low-cost)

	unit must not have a logarithm base assigned (the default). (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value or
raises an exception, depending on the error handling property of the library.

See Also:

	Units: Introduction for current chapter

Associates a unit of measure with a specific quantity

saf_quantify_unit is a function defined in unit.c.

Synopsis:

	
int saf_quantify_unit(SAF_ParMode pmode, SAF_Unit *unit, SAF_Quantity *quantity, double scale)

	

Formal Arguments:

	unit: The unit whose quantity information is being set.

	quantity: The quantity which this unit measures.

	scale: This argument can be used to defined a new unit as some scale of the base unit for
the quantity without requiring the unit definition to include a multiplication by
the base unit. The scale is multiplied into any scale which is already present.

Description: A basic unit is a unit which measures an arbitrary amount of some quantity, and is defined simply by
associating the unit with its quantity by calling this function. (no multiplications by other units are
necessary).

Derived units are built by multiplying together powers of one or more other units. If just one unit is
multiplied into the new definition then the new definition will refer to the same specific quantity as the
unit on which it is based (if the power is one). Otherwise, when units are multiplied together the quantity
measured by the product is different than the quantity measured by any of the multiplicands. When this happens
it may be necessary for the client to call this function to associate a specific quantity with this new unit
(it is not necessary if the library can deduce the specific quantity unambiguously from the unit’s database).

Preconditions:

	pmode must be valid. (low-cost)

	unit must be a valid unit handle. (low-cost)

	quantity must be a valid quantity handle. (low-cost)

	scale must be positive. (low-cost)

Return Value: A non-negative value is returned on success; otherwise either a negative value is returned or an exception is
raised, depending on the error handling property of the library.

See Also:

	Units: Introduction for current chapter

Attributes

As mentioned in the object handles chapter (see Object Handles) there currently (saf-1.2.0) exist two styles
of handles: “old” handles and “new” handles. For each “old” object class there are functions to put
(saf_put_XXX_att) and get (saf_get_XXX_att) attributes, as well as generic forms of these functions
(saf_put_attribute and saf_get_attribute) which operate on any object type but do not provide rigorous
compile-time type checking. The “new” object classes use only saf_putAttribute and saf_getAttribute,
which employ compile-time and run-time type checking.

There is an important limitation to the attributes interface in SAF [https://github.com/markcmiller86/SAF]. First and foremost, it should be
clearly understood that there is no expectation that any data stored in attributes be shareable. If there is
any expectation that any software other than the writer of the attributes should be sensitive to and/or aware
of the data stored in them, the data should not be stored in attributes. If for some reason, your client is
unable to model important features of the data without encoding something into attributes, then the current
implementation of this data model is failing.

By convention, attributes whose names begin with a dot (“.”) are read-only. Thus, a client may create and
initialize a new attribute whose name begins with a dot, but thereafter any client operating on the database
can only read the value of that attribute.

Issues: Each attribute has its own HDF5 dataset in the SAF [https://github.com/markcmiller86/SAF] file. For a SAF__EACH mode call, we need to loop
creating num_procs datasets.

Also, performance of attribute access is likely to be poor, particularly in parallel.

Members

	saf_get_attribute [Public function]

	saf_put_attribute [Public function]

Read a non-sharable attribute

saf_get_attribute is a function defined in utils.c.

Synopsis:

	
int saf_get_attribute(SAF_ParMode pmode, ss_pers_t *obj, const char *name, hid_t *type, int *count, void **value)

	

Formal Arguments:

	pmode: One of the parallel modes.

	obj: The handle to the object from which the attribute will be read.

	name: The name of the attribute. See SAF__ATT_NAMES and other reserved attribute names
for special kinds of attribute queries.

	type: IN``[``OUT] If type is NULL, this argument will be ignored. If type points
to a valid datatype, then the attribute will be converted to the specified type as
it is read. If it does not, there will be no data conversion and the output value
will be the datatype of the data returned (the caller should invoke H5Tclose).

	count: [OUT] The number of items in the attribute. If count is NULL, then the value of
count will not be returned.

	value: IN``[``OUT] Points to an array of count values each having datatype
type. If value is NULL, then no attribute values will be returned. If
value points to NULL, then the library will allocate the array of values which is
returned. Otherwise the library assumes that value
points to an array whose size is sufficient for storing count values of datatype
type. That is, if value is pointing to non-NULL, then so must count point to non-NULL
and the value pointed to by count will be used by SAF [https://github.com/markcmiller86/SAF] as the size, in items of type
type, of the block of memory pointed to by value. For a SAF__ATT_NAMES query if the
caller supplies a buffer for this argument then it should be a buffer of char
pointers, the values of which will be allocated by this function.

Description: This function provides a method by which existing, generic, non-sharable attributes may be read from an
object. Attributes are pieces of meta data which fall outside the scope of the sharable data model (i.e.,
things which are not fields) but which are often useful for conveying additional information. The meaning of a
particular attribute is determined by convention, requiring additional communication between the writer and
the reader (often in the form of documentation or word of mouth).

Preconditions:

	pmode must be valid. (low-cost)

	name must not be null. (low-cost)

	count and value must be compatible for return value allocation. (low-cost)

	obj must not be null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

Issues: On error, the argument return values are undefined.

If the attribute name is SAF__ATT_NAMES then the client must not preallocate space for the value return value,
but must allow the library to handle the allocation. That is, if the arg passed for name is SAF__ATT_NAMES, the
client must not pass value such that it points to a non-null pointer.

The reserved attribute name queries, SAF__ATT_FIRST and SAF__ATT_NEXT, are not yet implemented.

This is a weird interface. There should be a separate function to obtain the datatype and count of an
attribute so that this function doesn’t need to return those values. The type and count arguments should
instead specify what value is returned by this function. And the value should be just an optional `void*’
buffer which if not supplied is allocated and which is the successful return value of this function.
[rpm 2004-08-25]

If the pool allocation is being used then we’ll have a problem if there are more attributes than what the
string pool can store.

See Also:

	Attributes: Introduction for current chapter

Create or update a non-sharable attribute

saf_put_attribute is a function defined in utils.c.

Synopsis:

	
int saf_put_attribute(SAF_ParMode pmode, ss_pers_t *obj, const char *name, hid_t type, int count, const void *value)

	

Formal Arguments:

	pmode: One of the parallel modes.

	obj: The handle to the object the attribute is to be associated with.

	name: The name of the attribute.

	type: The datatype of the attribute.

	count: The number of items of type type pointed to by *value.

	value: The attribute value(s) (an array of count value(s) of type type).

Description: This function provides a method by which generic, non-sharable attributes may be added to an object. Attributes
are pieces of meta data which fall outside the scope of the sharable data model (i.e., things which are not
fields) but which are often useful for conveying additional information. The meaning of a particular attribute is
determined by convention, requiring additional, apriori agreement between the writer and the reader (often in the
form of documentation or word of mouth) as to the meaning and intent of a given attribute/value pair.

If type is H5T_C_S1 (which isn’t very useful by itself since it’s just a one-byte string that’s always the NUL
character) then a temporary datatype is created which is exactly as long as the value string including its NUL
terminator. value in this case should be a pointer to char. Be aware that querying the attribute for its
datatype will not return H5T_C_S1 unless the string was empty.

Preconditions:

	pmode must be valid. (low-cost)

	obj must not be null. (low-cost)

	name must not be null. (low-cost)

	count must be non-negative. (low-cost)

	If count is non-zero, value must not be null. (low-cost)

	Database in which object exists must not be open for read-only access. (no-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

	Attributes: Introduction for current chapter

Miscellaneous Utilities

No description available.

Members

	SAF_BARRIER [Public macro]

	SAF_EQUIV [Public macro]

	SAF_NELMTS [Public macro]

	SAF_RANK [Public macro]

	SAF_SIZE [Public macro]

	SAF_VALID [Public macro]

	SAF_XOR [Public macro]

	_saf_strdup [Public function]

	saf_allgather_handles [Public function]

Synchronization barrier

SAF_BARRIER is a macro defined in saf.h.

Synopsis:

	
SAF_BARRIER(Db)

	

Description: A macro which causes all processors in the communicator used to open the database or, if Db is NULL, to
initialize the library, to wait until all reach this point (See *Constants*).

See Also:

	Miscellaneous Utilities: Introduction for current chapter

Determine if two handles refer to the same object

SAF_EQUIV is a macro defined in saf.h.

Synopsis:

	
SAF_EQUIV(A, B)

	

Description: This macro returns true if the two object handles passed to it refer to the same object. Otherwise, it returns
false.

See Also:

	Miscellaneous Utilities: Introduction for current chapter

Array size

SAF_NELMTS is a macro defined in safP.h.

Synopsis:

	
SAF_NELMTS(X)

	

Description: Return number of elements in array.

See Also:

	Miscellaneous Utilities: Introduction for current chapter

The rank of the calling process

SAF_RANK is a macro defined in saf.h.

Synopsis:

	
SAF_RANK(Db)

	

Description: A macro which evaluates to the MPI_Rank of the calling processor in the communicator used to open the
database. If NULL is passed for the Db argument, the MPI_Rank of the calling process in the communicator used
to initialize the library is returned. In serial, a value of 0 is returned. If not called within an enclosing
pair of saf_init / saf_final calls, the value -1 is returned (See *Constants*).

See Also:

	saf_final: 4.2: Finalize access to the library

	saf_init: 4.3: Initialize the library

	Miscellaneous Utilities: Introduction for current chapter

The size of the communicator

SAF_SIZE is a macro defined in saf.h.

Synopsis:

	
SAF_SIZE(Db)

	

Description: A macro which evaluates to the MPI_Size of the communicator used to open the database. If NULL is passed for
the Db argument, the MPI_Size of the communicator used to initialize the library is returned. In serial
a value of 1 is returned. If not called within an enclosing pair of saf_init / saf_final calls,
the value -1 is returned (See *Constants*).

See Also:

	saf_final: 4.2: Finalize access to the library

	saf_init: 4.3: Initialize the library

	Miscellaneous Utilities: Introduction for current chapter

Determine if a handle is a valid handle

SAF_VALID is a macro defined in saf.h.

Synopsis:

	
SAF_VALID(A)

	

Description: This macro returns true if the handle passed to it is valid, that is, that its members define a legitimate
handle. Otherwise, it returns false.

See Also:

	Miscellaneous Utilities: Introduction for current chapter

Exclusive OR operator

SAF_XOR is a macro defined in safP.h.

Synopsis:

	
SAF_XOR(A, B)

	

Description: Returns A XOR B

See Also:

	Miscellaneous Utilities: Introduction for current chapter

Copy a string

_saf_strdup is a function defined in utils.c.

Synopsis:

	
char * _saf_strdup(const char *s)

	

Description: Same functionality as strdup but returns an empty string when s is the null pointer.

Return Value: Returns an allocated, null terminated string on success; null on failure.

Parallel Notes: Independent

See Also:

	Miscellaneous Utilities: Introduction for current chapter

Exchange handles

saf_allgather_handles is a function defined in utils.c.

Synopsis:

	
ss_pers_t * saf_allgather_handles(ss_pers_t *_pers, int *commsize, ss_pers_t *result)

	

Formal Arguments:

	_pers: A Pointer to the handle to be exchanged. Every participant must supply a valid
handle of the same type and in the same scope as every other participant.

	commsize: [OUT] A pointer to optional caller supplied memory which is to receive the integer
number of handles returned by this function. This is the number of participants or
the size of the communicator associated with the given database.

	result: [OUT] An optional pointer to an array that will will be initialized with a handle
from each MPI task in task rank order. If this buffer is supplied then it should be
at least as large as the communicator associated with the DB argument. If not
supplied (i.e., null) then a buffer will be allocated for the return value.

Description: This function is used to exchange handles created locally by processes for global writing. This
is generally done when collecting the local handles to be written stored with an indirect
relation or field.

Preconditions:

	_pers must be a valid object link. (low-cost)

Return Value: Returns a buffer of handles on success or null on failure. The buffer is either the non-null value of the
result argument or a buffer which is allocated by this function.

Parallel Notes: This call must be collective across the communicator for the given database.

See Also:

	Miscellaneous Utilities: Introduction for current chapter

Version Numbers

The SAF [https://github.com/markcmiller86/SAF] source code has various version numbers assigned to parts of the system: source files, header files,
library, API definition, and database files.

Source file versions are identical to CVS file revision numbers. These numbers are not stored in the source
file but rather maintained by CVS. (We don’t store them in the source file because it makes it more difficult
to synchronize local and remote source trees since a `cvs commit’ would modify all the source files.) We use
CVS in such a way that the main branch always contains the latest development version of SAF [https://github.com/markcmiller86/SAF]. When a public
release is about to occur a new branch is created, version numbers are adjusted on both branches, and
development stops on the new branch.

The header files and library each have a four-part version number: major, minor, patch, and comment.
The version number of the header files must exactly match the version number of the library, or the library
will refuse to operate. The major number is incremented only if the API changes in a way which is not backward
compatible. The increment happens when the development branch is split to produce a new release branch, and the
minor number is set to zero or one (depending on branch) and the patch number is reset to zero. The minor
number is incremented each time the main branch is split to produce a release branch. The minor number is
always even on a release branch and odd on the development branch (the latest development version minor number
is one greater than the latest release version). The patch number is incremented each time bugs are fixed on
the release branch, or each time a snapshot is produced on the development branch. The comment is a character
string indicating the scope of the release and is the empty string for all public releases and snapshots.
Library version numbers are printed as i.j.k-c where i is the major number, j is the minor number,
k is the patch number, and -c is the comment string (the hyphen is printed only if the comment string is
non-empty.

The API definition has a two-part version number which is the same as the major and minor version numbers of
the header files and library. For any given release or snapshot the library must implement the corresponding
version of the API. The API may document certain features as “not yet implemented”.

Database files will contain the library version number as an attribute named “SAF [https://github.com/markcmiller86/SAF]” attached to the group
containing the VBT files. The attribute will be of compound type and contain all global SAF [https://github.com/markcmiller86/SAF] metadata.

Standard Comment Strings: The comment string for all development versions which have not yet passed the
snapshot operation will be `devel’. When the main branch is split to create a release branch the comment string
on the release branch will be cleared. Pre-releases will then be created from the release branch while holding
the patch number at zero so the release can be tested by the developers. Such prereleases will be commented as
`preN’ where n is a number beginning at zero. When a prerelease passes all developer tests the comment will
be removed or changed to `beta’.

Almost all programs call saf_init and/or saf_open_database in order to do something useful. So we’ve chosen
to wrap those functions in macros which also make a reference to a global variable whose name is derived from
the SAF [https://github.com/markcmiller86/SAF] version number. This variable is declared in the SAF [https://github.com/markcmiller86/SAF] library so that if an application is compiled with
SAF [https://github.com/markcmiller86/SAF] header files which have a different version than the SAF [https://github.com/markcmiller86/SAF] library a link-time error will result. A version
mismatch will result in an error similar to undefined reference to ``SAF__version_0_1_0`’ from the linker.

Members

	SAF_PARALLEL_VAR [Public symbol]

	SAF_VERSION_ANNOT [Public symbol]

	SAF_VERSION_MAJOR [Public symbol]

	SAF_VERSION_MINOR [Public symbol]

	SAF_VERSION_RELEASE [Public symbol]

	SAF_VERSION_VAR [Public symbol]

	saf_version_string [Public function]

Serial/Parallel-dependent variable

SAF_PARALLEL_VAR is a symbol defined in saf.h.

Synopsis:

	
SAF_PARALLEL_VAR

	

Description: This is simply a global integer variable whose name depends somehow on whether the library is being compiled
for serial or parallel. It is used to check at link-time whether the header files used by an application match
the SAF [https://github.com/markcmiller86/SAF] library to which the application is linked.

See Also:

	Version Numbers: Introduction for current chapter

Version Annotation

SAF_VERSION_ANNOT is a symbol defined in saf.h.

Synopsis:

	
SAF_VERSION_ANNOT

	

Description: The version annotation of the SAF [https://github.com/markcmiller86/SAF] header files. This indicates a restriction of the release (such as `beta’).

See Also:

	Version Numbers: Introduction for current chapter

Major version number

SAF_VERSION_MAJOR is a symbol defined in saf.h.

Synopsis:

	
SAF_VERSION_MAJOR

	

Description: The major version number of the SAF [https://github.com/markcmiller86/SAF] header files. If this number is not equal to the major version number of
the SAF [https://github.com/markcmiller86/SAF] library with which the application was linked then the library will raise an error.

See Also:

	Version Numbers: Introduction for current chapter

Minor version number

SAF_VERSION_MINOR is a symbol defined in saf.h.

Synopsis:

	
SAF_VERSION_MINOR

	

Description: The minor version number of the SAF [https://github.com/markcmiller86/SAF] header files. If this number is not equal to the minor version number of
the SAF [https://github.com/markcmiller86/SAF] library with which the application was linked then the library will raise an error.

See Also:

	Version Numbers: Introduction for current chapter

Release number

SAF_VERSION_RELEASE is a symbol defined in saf.h.

Synopsis:

	
SAF_VERSION_RELEASE

	

Description: The patch number of the SAF [https://github.com/markcmiller86/SAF] header files. If this number is not equal to the patch number of
the SAF [https://github.com/markcmiller86/SAF] library with which the application was linked then the library will raise an error.

See Also:

	Version Numbers: Introduction for current chapter

Version-dependent variable

SAF_VERSION_VAR is a symbol defined in saf.h.

Synopsis:

	
SAF_VERSION_VAR

	

Description: This is simply a global integer variable whose name depends somehow on the SAF [https://github.com/markcmiller86/SAF] version numbers defined above.
It is used to check at link-time whether the header files used by an application match the SAF [https://github.com/markcmiller86/SAF] library version
number to which the application is linked.

See Also:

	Version Numbers: Introduction for current chapter

Returns string representation of version number

saf_version_string is a function defined in utils.c.

Synopsis:

	
char * saf_version_string(int verbose, char *buffer, size_t bufsize)

	

Description: Provides a function that should be used so version numbers all have a common format. If verbose is set then
the returned string will be of the form `version 1.2 release 3 (comment)’, otherwise the returned string will
be of the form `1.2.3-comment’. The ` (comment)’ or `-comment’ part of the string is omitted if there is no
version annotation.

Return Value: buffer

See Also:

	Version Numbers: Introduction for current chapter

Datatypes

No description available.

Members

	SAF [Public datatype]

	SAF_1DC [Public macro]

	SAF_1DF [Public macro]

	SAF_2DC [Public macro]

	SAF_2DF [Public macro]

	SAF_3DC [Public macro]

	SAF_3DF [Public macro]

	SAF_ATT [Public datatype]

	SAF_BasisConstants [Public datatype]

	SAF_BoundMode [Public datatype]

	SAF_CORDER [Public macro]

	SAF_DEFAULT_LIBPROPS [Public symbol]

	SAF_DecompMode [Public datatype]

	SAF_ErrMode [Public datatype]

	SAF_EvalConstants [Public datatype]

	SAF_ExtendMode [Public datatype]

	SAF_FORDER [Public macro]

	SAF_FindSetMode [Public datatype]

	SAF_IndexSchema [Public datatype]

	SAF_Interleave [Public datatype]

	SAF_NA_INDEXSPEC [Public symbol]

	SAF_NOT_APPLICABLE_INT [Public symbol]

	SAF_NOT_IMPL [Public symbol]

	SAF_RoleConstants [Public datatype]

	SAF_SilRole [Public datatype]

	SAF_StrMode [Public datatype]

	SAF_SubsetRelRep [Public datatype]

	SAF_TopMode [Public datatype]

	SAF_TopoDim [Public datatype]

	SAF_TopoRelRep [Public datatype]

	SAF_TriState [Public datatype]

	SAF_VoidPtr [Public datatype]

	SAF_return_t [Public datatype]

	SAF_type_t [Public datatype]

Wildcards for searching

SAF is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_ANY_INT:

SAF_ANY_DOUBLE:

SAF_ANY_FLOAT:

SAF_ANY_TOPODIM:

SAF_CELLTYPE_ANY:

SAF_ANY_RATIO:

SAF_ANY_NAME:

SAF_ANY_CAT:

Description: In saf_find calls, the client may not want to limit the search to all of the available argument’s values.
SAF_ offers these wildcard values, all with the word ANY in them, to pass as the value for an argument that
the client does NOT wish to use in limiting a search. For example, see saf_find_matching_set.

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_1DC is a macro defined in saf.h.

Synopsis:

	
SAF_1DC(nx)

	

Description: One-dimensional C array of size nx. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_1DF is a macro defined in saf.h.

Synopsis:

	
SAF_1DF(nx)

	

Description: One-dimensional Fortran array of size nx. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_2DC is a macro defined in saf.h.

Synopsis:

	
SAF_2DC(nx, ny)

	

Description: Two-dimensional C array of size nx by ny. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_2DF is a macro defined in saf.h.

Synopsis:

	
SAF_2DF(nx, ny)

	

Description: Two-dimensional Fortran array of size nx by ny. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_3DC is a macro defined in saf.h.

Synopsis:

	
SAF_3DC(nx, ny, nz)

	

Description: Three-dimensional C array of size nx, ny, nz elements. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_3DF is a macro defined in saf.h.

Synopsis:

	
SAF_3DF(nx, ny, nz)

	

Description: Three-dimensional Fortran array of size nx, ny, nz elements. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Reserved attribute name keys

SAF_ATT is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_ATT_NAMES: If the client passes SAF__ATT_NAMES for the NAME arg in a call to
saf_get_attribute, SAF [https://github.com/markcmiller86/SAF] will return a TYPE of string (if the TYPE
return value is requested), a COUNT equal to the number of attributes
(if the COUNT return value was requested), and a VALUE array
containing the names of all attributes defined for the object.

SAF_ATT_COUNT: If the client passes SAF__ATT_COUNT for the NAME arg in a SAF [https://github.com/markcmiller86/SAF] call to
saf_get_attribute, SAF [https://github.com/markcmiller86/SAF] will return the count of number of
attributes defined for the given object in the COUNT. It is an error
to request a count with SAF__ATT_COUNT, but pass NULL for the COUNT
argument in a call to get attributes.

SAF_ATT_FIRST: If the client passes SAF__ATT_FIRST, for the NAME argument in a SAF [https://github.com/markcmiller86/SAF] call
to saf_get_attribute, SAF [https://github.com/markcmiller86/SAF] will return the first attribute that was
ever defined for the object. Thereafter, any call with SAF__ATT_NEXT
will iterate through the list of attributes defined for the object.

SAF_ATT_NEXT: This reserved attribute name works in conjunction with SAF__ATT_FIRST,
to allow the client to iterate through all attributes defined for
a given object. It is an error to pass SAF__ATT_NEXT without at least
one prior call with SAF__ATT_FIRST.

Description: There are some reserved attribute names. These reserved attribute names may be passed as the NAME argument in
any calls to get attributes (see saf_get_attribute). The SAF__ATT_NAMES / SAF__ATT_COUNT pair of reserved names provide
a mechanism to the client to determine the count of attributes defined for a given object and their names. Or,
alternatively, the SAF__ATT_FIRST / SAF__ATT_NEXT provide a mechanism for the client to make repetitive calls to iterate
through the attributes for a given object.

See Also:

	saf_get_attribute: 23.1: Read a non-sharable attribute

	Datatypes: Introduction for current chapter

Basis types

SAF_BasisConstants is a collection of related C preprocessor symbols defined in SAFbasis.h.

Synopsis:

SAF_UNITY: The basis set with a single basis vector; {1}

SAF_CARTESIAN: The basis set with N basis vectors; {e0, e1, …, eN}

SAF_SPHERICAL: The basis set with 3 basis vectors {r, theta, phi}

SAF_CYLINDRICAL: The basis set with 3 basis vectors {r, theta, h}

SAF_UPPERTRI: The basis set of a symmetric tensor. Why do we need this if
the algebraic type already captures it?

SAF_VARIYING: For a basis that is varying over the base space. Often needed
if the basis is derived from local surface behavior such as
surface normals. Although, shouldn’t we use something like
SAF__SURFACE_NORMAL for that?

SAF_ANY_BASIS: Wildcard for searching.

Description: For every field, not just coordinate fields, SAF [https://github.com/markcmiller86/SAF] needs to be told what are the basis vectors for identifying
the field’s values. For example, if we have a field of N pairs of floats representing complex numbers,
do those floats represent the real and imaginary part of the complex number (e.g. cartesian basis) or do
they represent the magnitude and phase (e.g. the polar basis).

Likewise, if we have N triples representing color of each pixel in image are they RGB triples, LUV triples,
YIQ triples, etc.? The basis type is designed to indicate what the basis vectors for a given field are.

See Also:

	Datatypes: Introduction for current chapter

Boundary set tri-state

SAF_BoundMode is an enumerated type defined in saf.h.

Synopsis:

SAF_BOUNDARY_FALSE:

SAF_BOUNDARY_TRUE:

SAF_BOUNDARY_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to indicate whether a one
set in a subset relation is the boundary of another set. See saf_declare_subset_relation for more information.

See Also:

	saf_declare_subset_relation: 12.5: Declare a subset relation

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_CORDER is a macro defined in saf.h.

Synopsis:

	
SAF_CORDER(N)

	

Description: C order array of N dimensions. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Library properties

SAF_DEFAULT_LIBPROPS is a symbol defined in SAFlibprops.h.

Synopsis:

	
SAF_DEFAULT_LIBPROPS

	

Description: Identifiers for default properties for the library.

See Also:

	Datatypes: Introduction for current chapter

Decomposition tri-state

SAF_DecompMode is an enumerated type defined in saf.h.

Synopsis:

SAF_DECOMP_FALSE:

SAF_DECOMP_TRUE:

SAF_DECOMP_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to indicate whether a given
collection is a decomposition of its containing set.

See Also:

	Datatypes: Introduction for current chapter

Error return modes

SAF_ErrMode is an enumerated type defined in SAFlibprops.h.

Synopsis:

SAF_ERRMODE_RETURN: (The default) Library will issue return codes rather than throw exceptions

SAF_ERRMODE_THROW: Library will throw exceptions rather than issue return codes

Description: see saf_setProps_ErrMode

See Also:

	Datatypes: Introduction for current chapter

Evaluation Types

SAF_EvalConstants is a collection of related C preprocessor symbols defined in SAFevaluation.h.

Synopsis:

SAF_SPACE_CONSTANT: identifies an evaluation method that is constant. This
is really just an alias for piecewise constant in which
there is only one piece.

SAF_SPACE_PWCONST: identifies an evaluation method that is piecewise
constant. That is it is constant over each piece in the
EVAL_COLL argument of saf_declare_field.

SAF_SPACE_PWLINEAR: identifies an evaluation method that is piecewise linear.

SAF_SPACE_UNIFORM: identifies an evaluation method that is a single piece
of linear evaluation such as is common for uniform
coordinate fields.

Description: SAF currently supports specification of a field’s evaluation method by picking from a list of known methods
Currently, that list is relatively short. SAF [https://github.com/markcmiller86/SAF] provides tags for specifying constant, piecewise linear and
piecewise constant evaluations of a field.

Eventually, this list of evaluation methods will be expanded to include many of the common spline,
and spectral evaluation schemes and they will also be user-definable. However, in this first implementation
of SAF [https://github.com/markcmiller86/SAF], we provide only an enumeration of the most commonly used evaluation methods.

See Also:

	Datatypes: Introduction for current chapter

Extendable set tri-state

SAF_ExtendMode is an enumerated type defined in saf.h.

Synopsis:

SAF_EXTENDIBLE_FALSE:

SAF_EXTENDIBLE_TRUE:

SAF_EXTENDIBLE_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to indicate whether a set
is extendible or not. See saf_declare_set for more information.

See Also:

	saf_declare_set: 9.3: Declare a set

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_FORDER is a macro defined in saf.h.

Synopsis:

	
SAF_FORDER(N)

	

Description: Fortran order array of N dimensions. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Set find modes

SAF_FindSetMode is an enumerated type defined in saf.h.

Synopsis:

SAF_FSETS_TOP: find the top-level from the given set

SAF_FSETS_BOUNDARY: find the boundary of the given set

SAF_FSETS_SUBS: find the immediate subsets of the given set

SAF_FSETS_SUPS: find the immediate supersets of the given set

SAF_FSETS_LEAVES: find all the bottom most sets in the tree rooted at the given set

Description: These are the possible modes that saf_find_set can operate in.

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_IndexSchema is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_F_ORDER:

SAF_C_ORDER:

Description: Macros for dealing with common indexing schema (Fortran and C 1,2 and 3D arrays).

See Also:

	Datatypes: Introduction for current chapter

Field component interleave modes

SAF_Interleave is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_BLOCKED: An alias for SAF__INTERLEAVE_COMPONENT.

SAF_INTERLEAVED: An alias for SAF__INTERLEAVE_VECTOR.

Description: When fields have multiple components, the components can be stored in the field’s blob in different ways
relative to each other. For example, in a 3D coordinate field, we will have 3 components for the x, y and
z components of each coordinate. These can be stored as three different component fields or as a single
composite field. If they are stored as a single composite field, they may be stored interleaved or
non-interleaved.

The SAF__INTERLEAVE_``* constants are defined by the ``ss_interleave_t enumeration type. In addition we define
aliases SAF__BLOCKED and SAF__INTERLEAVED.

See Also:

	Datatypes: Introduction for current chapter

Indexing scheme

SAF_NA_INDEXSPEC is a symbol defined in saf.h.

Synopsis:

	
SAF_NA_INDEXSPEC

	

Description: Not applicable index scheme. (See *Constants*)

See Also:

	Datatypes: Introduction for current chapter

Not applicable

SAF_NOT_APPLICABLE_INT is a symbol defined in saf.h.

Synopsis:

	
SAF_NOT_APPLICABLE_INT

	

Description: This is used for arguments of type int that aren’t applicable in the current context

See Also:

	Datatypes: Introduction for current chapter

Not implemented

SAF_NOT_IMPL is a symbol defined in saf.h.

Synopsis:

	
SAF_NOT_IMPL

	

Description: This is used in parts of the API that are not implemented yet.

See Also:

	Datatypes: Introduction for current chapter

Associating a role with a collection category

SAF_RoleConstants is a collection of related C preprocessor symbols defined in SAFrole.h.

Synopsis:

SAF_TOPOLOGY: This role is associated with collection categories whose purpose is
to knit the fine grained topology of the mesh together.

SAF_PROCESSOR: This role is associated with collection categories whose purpose is
to represent different processor’s pieces

SAF_BLOCK: This role is associated with collection categories whose purpose is
to represent different blocks (regions of homogenous cell type)

SAF_DOMAIN: This role is associated with collection categories whose purpose is
to represent different domains; fundamental quanta of a mesh that can
be assigned to or, perhaps, migrate between, different processors.

SAF_ASSEMBLY: This role is associated with collection categories whose purpose is
to represent parts in an assembly of parts.

SAF_MATERIAL: This role is associated with collection categories whose purpose is
to represent materials.

SAF_SPACE_SLICE:

SAF_PARAM_SLICE:

SAF_ANY_ROLE: Wildcard role for searching

Description: The Role object is used in calls to saf_declare_category to associate a role with a collection category.
We use the role of a collection category to hint at the purpose or intent of collections created of a given
category. Some collections are used to represent processor pieces. Some are used to knit individual computational
elements together into a mesh. Some are used to represent different materials, etc. The list of roles here is by
no means complete.

Issues: It is unclear whether any routines in SAF [https://github.com/markcmiller86/SAF] will be or ought to be sensitive to the value of role or whether SAF [https://github.com/markcmiller86/SAF]
simply passes the role around without ever interpreting it. There are two clear cases in which SAF [https://github.com/markcmiller86/SAF] itself might
need to interpret the role; topology and boundary information. It might also be useful if SAF [https://github.com/markcmiller86/SAF] could interpret
the processor role as this could help to make SAF [https://github.com/markcmiller86/SAF] knowledgeable about what pieces of the mesh are on which
processors.

See Also:

	saf_declare_category: 10.2: Declare a collection category

	Datatypes: Introduction for current chapter

Subset inclusion lattice roles

SAF_SilRole is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_TIME: For sets specifying pieces of time

SAF_SPACE: For sets specifying pieces of space

SAF_PARAM: For sets specifying pieces of some arbitrary, user defined parameter
space

SAF_SUITE: for sets specifying whole suites

SAF_ANY_SILROLE: Wildcard role for searching

Description: Every subset inclusion lattice defines pieces of some all-encompassing space in which those pieces live.
For example, the lattice may be specifying pieces of the time-base, or pieces of space, or pieces of
some user defined parameter space.

In future versions of SAF [https://github.com/markcmiller86/SAF], this information will be supplanted by the quantity associated with the
coordinate field for a given base space.

See Also:

	Datatypes: Introduction for current chapter

String allocation modes

SAF_StrMode is an enumerated type defined in SAFlibprops.h.

Synopsis:

SAF_STRMODE_LIB: library allocates but client frees (zero is the default)

SAF_STRMODE_CLIENT: client allocates and client frees

SAF_STRMODE_POOL: library allocates and library frees using a least recently used strategy involving a pool
of many strings

Description: see saf_setProps_StrMode

See Also:

	saf_setProps_StrMode: 5.9: Set string allocation style

	Datatypes: Introduction for current chapter

Subset relation representation types

SAF_SubsetRelRep is a collection of related C preprocessor symbols defined in SAFrelrep.h.

Synopsis:

SAF_HSLAB: Indicates a hyperslab which is stored as 3 N-tuples; N
indices for the start value in each of the N dimensions,
followed by N indices for the count in each of the N
dimensions followed by N indices for stride in each of the
N dimensions. Use a stride of 1 for each of the N
dimensions if you do not have a hypersample.

SAF_TUPLES: Indicates a list of N-tuples. Each N-tuple identifies one
member of an N dimensionally indexed collection.

SAF_TOTALITY: Indicates that all members of the collection are
involved–which probably also means the subset is equal to
the superset. Perhaps a better name for this value would be
SAF__IDENTITY. However, that is being used elsewhere.
Typically, this value is only ever used during a
saf_write_field call.

Description: The subset relationship between a superset and a subset can take many forms. In theory, the subset relation
identifies every member of the superset that is in the subset. In practice, depending on the nature of the
indexing schemes used to identify members of collections on the superset and subset, there are a number of
different ways a client may represent a subset relationship. In an unstructured gridded code, the natural
thing to do is simply enumerate each member of the superset in the subset by listing them. In a structured gridded
code, the natural approach is to specify a hyperslab (or hypersample). Another natural approach for a structured
gridded code is to specify a chain-code boundary where everything surrounded by the boundary is in the
subset. This latter form is not yet supported by SAF [https://github.com/markcmiller86/SAF].

Issues: These representational issues raise a more fundamental question. Is the act of defining a subset one of
enumerating every point of the superset that is in the subset or can it also be achieved by enumerating a
boundary in the superset where everything inside the boundary is in the subset? In other words, do we deal
only with solid representations or both solid and boundary representations for sets?

We do not support a list of hyperslabs (hypersamples) due to the confusion of this representation with
the union of a number of individual sets which are hyperslab subsets of some parent superset.

See Also:

	Datatypes: Introduction for current chapter

Top mode tri-state

SAF_TopMode is an enumerated type defined in saf.h.

Synopsis:

SAF_TOP_FALSE:

SAF_TOP_TRUE:

SAF_TOP_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to limit a search to top
level sets in a saf_find_matching_sets call.

See Also:

	saf_find_matching_sets: 9.5: Find set by matching criteria

	Datatypes: Introduction for current chapter

Topological dimensions

SAF_TopoDim is an enumerated type defined in saf.h.

Synopsis:

SAF_TOPODIM_0D: a zero dimensional topological dimension (e.g. a point)

SAF_TOPODIM_1D: a one dimensional topological dimension (e.g. a curve)

SAF_TOPODIM_2D: a two dimensional topological dimension (e.g. a surface)

SAF_TOPODIM_3D: a three dimensional topological dimension (e.g. a volume)

Description: These are really just more informative aliases for the numbers 0, 1, 2 and 3 so that when these are seen
in saf function calls, the purpose of the argument will be more clear.

See Also:

	Datatypes: Introduction for current chapter

Relation representation types

SAF_TopoRelRep is a collection of related C preprocessor symbols defined in SAFrelrep.h.

Synopsis:

SAF_STRUCTURED: N-dimensional rectangular topology

SAF_UNSTRUCTURED: unstructured, finite element zoo topology

SAF_ARBITRARY: arbitrary topology

Description: There are three basic classes of topology supported by SAF [https://github.com/markcmiller86/SAF]; N-dimensional rectangular structured topology,
unstructured, finite element zoo topology and completely arbitrary topology. These three tags are used
to define which class is being used in a saf_declare_topology_relation call.

In future versions of SAF [https://github.com/markcmiller86/SAF], user defined cell types will be supported. Thus, the zoo from which element
types are used in defining topology will eventually be filled with whatever cell-types the client needs.

Also, in future versions of SAF [https://github.com/markcmiller86/SAF], structured topology will be represented by a structuring template similar
to the notion of a stencil in finite difference computations. This would permit the characterization of
hexagonal grids, triangle-strips, etc.

See Also:

	Datatypes: Introduction for current chapter

Standard tri-state values

SAF_TriState is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_TRISTATE_FALSE:

SAF_TRISTATE_TRUE:

SAF_TRISTATE_TORF:

Description: In many portions of SAF [https://github.com/markcmiller86/SAF]’s API, there are boolean values to indicate if a particular feature of an object
is true or false. In addition, it is possible to invoke searches using saf_find… kinds of functions
that will search for objects for which the given boolean feature is true or false or either. So,
we’ve defined a standard tri-state enumeration for these three cases.

See Also:

	Datatypes: Introduction for current chapter

NULL aliases

SAF_VoidPtr is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_IDENTITY:

SAF_NO_COMPONENTS:

SAF_NO_DATA:

Description: A bunch of useful aliases for ‘NULL’

See Also:

	Datatypes: Introduction for current chapter

Return codes

SAF_return_t is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_FAILURE:

SAF_SUCCESS:

Description: Not written yet.

See Also:

	Datatypes: Introduction for current chapter

Predefined scalar datatypes

SAF_type_t is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_CHAR: Character datatype.

SAF_INT: Integer datatype.

SAF_LONG: Long integer datatype.

SAF_FLOAT: Single-precision floating-point datatype.

SAF_DOUBLE: Double-precision floating-point datatype.

SAF_HANDLE: Object handle datatype.

Description: These C preprocessor symbols represent various SAF [https://github.com/markcmiller86/SAF] predefined scalar datatypes. (See *Constants*)

Issues: These constants are mostly for backward compatibility. SAF [https://github.com/markcmiller86/SAF] now uses HDF5’s datatype interface instead of the
DSL interface. Applications should eventually switch over to HDF5 constants.

See Also:

	Datatypes: Introduction for current chapter

Notes

Miscellaneous notes.

Members

	Constants [note]

	Properties [note]

Constants

Many constants defined in saf.h have similar limitations to some C programming language constants
such as ‘stderr’ and ‘stdout’. If you have a file-scope static variable initialized to stderr or
stdout, you will find that your variable gets initialized with garbage. In C, the reason is that these
constants don’t really get defined until run-time and when you initialize a file-scope static, you are
relying upon it having been defined at compile time.

The same is true for many of SAF [https://github.com/markcmiller86/SAF]’s constants. Therefore, you should take care not to use them in a manner which
assumes they are defined at compile time. We have made an effort to denote all such constants in the reference
manual so that you can easily determine for which constants this is true.

Some constants require a database argument. This means the constant is not defined except within the scope of
an open database. Thus, these constants are even more restricted in use than those that can be used at any
run-time.

In summary, there are three classes of constants. Compile-time constants can be used anywhere. Run-time
constants can be used only after the code has begun executing. Database-time constants can be used
only after a database has been opened.

Properties

A property abstraction is used to control various behaviors of the library and its interactions with databases,
supplemental files and other things. A specific set of properties is constructed prior to a scope-beginning
call in which those properties are applied. For example, since library properties effect the behavior of the
library, they are applied in the saf_init call. Likewise, database properties are applied in the
saf_open_database call. Once applied, the properties remain in effect until a corresponding scope-ending call.
For example, saf_final for library properties or saf_close_database for database properties.
You cannot change properties mid-stream. If this is a desired modality, please contact
saf-help@sourceforge.sandia.gov with such a request.

The general way to control properties is to build up the desired property set of properties by first calling a
saf_createProps_xxx function where ‘xxx’ is, for example, ‘lib’ or ‘database’. This creates a default set of
properties. You can then adjust specific properties in this set by calling individual functions described in the
properties chapters of the API. The resultant set of properties is applied when they are passed in a
scope-beginning call such as saf_init or saf_open_database. See descriptions of the individual member property
functions for a description of the properties supported.

Algebraic Types

No description available.

Members

	SAF_ALGTYPE [Public datatype]

	saf_declare_algebraic [Public function]

	saf_describe_algebraic [Public function]

	saf_find_algebraics [Public function]

	saf_find_one_algebraic [Public function]

Common algebraic types

SAF_ALGTYPE is a collection of related C preprocessor symbols defined in SAFalgebraic.h.

Synopsis:

SAF_ALGTYPE_SCALAR: Used to specify fields that obey properties of scalar
algebra.

SAF_ALGTYPE_VECTOR: Used, generically, for fields that obey properties of vector
algebra.

SAF_ALGTYPE_COMPONENT: Used, generically, for any component of a multi-component
field. In many cases, it might be just as well to treat
each component of a multi-component field as a scalar field.
However, this is not entirely mathematically correct.

SAF_ALGTYPE_TENSOR: Used for general, non-symmetric tensor fields

SAF_ALGTYPE_SYMTENSOR: Used for general, symmetric tensor fields.

SAF_ALGTYPE_TUPLE: Used to identify a field which evaluates to a group of
otherwise unrelated fields. Typically used in a State
field.

SAF_ALGTYPE_FIELD: This algebraic type is used for fields that are, in reality,
simply references to other fields. These are called
field indirections or, indirect*fields. Indirect fields are
used, primarily for two kinds of fields; *inhomogeneous fields
and cross-product fields. An inhomogeneous field is
represented as references to pieces of the field over subsets
of its base-space over which each piece is homogenous.
Likewise, a cross-product field is used to work around the
fact that SAF [https://github.com/markcmiller86/SAF] does NOT deal with cross product sets in the
base-spaces of fields. Thus, we represent such fields as
references to fields over other base spaces.

SAF_ALGTYPE_ANY: Wildcard for find operations.

Description: SAF supports the characterization of various algebraic types for fields. An algebraic type specifies
the algebraic properties of the field.

We should probably identify an algebraic type for a Barycentric field; a field whose components are
between 0.0 and 1.0 and which sum to 1.0.

See Also:

	Algebraic Types: Introduction for current chapter

Declare a new algebraic type

saf_declare_algebraic is a function defined in algebraic.c.

Synopsis:

	
SAF_Algebraic * saf_declare_algebraic(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, hbool_t indirect, SAF_Algebraic *alg)

	

Formal Arguments:

	db: The database in which to create the new algebraic type

	name: Name of the algebraic type

	url: An optional url to the algebraic documentation

	indirect: If true then field is indirection to another field

	alg: [OUT] Optional handle to initialize (and return)

Description: This function declares a new algebraic type with a unique identification number.

Return Value: A handle to the new algebraic type.

See Also:

	Algebraic Types: Introduction for current chapter

Describe an algebraic type

saf_describe_algebraic is a function defined in algebraic.c.

Synopsis:

	
int saf_describe_algebraic(SAF_ParMode pmode, SAF_Algebraic *alg, char **name, char **url, hbool_t *indirect)

	

Formal Arguments:

	alg: Algebraic to describe

	name: If non-null, on return points to malloc’d algebraic name if any

	url: If non-null, on return points to malloc’d url if any

	indirect: If non-null, on return points to non-zero if type is indirect

Description: Breaks ALGEBRAIC into its parts and returns them through pointers.

Preconditions:

	alg must be a valid algebraic handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, indirect, and ID will be initialized.

See Also:

	Algebraic Types: Introduction for current chapter

Find algebraic types

saf_find_algebraics is a function defined in algebraic.c.

Synopsis:

	
int saf_find_algebraics(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, htri_t indirect, int *num, SAF_Algebraic **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	name: Optional name for which to search.

	url: Optional url for which to search.

	indirect: Optional indirect flag for which to search. The caller should pass a
negative value if it is not interested in restricting the search.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for algebraic types in the database. The search may be limited by one
or more criteria such as the name fo the algebraic type, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

	Algebraic Types: Introduction for current chapter

Find one algebraic type

saf_find_one_algebraic is a function defined in algebraic.c.

Synopsis:

	
SAF_Algebraic * saf_find_one_algebraic(SAF_Db *database, const char *name, SAF_Algebraic *buf)

	

Formal Arguments:

	database: The database in which to search

	name: The name for which to search

	buf: [OUT] Optional algebraic handle to initialize and return

Description: This is a convenience version of saf_find_algebraic that returns the first algebraic type it finds whose
name matches that which is specified.

Return Value: A handle to a matching algebraic type on success; SAF__ERROR_HANDLE on failure.

See Also:

	Algebraic Types: Introduction for current chapter

Alternative Index Specification

The indexing specification of a collection is a characterization, more generally, of the name space used to
identify members of the collection. For example, we might choose to refer to the members of a collection of 4
quads, [Q,``Q``,``Q``,``Q``], using any of the following schemes:

a: 0,1,2,3

b: “Larry”, “Mark”, “Peter”, “Ray”

c: 27, 13, 102, 77

d: 14, 36, 37, 92

e: (0,0), (0,1), (1,0), (1,1)

f: 0x00000000, 0x00000001, 0x00010000, 0x00010001

The a scheme might be considered the “default” or “natural” naming scheme. b is a naming scheme based upon
strings. c is a naming scheme based upon some arbitrary integer enumeration. Likewise for d. e is a
naming scheme based upon rectangular indexing. f is a naming scheme that might be used in a pyramid of
resolution of quads with 16 or fewer layers in which a 32 bit quantity is broken into two 16-bit pieces, one
for the row and column of each layer in the pyramid.

Some observations about these naming schemes. In some, a, e and f there is an easily specified rule for
generating the names. In the others, the names must be explicitly enumerated. In some, a, b, d, e and
f the names are sorted. In some, a, e and f, the names are “compact” meaning that given the names of
any two succesive members, there is no name that can be drawn from the same pool from which the other names
come that falls between them.

From these observations, we conclude that an indexing spec can be either implicit or explicit. An implicit
spec is one in which there is a simple rule for constructing each id in the name space. An explicit indexing
spec is one in which each id in the name space must be explicitly specified. In addition, for an explicit spec,
we also need to know if the names are sorted (and maybe even how to sort them by virtue of a call-back
function to compare names), and if the names are compact.

SAF’s notion of an indexing specification should be evolved to include these notions. Nonetheless, immediate
support for user-defined IDs is essential. Therefore, we have provided functions in SAF [https://github.com/markcmiller86/SAF] for a client to
specify alternative indexing specifications for a given collection. These functions will permit a SAF [https://github.com/markcmiller86/SAF] client
to declare/describe and write/read alternative IDs. However, all relations involving the collection must still
be specified in terms of the default indexing. Later, we can enhance the relations interface for SAF [https://github.com/markcmiller86/SAF] to
support a client that specifies its relations in terms of these alternative IDs.

Implementation Details

These are details that are probably of no concern to the general user. This info is for someone who cares
about the lower levels of SAF [https://github.com/markcmiller86/SAF] and how Alternative Indexing was implemented. The two SAF [https://github.com/markcmiller86/SAF] object data types
SAF__IndexSpec and SAF__AltIndexSpec both map to the same SSlib object, namely ss_indexspec_t. Every collection
record has a variable length array of links to ss_indexspec_t objects. The first item in that array is the
default index spec for that collection. If there are any alternate index specs for a collection, typically
there would be only one, since these would be the one way that the client refers to their node ids (or elem
ids or face ids, etc).

Members

	saf_declare_alternate_indexspec [Public function]

	saf_describe_alternate_indexspec [Public function]

	saf_find_alternate_indexspecs [Public function]

	saf_read_alternate_indexspec [Public function]

	saf_write_alternate_indexspec [Public function]

Declare an Alternative Index Specification

saf_declare_alternate_indexspec is a function defined in altindx.c.

Synopsis:

	
SAF_AltIndexSpec * saf_declare_alternate_indexspec(SAF_ParMode pmode, SAF_Db *db, SAF_Set *containing_set, SAF_Cat *cat, const char *name, hid_t data_type, hbool_t is_explicit, SAF_IndexSpec implicit_ispec, hbool_t is_compact, hbool_t is_sorted, SAF_AltIndexSpec *aspec)

	

Formal Arguments:

	pmode: The parallel mode

	db: Database to contain the new index spec.

	containing_set: The containing set of the collection.

	cat: The collection category.

	name: The name you wish to assign to this alt index spec

	data_type: The data type used to identify members of the collection

	is_explicit: Whether the indexing specification is explicit or implicit

	implicit_ispec: The alternate indexing scheme of the collection. Ignored
for explicit specs. Pass SAF__NA_INDEXSPEC for explicit
alternative index specs.

	is_compact: Whether the indexing specification is compact or not.
Ignored for implicit specs.

	is_sorted: Whether the indexing specification is sorted or not.
Ignored for implicit specs.

	aspec: [OUT] The optional returned alternate index spec handle. If
the null pointer is passed for this argument then new
memory is allocated and returned, otherwise this argument
serves as the successful return value.

Description: There is already a default SAF__IndexSpec associated with the collection defined by containing_set and cat.
This call registers another, alternate index specification.
The default index spec associated with the collection is something that allows you to describe the
collection IDs very easily by specifying the start index and how many you have (typically the start
index is 0). If you have some other, arbitrary way to identify the members of the collection,
then you need to write out a problem sized array describing the names you give to the members of that
collection. This is an explicit alternate indexing scheme, since you need to explicitly list
the id’s for each member of the collection.
An implicit index spec is something that can be captured by stating the start index and how many you
have, so you don’t need to explicitly list the collection ids.

Preconditions:

	pmode must be valid. (low-cost)

	containing_set must be a valid set handle. (low-cost)

	cat must be a valid cat handle. (low-cost)

Return Value: On success, returns either the aspec argument or a newly allocated index specification. Returns the null
pointer on failure.

Issues: The data_type is just stored as the HDF5 data_type member of the SAF__AltIndexSpec. This
is transient, in memory data, it is not written to the saf database until the saf_write_alternate_indexspec
call. This means that if you do something like: saf_declare_alternate_indexspec, then
saf_find_alternate_index_spec, then saf_describe_alternate_indexspec, (with no write call yet)
you won’t be able to recover the data_type.

See Also:

	Alternative Index Specification: Introduction for current chapter

Get a description of an alternate indexing spec

saf_describe_alternate_indexspec is a function defined in altindx.c.

Synopsis:

	
int saf_describe_alternate_indexspec(SAF_ParMode pmode, SAF_AltIndexSpec *aspec, SAF_Set *containing_set, SAF_Cat *cat, char **name, hid_t *data_type, hbool_t *is_explicit, SAF_IndexSpec *implicit_ispec, hbool_t *is_compact, hbool_t *is_sorted)

	

Formal Arguments:

	pmode: The parallel mode

	aspec: The alternate index spec you want the description of.

	containing_set: [OUT] The containing set of the collection. Pass NULL if you do
not want this returned.

	cat: [OUT] The collection category. Pass NULL if you do not want this
returned.

	name: [OUT] The name of this alt index spec.

	data_type: [OUT] The data type used to identify members of the collection.
Pass NULL if you do not want this returned.

	is_explicit: [OUT] Whether the indexing specification is explicit or
implicit.

	implicit_ispec: [OUT] The alternate indexing scheme of the collection. If the
index spec is explicit, then SAF__NA_INDEXSPEC will be
returned. If the index spec is implicit, the implicit
index spec will be returned here.

	is_compact: [OUT] Whether the indexing specification is compact or not.
Ignored for implicit specs.

	is_sorted: [OUT] Whether the indexing specification is sorted or not.
Ignored for implicit specs.

Description: Get a description of an alternate indexing spec

Preconditions:

	pmode must be valid. (low-cost)

	The aspec argument must be a valid handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Alternative Index Specification: Introduction for current chapter

Find alternate index specs by matching criteria

saf_find_alternate_indexspecs is a function defined in altindx.c.

Synopsis:

	
int saf_find_alternate_indexspecs(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat, const char *name_grep, int *num, SAF_AltIndexSpec **found)

	

Formal Arguments:

	pmode: The parallel mode

	containing_set: The containing set of the collection.

	cat: The collection category.

	name_grep: The name of the alt index spec you wish to search for. Pass NULL if
you do not wish to limit the search via a name.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: Find alternate index specs by matching criteria.

If the name_grep argument begins with a leading “at sign” character, ‘@’, the remaining characters will be
treated as a limited form of a regular expression akin to that supported in ‘ed’. Otherwise, it will
be treated as a specific name for a set. If the name does not matter, pass SAF__ANY_NAME.

If the library was not compiled with -lgen support library, then if regular expressions are used,
the library will behave as though SAF__ANY_NAME was specified.

Preconditions:

	pmode must be valid. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: This function does not follow the usual semantics of a find operation. Instead of searching through a
database (or scope) and looking for index specifications that match a certain pattern, it instead looks at a
collection (specified with the containing_set and cat arguments) and returns any index specifications of that
collection that have the requested name or name pattern.

See Also:

	Alternative Index Specification: Introduction for current chapter

Read an alternate index specs from disk

saf_read_alternate_indexspec is a function defined in altindx.c.

Synopsis:

	
int saf_read_alternate_indexspec(SAF_ParMode pmode, SAF_AltIndexSpec *aspec, void **buf)

	

Formal Arguments:

	pmode: The parallel mode.

	aspec: The alternate index spec handle to read.

	buf: The buffer to be filled in with the data.

Description: Read an alternate index specs from disk, involves actual I/O

Preconditions:

	pmode must be valid. (low-cost)

	aspec must be a valid alt index spec handle. (low-cost)

	buf cannot be null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: There is no way for the caller to find out what datatype is being returned.

See Also:

	Alternative Index Specification: Introduction for current chapter

Write an alternate index specs to disk

saf_write_alternate_indexspec is a function defined in altindx.c.

Synopsis:

	
int saf_write_alternate_indexspec(SAF_ParMode pmode, SAF_AltIndexSpec *aspec, hid_t data_type, void *buf, SAF_Db *file)

	

Formal Arguments:

	pmode: The parallel mode.

	aspec: The alternate index spec to write.

	data_type: The datatype used to identify members of the collection, if not
already supplied with saf_declare_alternate_indexspec.

	buf: The buffer of data to write.

	file: The optional destination file to which to write the data. If this
is a null pointer then the data is written to the same file as
aspec.

Description: Write an alternate index specs to disk, involves actual I/O

Preconditions:

	pmode must be valid. (low-cost)

	aspec must be a valid alternate index spec handle. (low-cost)

	buf must not be null. (low-cost)

	You must pass a datatype either in the call to saf_declare_alternate_indexspec or here. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	saf_declare_alternate_indexspec: 30.1: Declare an Alternative Index Specification

	Alternative Index Specification: Introduction for current chapter

Basis Types

No description available.

Members

	saf_declare_basis [Public function]

	saf_describe_basis [Public function]

	saf_find_bases [Public function]

	saf_find_one_basis [Public function]

Declare a new basis type

saf_declare_basis is a function defined in basis.c.

Synopsis:

	
SAF_Basis * saf_declare_basis(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, SAF_Basis *basis)

	

Formal Arguments:

	name: Name of the basis type

	url: An optional url to the basis documentation

	basis: [OUT] Optional basis handle to initialize (and return).

Description: This function declares a new basis type with a unique identification number.

Return Value: A handle to the new basis type.

See Also:

	Basis Types: Introduction for current chapter

Describe a basis type

saf_describe_basis is a function defined in basis.c.

Synopsis:

	
int saf_describe_basis(SAF_ParMode pmode, SAF_Basis *basis, char **name, char **url)

	

Formal Arguments:

	basis: Basis to describe

	name: [OUT] If non-null, on return points to malloc’d basis name if any

	url: [OUT] If non-null, on return points to malloc’d url if any

Description: Breaks basis into its parts and returns them through pointers.

Preconditions:

	basis must be a valid basis handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and ID will be initialized.

See Also:

	Basis Types: Introduction for current chapter

Find bases

saf_find_bases is a function defined in basis.c.

Synopsis:

	
int saf_find_bases(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, int *num, SAF_Basis **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	name: Optional name to which to limit the search.

	url: Optional url to which to limit the search.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for bases in the database. The search may be limited by one or more
criteria such as the name of the basis, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode.

See Also:

	Basis Types: Introduction for current chapter

Find one basis type

saf_find_one_basis is a function defined in basis.c.

Synopsis:

	
SAF_Basis * saf_find_one_basis(SAF_Db *database, const char *name, SAF_Basis *buf)

	

Formal Arguments:

	database: The database in which to search

	name: The name for which to search

	buf: [OUT] Optional basis handle to initialize and return.

Description: This is a convenience version of saf_find_basis that returns the first basis it finds whose name matches that
which is specified.

Return Value: A handle to a matching basis on success; SAF__ERROR_HANDLE on failure.

See Also:

	Basis Types: Introduction for current chapter

Collection Roles

No description available.

Members

	saf_declare_role [Public function]

	saf_describe_role [Public function]

	saf_find_one_role [Public function]

	saf_find_roles [Public function]

Declare a new collection role

saf_declare_role is a function defined in role.c.

Synopsis:

	
SAF_Role * saf_declare_role(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, SAF_Role *role)

	

Formal Arguments:

	pmode: The parallel mode

	db: The database in which to create the new role

	name: Name of the role

	url: An optional url to the role documentation

	role: [OUT] Optional role handle to initialize (and return)

Description: This function declares a new collection role with a unique identification number.

Return Value: A handle to the new role.

See Also:

	Collection Roles: Introduction for current chapter

Describe a role

saf_describe_role is a function defined in role.c.

Synopsis:

	
int saf_describe_role(SAF_ParMode pmode, SAF_Role *role, char **name, char **url)

	

Formal Arguments:

	role: Role to describe

	name: If non-null, on return points to malloc’d role name if any

	url: If non-null, on return points to malloc’d url if any

Description: Breaks role into its parts and returns them through pointers.

Preconditions:

	role must be a valid role handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and ID will be initialized.

See Also:

	Collection Roles: Introduction for current chapter

Find one collection role

saf_find_one_role is a function defined in role.c.

Synopsis:

	
SAF_Role * saf_find_one_role(SAF_Db *database, const char *name, SAF_Role *buf)

	

Formal Arguments:

	database: The database in which to search

	name: The name for which to search

	buf: [OUT] Optional role handle to initialize and return.

Description: This is a convenience version of saf_find_roles that returns the first role it finds whose name matches that
which is specified.

Return Value: A handle to a matching role on success; SAF__ERROR_HANDLE on failure.

See Also:

	saf_find_roles: 32.4: Find roles

	Collection Roles: Introduction for current chapter

Find roles

saf_find_roles is a function defined in role.c.

Synopsis:

	
int saf_find_roles(SAF_ParMode pmode, SAF_Db *db, const char *name, char *url, int *num, SAF_Role **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	name: Optional name to which to limit the search.

	url: Optional url to which to limit the search.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for roles in the database. The search may be limited by one or
more criteria such as the name of the role, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

	Collection Roles: Introduction for current chapter

Data Types

No description available.

Members

	_saf_convert [Public function]

	_saf_is_primitive_type [Public function]

Convert a single value

_saf_convert is a function defined in utils.c.

Synopsis:

	
void * _saf_convert(hid_t srctype, const void *srcbuf, hid_t dsttype, void *dstbuf)

	

Formal Arguments:

	srctype: Source datatype; type of srcbuf value.

	srcbuf: Source datum to be converted to a new type.

	dsttype: Destination datatype; type of dstbuf value.

	dstbuf: Optional destination buffer. If not supplied then a buffer is allocated.

Description: Converts a single value from one datatype to another. This is most often used to convert a runtime typed value
into an integer to be used by the library.

Return Value: Returns dstbuf (or an allocated buffer if dstbuf is null) on success; returns null on failure.

Parallel Notes: Independent

See Also:

	Data Types: Introduction for current chapter

Determine if datatype is primitive

_saf_is_primitive_type is a function defined in utils.c.

Synopsis:

	
hbool_t _saf_is_primitive_type(hid_t type)

	

Description: A “primitive” datatype is anything that’s an integer or floating point type.

Return Value: Returns true if type is primitive; false otherwise.

Parallel Notes: Independent

See Also:

	Data Types: Introduction for current chapter

Evaluation Types

No description available.

Members

	saf_declare_evaluation [Public function]

	saf_describe_evaluation [Public function]

	saf_find_evaluations [Public function]

	saf_find_one_evaluation [Public function]

Declare a new evaluation type

saf_declare_evaluation is a function defined in evaluation.c.

Synopsis:

	
SAF_Eval * saf_declare_evaluation(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, SAF_Eval *buf)

	

Formal Arguments:

	name: Name of the evaluation type

	url: An optional url to the evaluation documentation

	buf: [OUT] Optional buffer to fill in and return

Description: This function declares a new evaluation type with a unique identification number.

Preconditions:

	pmode must be valid. (low-cost)

Return Value: A handle to the new evaluation type.

See Also:

	Evaluation Types: Introduction for current chapter

Describe an evaluation type

saf_describe_evaluation is a function defined in evaluation.c.

Synopsis:

	
int saf_describe_evaluation(SAF_ParMode pmode, SAF_Eval *evaluation, char **name, char **url)

	

Formal Arguments:

	evaluation: Evaluation to describe

	name: If non-null, on return points to malloc’d evaluation name if any

	url: If non-null, on return points to malloc’d url if any

Description: Breaks evaluation into its parts and returns them through pointers.

Preconditions:

	pmode must be valid. (low-cost)

	evaluation must be a valid evaluation handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and ID will be initialized.

See Also:

	Evaluation Types: Introduction for current chapter

Find evaluation types

saf_find_evaluations is a function defined in evaluation.c.

Synopsis:

	
int saf_find_evaluations(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, int *num, SAF_Eval **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	name: Optional name for which to search.

	url: Optional url for which to search.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: The function allows the client to search for evaluation types in the database. The search may be limited by
one or more criteria such as the name of the unit, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

	Evaluation Types: Introduction for current chapter

Find one evaluation type

saf_find_one_evaluation is a function defined in evaluation.c.

Synopsis:

	
SAF_Eval * saf_find_one_evaluation(SAF_Db *database, const char *name, SAF_Eval *buf)

	

Formal Arguments:

	database: The database in which to search

	name: The name for which to search

	buf: [OUT] Optional buffer to fill in and return

Description: This is a convenience version of saf_find_evaluation that returns the first evaluation type it finds whose
name matches that which is specified.

Return Value: A handle to a matching evaluation type on success; SAF__ERROR_HANDLE on failure.

See Also:

	Evaluation Types: Introduction for current chapter

Relation Representation Types

No description available.

Members

	saf_declare_relrep [Public function]

	saf_describe_relrep [Public function]

	saf_find_one_relrep [Public function]

	saf_find_relreps [Public function]

Declare a new object

saf_declare_relrep is a function defined in relrep.c.

Synopsis:

	
SAF_RelRep * saf_declare_relrep(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, int id, SAF_RelRep *buf)

	

Formal Arguments:

	db: Database in which to declare the new relation representation

	name: Name of the object

	url: An optional url to the documentation

	id: A unique non-negative identification number

	buf: [OUT] Optional handle to fill in and return

Description: This function declares a new topology relation representation type with a unique identification number.

Preconditions:

	pmode must be valid. (low-cost)

Return Value: A handle to the new object.

See Also:

	Relation Representation Types: Introduction for current chapter

Describe an object

saf_describe_relrep is a function defined in relrep.c.

Synopsis:

	
int saf_describe_relrep(SAF_ParMode pmode, SAF_RelRep *obj, char **name, char **url, int *id)

	

Formal Arguments:

	obj: object to describe

	name: If non-null, on return points to malloc’d name if any

	url: If non-null, on return points to malloc’d url if any

	id: If non-null, on return points to unique id

Description: Breaks obj into its parts and returns them through pointers.

Preconditions:

	pmode must be valid. (low-cost)

	obj must be a valid relation representation handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and id will be initialized.

See Also:

	Relation Representation Types: Introduction for current chapter

Find one object

saf_find_one_relrep is a function defined in relrep.c.

Synopsis:

	
SAF_RelRep * saf_find_one_relrep(SAF_Db *database, const char *name, SAF_RelRep *buf)

	

Formal Arguments:

	database: The database in which to search

	name: The name for which to search

	buf: [OUT] Optional buffer to initialize and return

Description: This is a convenience version of saf_find_trelrep that returns the first object it finds whose name matches
that which is specified.

Return Value: A handle to a matching object on success; negative on failure.

See Also:

	Relation Representation Types: Introduction for current chapter

Find relation representation types

saf_find_relreps is a function defined in relrep.c.

Synopsis:

	
int saf_find_relreps(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, int id, int *num, SAF_RelRep **found)

	

Formal Arguments:

	db: Database in which to limit the search.

	name: Optional name for which to search.

	url: Optional url for which to search.

	id: Optional id for which to search, or pass SAF__ANY_INT.

	num: For this and the succeeding argument [see Returned Handles].

	found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for relation representation types in the database. The search may be
limited by one or more criteria such as the name of the type, etc.

Preconditions:

	pmode must be valid. (low-cost)

	db must be a valid database. (low-cost)

	num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function either returns
an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

	Relation Representation Types: Introduction for current chapter

Sets and Fields (SAF) Examples and Use Cases

Acknowledgements

Table of Contents

	Birth_and_Death_Use_Case [chapter]
	Members
	GetAddDelSequence [Public function]

	OpenDatabase [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

	Storagew [chapter]
	Members
	main [Public function]

	make_base_space [Public function]

	make_direct_coord_field [Public function]

	make_direct_temperature_field [Public function]

	make_indirect_coord_field [Public function]

	make_indirect_temperature_field [Public function]

	Triangle_Mesh [chapter]
	Members
	main [Public function]

	make_base_space [Public function]

	make_coord_field [Public function]

	make_coord_field_dofs [Public function]

	make_mesh_connectivity [Public function]

	make_scalar_field [Public function]

	make_scalar_field_dofs [Public function]

	make_stress_field [Public function]

	make_stress_field_dofs [Public function]

	Dynamic_Load_Balance_Use_Case [chapter]
	Members
	OpenDatabase [Public function]

	ReadBackElementHistory [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

	Example_Utilities [chapter]
	Members
	CloseDatabase [Public function]

	UpdateDatabase [Public function]

	Hadaptive_Use_Case [chapter]
	Members
	OpenDatabase [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

	Larry_Use_Case [chapter]
	Members
	main [Public function]

	make_base_space [Public function]

	make_displacement_field [Public function]

	make_distribution_factors_on_ss2_field [Public function]

	make_global_coord_field [Public function]

	make_init_suite [Public function]

	make_pressure_on_ss1_field [Public function]

	make_stress_on_cell_1_field [Public function]

	make_temperature_on_cell_2_field [Public function]

	make_temperature_on_ns1_field [Public function]

	make_time_base_field [Public function]

	make_time_suite [Public function]

	N_to_1_Remapping_Use_Case [chapter]
	Members
	main [Public function]

	Overloaded_Definitions [chapter]
	Members
	OpenDatabase

	Members
	OpenDatabase [Public function]

	OpenDatabase [Public function]

	OpenDatabase [Public function]

	WriteCurrentMesh

	Members
	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	main

	Members
	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	make_base_space

	Members
	make_base_space [Public function]

	make_base_space [Public function]

	make_base_space [Public function]

	Tests [chapter]
	Members
	main [Public function]

	main [Public function]

	Permuted_Index [chapter]

Birth and Death Use Case

This is testing code that demonstrates how to use SAF [https://github.com/markcmiller86/SAF] to output a mesh in which elements are being created
and destroyed over the course of a simulation. The bulk of the code here is used simply to create some
interesting meshes and has nothing to do with reading/writing from/to SAF [https://github.com/markcmiller86/SAF]. The only routines in which SAF [https://github.com/markcmiller86/SAF]
calls are made are main, OpenDatabase, WriteCurrentMesh, UpdateDatabase and CloseDatabase. As such,
these are the only Public functions defined in this file. In addition, the function to parse a sequence
of addition/deletion, GetAddDelSequence, steps is also public so that a user can see how to program this
client to create a variety of interesting databases.

The test is designed to be relatively flexible in the dimension of mesh (topological and geomertic dimensions
are bound together) and in the various steps it goes through creating and deleting elements. However, elements
are created and deleted in slabs (e.g. planes of elements). There is a default dimension and sequence of steps
hardcoded into this test client. In addition, this test client is designed to also accept input from a text file
that encodes the dimensionality of the mesh and the series of steps of deletions and additions (see
GetAddDelSequence).

For each step, this test client will output the mesh set, its topology relation, its nodal coordinate field
and the node and element IDs on each instance of the mesh. All mesh instances are collected together
into a user-defined collection on an aggregate set representing the union of the different mesh instances.
In addition, the test client will create subsets (blocks) of the mesh for the various half spaces in which the
mesh exists. For example, for a 2D mesh, it will create, at most, 4 blocks for the (+,+), (-,+), (-,-) and (+,-)
quadrants of the 2D plane. Such a subset will only be created if, in fact, a portion of the mesh exists in
that particular half-space. We do this primarily to add some interesting subsets to the mesh.

Next, unless ‘-noSimplices’ is specified on the command-line, some of these blocks are refined into simplices.
Those blocks that are refined are those whose low order 2 bits of the half-space index yield 2 or 3. In two
dimensions, each quad is refined into 2 tringles. In three dimensions, each hex is refined into 6 tets. We do
this only to make the element type generated by the code non-uniform.

If no arguments are given, the database will consist of a single file and the four mesh steps depicted in
“use case 4-1.gif” will be produced. The node and element IDs will be as defined in the diagram.

[image: ../../_images/use_case_4-1.gif]

Members

	GetAddDelSequence [Public function]

	OpenDatabase [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

Form the sequence of element additions and deletions

GetAddDelSequence is a function defined in birth_death_w.c.

Synopsis:

	
void GetAddDelSequence(const char *inFileName, int *numDims, int *numSteps, int **theOps, ElemSlab_t **theSlabs)

	

Formal Arguments:

	inFileName: [IN] name of input file or NULL if no input file specified

	numDims: [OUT] the number of spatial and topological dimensions of the mesh

	numSteps: [OUT] the number of addition/deletion steps

	theOps: [OUT] array of length numSteps indicating the operation (add=+1,delete=-1)

	theSlabs: [OUT] array of element slabs, one for each step

Description: This function constructs the sequence of element additions or deletions. It either reads input from a file
to construct the sequence or, if no file is specified, generates some default data.

The format of the file is described below…

	1
2
3
4
5
6
7

	 ndims=<n>
 step +|- +|-<K0>,+|-<K1>,...,+|-<Kn-1>
 step +|- +|-<K0>,+|-<K1>,...,+|-<Kn-1>
 step +|- +|-<K0>,+|-<K1>,...,+|-<Kn-1>
 .
 .
 .

For example, the file

	1
2
3
4
5

	 ndims=2
 step + +2,+3
 step + +2,+0
 step - +0,-1
 step - -1,+0

creates several steps in the life of a 2 dimensional mesh of quads illustrated in “use case 4-1.gif”.
.. figure:: use_case_4-1.gif
The mesh depicted in “use case 4-1.gif” is, in fact, the default sequence if no input file is specified.

The “ndims=2” line specifies the fact that
the mesh will be 2D. In turn, this means that every “step” line in the file will be a 2-tuple of integers.
The only valid values for ndims are 1, 2 and 3. Each step line specifies elements to add or delete. A plus (‘+’)
sign immediately after “step” indicates an addition while a minus sign (‘-‘) indicates a deletion. The signs
on the entries of the tuples indicate which end of the corresponding axis at which the addition or deletion
will occur. The first step line is always an addition. For example, in the above steps, the first step
line creates a mesh 2 elements wide extending in the positive ‘x’ direction by three elements high extending
in the positive ‘y’ direction from the origin. A +0 or -0 entry means the addition or deletion does not
involve elements along this axis.

See Also:

	Birth and Death Use Case: Introduction for current chapter

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in birth_death_w.c.

Synopsis:

	
void OpenDatabase(char *dbname, hbool_t do_multifile, int numDims, DbInfo_t *dbInfo)

	

Formal Arguments:

	dbname: [IN] name of the database

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	numDims: [IN] number of topological and geometric dimensions in the mesh

	dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set,
and the state suite.

The aggregate set is extendible because the infinity of points that comprise it can grow (or shrink).

See Also:

	Birth and Death Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in birth_death_w.c.

Synopsis:

	
void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numDims, CurrentMeshParams_t theMesh, SAF_Field *fieldList, int *fieldListSize)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object

	theStep: current step number

	numDims: [IN] number of dimensions in mesh

	theMesh: [IN] current mesh parameters

	fieldList: [IN/OUT] list of fields we’ll append new fields too

	fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its topology relation, subset relations
and fields, to the SAF [https://github.com/markcmiller86/SAF] database.

See Also:

	Birth and Death Use Case: Introduction for current chapter

Main program for Birth and Death of Elements Use Case

main is a function defined in birth_death_w.c.

Synopsis:

	
int main(int argc, char **argv)

	

Formal Arguments:

	argc: command line argument count

	argv: command line arguments

Description: This is the main code for the birth and death use case. It gets the steps of additions/deletions of elements
either from a file or uses the default steps, initializes the database, loops over all the steps and then
closes the database.

If “do_multifile” is present on the command-line, each cycle output will be written to different files.
Otherwise, it will all be written to one file.

Parallel Notes: Parallel and serial behavior is identical due to use of SAF__ALL mode in all calls.

Issues: because we are in a try block here, all failures in any code here or in functions we call from here will send
us to the one and only catch block at the end of this test

See Also:

	Birth and Death Use Case: Introduction for current chapter

Storagew

This is code that demonstrates indirect fields used to
represent fields stored on a domain decomposition. An
indirect field is a field whose stored coefficients are
handles to fields. Typically such a field is on a superset
and the handles are to the “same” field on the subsets. This
example generates a SAF [https://github.com/markcmiller86/SAF] database containing an unstructured
mesh with two domains. Indirect fields are specified on the
mesh which refer to fields actually stored in fields on the
domains.

Parallel and serial behavior are identical due to use of
SAF__ALL mode in all calls.

Members

	main [Public function]

	make_base_space [Public function]

	make_direct_coord_field [Public function]

	make_direct_temperature_field [Public function]

	make_indirect_coord_field [Public function]

	make_indirect_temperature_field [Public function]

Main entry point

main is a function defined in storagew.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: See *Storagew*

See Also:

	Storagew: Introduction for current chapter

Create mesh

make_base_space is a function defined in storagew.c.

Synopsis:

	
void make_base_space(void)

	

Description: Constructs the mesh for storagew and writes it to the file.

See Also:

	Storagew: Introduction for current chapter

Create direct coordinate field

make_direct_coord_field is a function defined in storagew.c.

Synopsis:

	
void make_direct_coord_field(void)

	

Description: Creates the global coordinate field defined directly on the two domains.

See Also:

	Storagew: Introduction for current chapter

Create direct temperature field

make_direct_temperature_field is a function defined in storagew.c.

Synopsis:

	
void make_direct_temperature_field(void)

	

Description: Creates the temperature field defined directly on the two domains.

See Also:

	Storagew: Introduction for current chapter

Create indirect coordinate field

make_indirect_coord_field is a function defined in storagew.c.

Synopsis:

	
void make_indirect_coord_field(void)

	

Description: Creates the global coordinate field on the mesh but defined indirectly on the two domains.

See Also:

	Storagew: Introduction for current chapter

Create indirect temperature field

make_indirect_temperature_field is a function defined in storagew.c.

Synopsis:

	
void make_indirect_temperature_field(void)

	

Description: Creates the temperature field on the mesh but defined indirectly on the two domains.

See Also:

	Storagew: Introduction for current chapter

Triangle Mesh

No description available.

Members

	main [Public function]

	make_base_space [Public function]

	make_coord_field [Public function]

	make_coord_field_dofs [Public function]

	make_mesh_connectivity [Public function]

	make_scalar_field [Public function]

	make_scalar_field_dofs [Public function]

	make_stress_field [Public function]

	make_stress_field_dofs [Public function]

Main entry point

main is a function defined in triangle_mesh.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: See *Triangle Mesh*.

See Also:

	Triangle Mesh: Introduction for current chapter

Construct triangle mesh

make_base_space is a function defined in triangle_mesh.c.

Synopsis:

	
void make_base_space(SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes, SAF_Cat *elems, int edge_ct_x, int edge_ct_y)

	

Description: Constructs the triangle mesh and writes it to SAF__FILE.

See Also:

	Triangle Mesh: Introduction for current chapter

Construct coordinate field

make_coord_field is a function defined in triangle_mesh.c.

Synopsis:

	
void make_coord_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes, SAF_Cat *elems, SAF_Db *saf_file)

	

Description: Constructs the coordinate field on the mesh.

See Also:

	Triangle Mesh: Introduction for current chapter

Create coordinate field

make_coord_field_dofs is a function defined in triangle_mesh.c.

Synopsis:

	
double * make_coord_field_dofs(int edge_ct_x, int edge_ct_y)

	

Formal Arguments:

	edge_ct_x: number of edges in X direction

	edge_ct_y: number of edges in Y direction

Description: Creates the coordinate field for a rectangular triangle mesh. Number of nodes in X direction is edge_ct_x``+1
and similarly for ``Y direction.

Preconditions:

	There must be at least 1 edge in the x direction. (low-cost)

	There must be at least 1 edge in the y direction. (low-cost)

See Also:

	Triangle Mesh: Introduction for current chapter

Create rectangular array of triangles

make_mesh_connectivity is a function defined in triangle_mesh.c.

Synopsis:

	
int * make_mesh_connectivity(int edge_ct_x, int edge_ct_y)

	

Formal Arguments:

	edge_ct_x: number of edges in X direction

	edge_ct_y: number of edges in Y direction

Description: Creates a rectangular array of triangles. The number of triangles in the X direction is 2*``edge_ct_x`` and
similarly for the Y direction.

Preconditions:

	There must be at least 1 edge in the x direction. (low-cost)

	There must be at least 1 edge in the y direction. (low-cost)

See Also:

	Triangle Mesh: Introduction for current chapter

Construct scalar field

make_scalar_field is a function defined in triangle_mesh.c.

Synopsis:

	
void make_scalar_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes, SAF_Cat *elems, SAF_Db *saf_file)

	

Description: Construct the scalar field on the mesh.

See Also:

	Triangle Mesh: Introduction for current chapter

Create scalar on mesh

make_scalar_field_dofs is a function defined in triangle_mesh.c.

Synopsis:

	
double * make_scalar_field_dofs(int edge_ct_x, int edge_ct_y)

	

Formal Arguments:

	edge_ct_x: number of edges in X direction

	edge_ct_y: number of edges in Y direction

Description: Creates a scalar on a rectangular triangle mesh. Number of nodes in X direction is edge_ct_x``+1 and similarly
for ``Y direction.

Preconditions:

	There must be at least 1 edge in the x direction. (low-cost)

	There must be at least 1 edge in the y direction. (low-cost)

See Also:

	Triangle Mesh: Introduction for current chapter

Construct stress field

make_stress_field is a function defined in triangle_mesh.c.

Synopsis:

	
void make_stress_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh, SAF_Cat *elems, SAF_Db *saf_file)

	

Description: Construct the stress field on the mesh.

See Also:

	Triangle Mesh: Introduction for current chapter

Create stress field

make_stress_field_dofs is a function defined in triangle_mesh.c.

Synopsis:

	
double * make_stress_field_dofs(int edge_ct_x, int edge_ct_y)

	

Formal Arguments:

	edge_ct_x: number of edges in X direction

	edge_ct_y: number of edges in Y direction

Description: Creates a stress field on a rectangular array of triangles. Used to test instantiation of st2 field; values of
field are meaningless. Number of nodes in X direction is edge_ct_x``+1 and similarly for ``Y direction.

Preconditions:

	There must be at least 1 edge in the x direction. (low-cost)

	There must be at least 1 edge in the y direction. (low-cost)

See Also:

	Triangle Mesh: Introduction for current chapter

Dynamic Load Balance Use Case

This is testing code that demonstrates how to use SAF [https://github.com/markcmiller86/SAF] to output a mesh in which elements are being
shifted amoung processors between each restart dump. The bulk of the code here is used simply to create some
interesting meshes and has nothing to do with reading/writing from/to SAF [https://github.com/markcmiller86/SAF]. The only routines in which SAF [https://github.com/markcmiller86/SAF]
calls are made are main, OpenDatabase, WriteCurrentMesh, UpdateDatabase, CloseDatabase and
ReadBackElementHistory. As such, these are the only Public functions defined in this file. If you are
interested in seeing the private stuff, and don’t see it in what you are reading, you probably need to re-gen
the documentation with mkdoc and specify an audience of Private (as well as Public) with the -a option.
If you are viewing this documentation with an HTML browser, don’t forget to following the links to the actual
source subroutines described here.

This use case can generate 1, 2 or 3D, unstructured meshes of edge, quad or hex elements, respectively. Use the
-dims %d %d %d command line option (always pass three args even if you want a 1 or 2D mesh in which case pass
zero for the remaining arg(s)). The default mesh is a 2D mesh of 10 x 10 quads.

Upon each cycle of this use case, a certain number of elements are shifted from one processor to the next
starting with processor 0. This shifting is continued through all the processors until the elements again
appear on processor 0.

In the initial decomposition, elements are assigned round-robin to processors. This is, of course, a
brain-dead decomposition but is sufficient for purposes of this use case. However, before the round-robin
assignment begins, a certain number of elements are held-back from the list of elements to initially assign.
This is the number of elements to be shifted between processors. By defualt, this number is 10. You can specify
a different number using the -numToShift %d command line argument. These elements are the elements of highest
numerical index in the global collection of elements on the whole mesh. Thus, in the default case, elements
90…99 wind up as the shifted elements. Initially, these elements are assigned to processor 0. Then, with
each cycle output, they are shifted to the next processor. Consequently, in each cycle output by this use
case, the element-based processor decomposition is, indeed, a partition of the whole. No elements are
shared between processors. This decomposition is illusrtrated for the default case run on 3 processors in
“loadbalance diagrams-2.gif”.

[image: ../../_images/loadbalance_diagrams-1.gif]

Since each cycle in the output is a different decomposition of the whole, we create different instances
of the whole mesh in an self collection on the whole. The interpretation is that the top-level set
and every member of the self collection on that set are equivalent point-sets. They are, indeed, the
same set. However, each is decomposed into processor pieces differently.

Two fields are created. One is the coordinate field for the mesh; a piecewise-linear field with 1 dof for each
node in the problem. The other is a pressure field with the following time-space behavior…

	1
2
3
4
5

	 2
 t

 2
 (1 + r)

where t is time and r is distance from the origin. This is a piecewise constant field with 1 dof for each
element in the problem.

Finally, both the the coordinate field on the whole on the given dump and the pressure field on the whole
are written to a state-field. Due to the fact that the state/suite interface does not currently support
subsuites (that is subsetting of a suite) we are forced to create a separate state/suite for each dump. This
will be corrected in the SAF [https://github.com/markcmiller86/SAF] library shortly. A high-level diagram of the Subset Relation Graph (SRG) is
illustrated in “loadbalance diagrams-2.gif”

[image: ../../_images/loadbalance_diagrams-2.gif]

Note that this diagram does not show the field indirections from a particular decomposed set to its processor
pieces. That would have made the diagram even busier than it already is.

Optionally, this use case will output the dump history of a given element you specify with the -histElem %d
command-line option. Within the context of this use case, we define the dump history of an element to be
the sequence of processor assignments and pressure dofs for each dump cycle of the use case. If you specify
an element number in the interval [N-numToShift…``N``-1], where N is the total number of elements in the mesh,
the element’s processor assignement should vary, increasing by one each step. Otherwise, it should remain
constant. This so because high-numbered elements are shifted while low-numbered ones stay on the processor
they were initially assigned to.

An element’s dump history is not output by default. You have to request it by specifying the -histElem %d
command-line option. Also, to confirm that the use case does, indeed, query back from the database the
correct dump history, it also computes and stores the history as the database is generated. At the end of
the run, it then prints both the history as it was generated and the history as it was queried from the
database for a visual inspection that the results are identical.

Members

	OpenDatabase [Public function]

	ReadBackElementHistory [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in loadbalance.c.

Synopsis:

	
void OpenDatabase(char *dbname, hbool_t do_multifile, int numDims, int numProcs, DbInfo_t *dbInfo)

	

Formal Arguments:

	dbname: [IN] name of the database

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	numDims: [IN] number of topological and geometric dimensions in the mesh

	numProcs: [IN] number of processors

	dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set,
the nodes, elems and procs collection categories and the state suite.

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

Query an element’s history from the database

ReadBackElementHistory is a function defined in loadbalance.c.

Synopsis:

	
void ReadBackElementHistory(DbInfo_t *dbInfo, int myProcNum, int histElem, int *numReadBack, ElementHistory_t **hist)

	

Formal Arguments:

	dbInfo: database info object

	myProcNum: processor rank in MPI_COMM_WORLD

	histElem: the element for which history

	numReadBack: number of dump for which history was read back

	hist: the resulting history buffer

Description: This function queries the pressure dump history for a specific element back out of the database.

Issues: For expediency in completing the use-case, this function was written to be fairly specific to what was written
to the database. Note that the approach taken here is written assuming each dump is a different set in the
self collection on the top-level set.

A more general dump history tool would involve the following…

	1
2
3
4
5
6
7
8

	 Command-line arguments...
 -elemID %d (0 or more times) identify the element(s) you want dump history for
 -nodeID %d (0 or more times) identify the node(s) you want dump history for
 -field %s (1 or more times) identify the field(s) you want dumped for each elem/node
 use "all" for all fields
 -IDfield If the node or element IDs you specified with -elemID or
 -nodeID are not native collection indices, specify the name
 of the field in which these ID's are stored

	1

	 Possible output...

	1

	 Dump History for Element 5...

	1
2
3
4
5

	 stepIdx | step coord | lives in | pressure | velocity | gauss-pts
 | | | | vx vy vz | d0 d1 d2 d3
 --------|------------|------------|----------------|--------------|-------------
 000 | 0.000 | whole-005 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
 020 | 0.059 | whole-005 | 3.9 | blah-blah-blah

	1

	 or in some decomposed database...

	1

	 Dump History for Element 16...

	1
2
3
4
5
6
7
8
9

	 stepIdx | step coord | lives in | pressure | velocity | gauss-pts
 | | | | vx vy vz | d0 d1 d2 d3
 --------|------------|------------|----------------|--------------|-------------
 000 | 0.000 | proc0-000 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
 000 | 0.000 | proc1-007 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
 000 | 0.000 | proc2-004 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
 020 | 0.059 | proc0-000 | 42.3 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
 020 | 0.059 | proc1-007 | 42.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
 020 | 0.059 | proc2-004 | 42.3 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3

	1
2

	 In this example, element 16 is shared by three processor pieces. And, this shows example output
 where one processor doesn't agree with the others on the pressure value.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	 algorithm...
 1. open the database
 2. find all suites
 3. order suites (by coord value associated with first member state or something)
 4. For each suite...
 a. read a state field
 b. for each field in the state matching field(s) specified on command-line.
 a. if field is inhomog, find pieces on which it is homog
 1. locate the identified nodes and elements in each piece
 by reading subset relations and examining them
 2. for each piece...
 partially read the field to obtain the dofs for all
 specified node/elems
 3. capture dof values, names of pieces (sets) and local
 indexes on these sets
 b. otherwise, just partially read the field to obtain the dofs
 for all specified nodes/elemes
 c. build up buffers of dof values, names of pieces (sets) and local
 indexes on these sets

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in loadbalance.c.

Synopsis:

	
void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numDims, int numProcs, int myProcNum, CurrentMeshParams_t *theMesh, SAF_Field *fieldList, int *fieldListSize)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object

	theStep: [IN] current step number

	numDims: [IN] number of dimensions in mesh

	numProcs: [IN] number of processors

	myProcNum: [IN] the rank of calling processor

	theMesh: [IN/OUT] current mesh parameters (relation and file handle updated)

	fieldList: [IN/OUT] list of fields we’ll append newly written fields too

	fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its domain-decomposed topology relation,
processor subset relations, coordinate field, and pressure field to the SAF [https://github.com/markcmiller86/SAF] database.

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

Main program for Dynamic Load Balance Use Case

main is a function defined in loadbalance.c.

Synopsis:

	
int main(int argc, char **argv)

	

Formal Arguments:

	argc: command line argument count

	argv: command line arguments

Description: This is the main code for the dynamic load balance use case.

Here are the command-line options…

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 -multifile
 each cycle output will be written to different files. Otherwise, it will all be written to one file.
 -numToShift %d
 specify the number of elements to shift on each step [10].
 -meshSize %d %d %d
 specify size of mesh in 1, 2 or 3 dimensions. Specify 0 for each dimension you do not want to have.
 For example, -meshSize 5 0 0 specifies a 1D mesh of size 5 elements [10 10 0]
 -histElem %d
 specify an element, using a global element id, whose pressure history is to displayed at the
 end of the run. In this case, the database is closed and then re-opened. For each instant of the mesh in
 the database, the specified element's pressure is is found by first finding which processor set the
 element was assigned to. This find step is done in parallel. Once the processor-set is known, that
 processor re-opens the database and reads the field, using partial I/O on that specifc set for the
 specific element and prints a value. If you want to specify an element that you know has been
 shifted, use an element id within <numToShift> elements of the highest element number.

Issues: Only two of the proc-to-top subset relations are different in each step. It would be nice to re-use the
data already written when the relations are identical to some other previous step. A function such as
saf_usewritten_rel``(``SAF__Rel theRel, SAF__Rel alreadyWrittenRel); would do the job.

It might be nice to provide a -histNode command-line option. Node history is a little different because
some nodes are shared between processors.

This is intended to be only a parallel client. In serial, this example should be skipped.

This is really only a parallel test. It doesn’t make much sense to run it in serial

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

Example Utilities

No description available.

Members

	CloseDatabase [Public function]

	UpdateDatabase [Public function]

Close the database

CloseDatabase is a function defined in exampleutil.c.

Synopsis:

	
void CloseDatabase(DbInfo_t dbInfo)

	

Formal Arguments:

	dbInfo: database info object

Description: This function performs any tasks associated with closing the database. Currently, the only thing this does
is call :file:`saf_close_database ../safapi_refman.rest/saf_close_database.rst`.

See Also:

	Example Utilities: Introduction for current chapter

Update the database to the current step

UpdateDatabase is a function defined in exampleutil.c.

Synopsis:

	
void UpdateDatabase(DbInfo_t *dbInfo, int stepNum, int numSteps, hbool_t do_multifile, int numFields, SAF_Field *theFields)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object (currentFile member can be modified)

	stepNum: [IN] the current step number in the sequence starting from zero

	numSteps: [IN] total number of steps to be output (>=1)

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	numFields: [IN] the number of fields on the mesh

	theFields: [IN] array of length numFields of the field handles

Description: This function performs a number of tasks involved in updating the database to the current step in the
sequence of additions and deletions.

Issues: We are forced to create a new state field each time this function is called. This can be viewed as either
approrpriate or counter-intuitive depending on how the SAF [https://github.com/markcmiller86/SAF] client views its data. Certainly, since each step
in the sequence of additions and deletions changes the mesh, the state output by the client is different on each
step. This follows the strict definition of state currently supported by SAF [https://github.com/markcmiller86/SAF]’s states and suites API. However,
if the list of fields that are output do not change and only their base-space varies with time, is the state
output by the client, in the eyes of the client, really different? We could support this somewhat looser
definition of state by instead of associating with each state the fields on the mesh instances, we used fields on
the aggregate. However, this would require a minor alteration to our current interpretation of inhomogeneous fields.
If interested, we can persue further.

Because the fields from each state are defined on a different base-space, we need to define a new suite
for every step in the simulation. This will be corrected when SAF [https://github.com/markcmiller86/SAF] supports sub-setting on suites. Then, we’ll
be able to define an inhomogenous field on the suite for its different pieces.

we always write to the 0’th index of this new suite

See Also:

	Example Utilities: Introduction for current chapter

Hadaptive Use Case

This is a simple example of using SAF [https://github.com/markcmiller86/SAF] to represent adaptation in a parallel-decomposed mesh. The use-case
is hard-coded to write the 6 mesh states illustrated in “use case 5-1.gif”

[image: ../../_images/use_case_5-1.gif]

This example is designed to run on only 3 processors. It will abort with error if run in parallel
on any other number of processors.

There are a total of 6 states output. The ending state is identical to the initial state. Other than
a coordinate field, there are no other whole-mesh fields declared. This is simply due to expediency in
completing this example code.

State 0

[image: ../../_images/use_case_5-2.gif]

State 1

[image: ../../_images/use_case_5-3.gif]

State 2

[image: ../../_images/use_case_5-4.gif]

State 3

[image: ../../_images/use_case_5-5.gif]

State 4

[image: ../../_images/use_case_5-6.gif]

State 5

[image: ../../_images/use_case_5-2.gif]

To give elements an immutable, global ID, we use something called the LRC index which is a triple of
the level of adaptivity and then the row and column index within that level starting from the origin
in the upper right. The larges elements are defined, arbitrarily, to be at level 1. So, for example, the
lower-right child of the one elment that is refined in state 1 has an LRC index of {2,1,3} for level 2,
row 1 and column 3. The LRC indexes are written on each step as alternative indexing for the elements.
In the dialog that follows, any reference to an element enclosed in ‘{‘ and ‘}’ braces is the element’s
LRC index.

In each state, each processor enumerates changes in the mesh relative to the last known dump of the
mesh to the database. Two broad categories of changes are tracked; refinements and re-balances. Refinements
are tracked and enumerated in the global context. Re-balancing is tracked and enumerated in the local
context. In other words, refinement information is stored above the processor decomposition while
re-balancing information is stored below it in the Subset Relation Graph (SRG). This was completely
arbitrary and can be changed if desired. Given all the elements on a processor at a given state, each
processor stores information to answer: “Which of my elements in the current state…”

	1
2

	 a. ...did I get from another processor in the last known state.
 b. ...are children of (refinements of) an element in the last known state.

In addition, we arbitrarily choose to store information on UNrefinements and no-changes as well as elements
that are kept (as opposed to re-balanced). There is no particular reason to do this other than trying
to make the example a little more interesting. It costs more data that is non-essential.

In some cases, between two state dumps an element may be refined and some or all of its children may be
re-balanced to other processors. When this happens, from the point of view of the database receiving
information about each state, the convention used is that the processor in the previous state that owned
the parent made the decision to refine it and then re-balanced the elements to other processors. For
example, between state 0 and state 1 in “use case 5-1.gif”, element {1,0,1} which lived on processor 0 in state
0 was refined and half (2) of its children were given to processor 1. Thus, in state 1, processor 1
treats these two elements as being both refinements and re-balances.

Next, for re-balances, a field is stored on the re-balances set which identifies the processor from which
each element in the set came.

[Side note: Why not store this information as a set of subsets? That too, is
completely appropriate. The approach chosen here is merely more convenient and storage efficient.
The fact is, there is a duality in how certain kinds of information can be captured in SAF [https://github.com/markcmiller86/SAF]. This duality is a
fundamental aspect of the mathematical interpreation of a field defined on member(s) of a Set Relation Graph
(SRG). In short, if one wishes to enumerate a value for each element in a collection, one has a choice of
saying (in natural language), “for each element, which value does it have…” or “for each value, which
elements have that value…”. The former approach takes the form of a field while the latter approach takes
the form of a set of subsets (a partition in fact). In fact, there is document that discusses these issues
in detail available from the SAF [https://github.com/markcmiller86/SAF] web-pages at www.ca.sandia.gov/ASCI/sdm/SAF/docs/wips/fields_n_maps.ps.gz [http://www.ca.sandia.gov/ASCI/sdm/SAF/docs/wips/fields_n_maps.ps.gz]
In summary, while one may have a natural way of thinking about this kind of data, there is clear
mathematical theory to explain why either approach is appropriate and there are even theoretical storage
and performance reasons to prefer one over the other depending on the situation. – end side note]

Since developing this initial use-case, a couple of enhancemenets have been identified that would be
make the use-case more realistic and facilitate certain kinds of queries. First, we’ve identified a way
to use SAF [https://github.com/markcmiller86/SAF] to capture differences in the sets from one state to the next as opposed or in addition to
each specific state. Second, we’ve identified a way to make forward references (as apposed or in addition to
to backward) to facilitate forward tracking of changes in refinement and rebalancing.

Issues: The ability to talk about the “difference” between two SRGs would be useful. If one is permitted
only to enumerate a given state of the client’s data, it is difficult to store information at state I
that captures what is changed in going to state I+1. For example, in going from state 0 to state 1,
element {1,0,1} is refined into 4 children. However, the output for state 0 can’t mention any of these
children because when state 0 is created, they don’t exist. Because they do exist in state 1, we can
talk about where they came from relative to state 0. Thus, a causality is imposed, which the current
implementation demonstrates, in the direction in which we can talk about changes (as mentioned above,
I think we have identified as solution to this).

If one wishes to capture the differences between states, where does that information “live”? The
differences represent what happened in making the transition from one state to the next. In some sense
the differences represent actions on objects and not objects themselves. For example, “…these elments were
added by refinement of that element…” or “…these elements were obtained by rebalancing from that
processor…” are the kinds of statements one might like to make. It would be nice of such differences could
be captured using the existing objects available in SAF [https://github.com/markcmiller86/SAF] rather than having to create new ones. I think I have
identifed a way of doing this. Given two states, ‘a’ and ‘b’, and two sets, S and P where S is the subset of P
in both states, we can talk about the difference of Sa and Sb (that is S in state a and S in state b) in P
by introducing two subsets of S, one in state a, called Dab and one in state b called Dba where

	1
2

	 Dab = Sa - Sb (all points in Sa but not in Sb)
 Dba = Sb - Sa (all points in Sb but not in Sa)

Together, these two sets represent, in effect, additions and deletions of points in going from Sa to Sb
or vice versa. Dab is the set of points deleated from Sa in arriving at Sb and Dba is the set of points
added to Sa in arriving at Sb (or deleted from Sb to arrive at Sa in the reverse direction).

Both Dab and Dba are ordinary subsets in their respective SRGs. However, what we are missing from SAF [https://github.com/markcmiller86/SAF] is
the ability to declare that Dab is a difference subset and which set it is differenced with. There
are two possible routes to take here. One is to simply add a SAF__DIFFERENCE option to the
:file:`saf_declare_subset_relation ../safapi_refman.rest/saf_declare_subset_relation.rst` call so that some subsets can be defined that are differences with other
sets. The other route is to add a new function to declare expressions involving sets such as…
saf_declare_set_expression``(``SAF__Set resultSet, char *expr) along with functions to build up the string
representation for the expression. This would then permit a client to find sets in the SRG according
to a given expression (implementation details would require something like an expr_blob_id member of a set
object in VBT which could be implemented as a meta_blob). The latter approach is more general in that
it permits a variety of set expressions to be characterized, not just a difference.

Because SAF [https://github.com/markcmiller86/SAF] is targeted primarily as a data modeling and I/O library, it is typically used to output
restart or plot dumps for states that are far apart relative to the physics time-step. For example,
there may be many hundreds of time-steps from one state dump to the next. Consequently, the relationships
that can be captured in such a scenario are how the two states as told to the**I/O**system are related.
For example, if a state is dumped at time I where an element, say K, is on processor 0 and then this
element migrates from processor 0, to 1, to 5, to 17 and finally to 22 before a new state is dumped to
the I/O system, the only fact that the I/O system can capture is that, somehow, element K on processor 0
was given to processor 22. In order to capture the in-between information, each of those states must be
enumerated to the I/O system. This might be where having the ability to enumerate state-transitions as
opposed to just states would be useful. Then, it may be relatively simple to enumerate each of the states
the code went through.

Members

	OpenDatabase [Public function]

	WriteCurrentMesh [Public function]

	main [Public function]

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in hadaptive.c.

Synopsis:

	
void OpenDatabase(char *dbname, hbool_t do_multifile, DbInfo_t *dbInfo)

	

Formal Arguments:

	dbname: [IN] name of the database

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set,
the nodes, elems and procs collection categories and the state suite.

See Also:

	Hadaptive Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in hadaptive.c.

Synopsis:

	
void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numProcs, int myProcNum, CurrentMeshParams_t theMesh, SAF_Field *fieldList, int *fieldListSize)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object

	theStep: [IN] current step number

	numProcs: [IN] number of processors

	myProcNum: [IN] the rank of calling processor

	theMesh: [IN] current mesh parameters

	fieldList: [IN/OUT] list of fields we’ll append newly written fields too

	fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its domain-decomposed topology relation,
processor subset relations, coordinate field, and pressure field to the SAF [https://github.com/markcmiller86/SAF] database.

See Also:

	Hadaptive Use Case: Introduction for current chapter

Main program for Hadaptive Use Case

main is a function defined in hadaptive.c.

Synopsis:

	
int main(int argc, char **argv)

	

Formal Arguments:

	argc: command line argument count

	argv: command line arguments

Issues: This is really only a parallel test. It doesn’t make much sense to run it in serial

See Also:

	Hadaptive Use Case: Introduction for current chapter

Larry Use Case

This is testing code that exercises Larry Schoof first use case. This code declares SAF [https://github.com/markcmiller86/SAF] objects and writes the raw
data.

Members

	main [Public function]

	make_base_space [Public function]

	make_displacement_field [Public function]

	make_distribution_factors_on_ss2_field [Public function]

	make_global_coord_field [Public function]

	make_init_suite [Public function]

	make_pressure_on_ss1_field [Public function]

	make_stress_on_cell_1_field [Public function]

	make_temperature_on_cell_2_field [Public function]

	make_temperature_on_ns1_field [Public function]

	make_time_base_field [Public function]

	make_time_suite [Public function]

Main entry point

main is a function defined in larry1w.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: Implementation of Larry use case.

Return Value: Exit status is the number of failures.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the mesh

make_base_space is a function defined in larry1w.c.

Synopsis:

	
void make_base_space(void)

	

Description: Constructs the mesh for Larry use case and writes it to a file.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the displacement field

make_displacement_field is a function defined in larry1w.c.

Synopsis:

	
void make_displacement_field(void)

	

Description: Constructs the displacement field on the mesh. The field templates for the displacement field are the same as
the templates for the global coordinate field.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the distribution factors

make_distribution_factors_on_ss2_field is a function defined in larry1w.c.

Synopsis:

	
void make_distribution_factors_on_ss2_field(void)

	

Description: Constructs the distribution factors field on side set 2.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the coordinate field

make_global_coord_field is a function defined in larry1w.c.

Synopsis:

	
void make_global_coord_field(void)

	

Description: Constructs the coordinate field on the mesh.

See Also:

	Larry Use Case: Introduction for current chapter

Create initial suite

make_init_suite is a function defined in larry1w.c.

Synopsis:

	
void make_init_suite(void)

	

Description: Create a suite for initial state (time step zero).

See Also:

	Larry Use Case: Introduction for current chapter

Construct the stress field

make_pressure_on_ss1_field is a function defined in larry1w.c.

Synopsis:

	
void make_pressure_on_ss1_field(void)

	

Description: Constructs the stress field on cell 1.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the stress field

make_stress_on_cell_1_field is a function defined in larry1w.c.

Synopsis:

	
void make_stress_on_cell_1_field(void)

	

Description: Construct the stress field on cell 1.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the temperature field

make_temperature_on_cell_2_field is a function defined in larry1w.c.

Synopsis:

	
void make_temperature_on_cell_2_field(void)

	

Description: Constructs the temperature field on node set 1.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the temparature field

make_temperature_on_ns1_field is a function defined in larry1w.c.

Synopsis:

	
void make_temperature_on_ns1_field(void)

	

Description: Constructs the temperature field on node set 1.

See Also:

	Larry Use Case: Introduction for current chapter

Construct the time field

make_time_base_field is a function defined in larry1w.c.

Synopsis:

	
void make_time_base_field(void)

	

Description: Construct the time field on the time base.

See Also:

	Larry Use Case: Introduction for current chapter

Create time suite

make_time_suite is a function defined in larry1w.c.

Synopsis:

	
void make_time_suite(void)

	

Description: Create time suite.

See Also:

	Larry Use Case: Introduction for current chapter

N to 1 Remapping Use Case

No description available.

Members

	main [Public function]

Main entry point

main is a function defined in remap_n21.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: See N to 1 Remapping Use Case.

See Also:

	N to 1 Remapping Use Case: Introduction for current chapter

Overloaded Definitions

These objects have multiple definitions.

Members

	OpenDatabase

	Members
	OpenDatabase [Public function]

	OpenDatabase [Public function]

	OpenDatabase [Public function]

	WriteCurrentMesh

	Members
	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	main

	Members
	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	make_base_space

	Members
	make_base_space [Public function]

	make_base_space [Public function]

	make_base_space [Public function]

OpenDatabase

This object has overloaded definitions.

Members

	OpenDatabase [Public function]

	OpenDatabase [Public function]

	OpenDatabase [Public function]

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in birth_death_w.c.

Synopsis:

	
void OpenDatabase(char *dbname, hbool_t do_multifile, int numDims, DbInfo_t *dbInfo)

	

Formal Arguments:

	dbname: [IN] name of the database

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	numDims: [IN] number of topological and geometric dimensions in the mesh

	dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set,
and the state suite.

The aggregate set is extendible because the infinity of points that comprise it can grow (or shrink).

See Also:

	Birth and Death Use Case: Introduction for current chapter

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in hadaptive.c.

Synopsis:

	
void OpenDatabase(char *dbname, hbool_t do_multifile, DbInfo_t *dbInfo)

	

Formal Arguments:

	dbname: [IN] name of the database

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set,
the nodes, elems and procs collection categories and the state suite.

See Also:

	Hadaptive Use Case: Introduction for current chapter

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in loadbalance.c.

Synopsis:

	
void OpenDatabase(char *dbname, hbool_t do_multifile, int numDims, int numProcs, DbInfo_t *dbInfo)

	

Formal Arguments:

	dbname: [IN] name of the database

	do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

	numDims: [IN] number of topological and geometric dimensions in the mesh

	numProcs: [IN] number of processors

	dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set,
the nodes, elems and procs collection categories and the state suite.

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

WriteCurrentMesh

This object has overloaded definitions.

Members

	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

	WriteCurrentMesh [Public function]

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in birth_death_w.c.

Synopsis:

	
void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numDims, CurrentMeshParams_t theMesh, SAF_Field *fieldList, int *fieldListSize)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object

	theStep: current step number

	numDims: [IN] number of dimensions in mesh

	theMesh: [IN] current mesh parameters

	fieldList: [IN/OUT] list of fields we’ll append new fields too

	fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its topology relation, subset relations
and fields, to the SAF [https://github.com/markcmiller86/SAF] database.

See Also:

	Birth and Death Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in hadaptive.c.

Synopsis:

	
void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numProcs, int myProcNum, CurrentMeshParams_t theMesh, SAF_Field *fieldList, int *fieldListSize)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object

	theStep: [IN] current step number

	numProcs: [IN] number of processors

	myProcNum: [IN] the rank of calling processor

	theMesh: [IN] current mesh parameters

	fieldList: [IN/OUT] list of fields we’ll append newly written fields too

	fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its domain-decomposed topology relation,
processor subset relations, coordinate field, and pressure field to the SAF [https://github.com/markcmiller86/SAF] database.

See Also:

	Hadaptive Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in loadbalance.c.

Synopsis:

	
void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numDims, int numProcs, int myProcNum, CurrentMeshParams_t *theMesh, SAF_Field *fieldList, int *fieldListSize)

	

Formal Arguments:

	dbInfo: [IN/OUT] database info object

	theStep: [IN] current step number

	numDims: [IN] number of dimensions in mesh

	numProcs: [IN] number of processors

	myProcNum: [IN] the rank of calling processor

	theMesh: [IN/OUT] current mesh parameters (relation and file handle updated)

	fieldList: [IN/OUT] list of fields we’ll append newly written fields too

	fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its domain-decomposed topology relation,
processor subset relations, coordinate field, and pressure field to the SAF [https://github.com/markcmiller86/SAF] database.

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

main

This object has overloaded definitions.

Members

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

	main [Public function]

Main entry point

main is a function defined in larry1w.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: Implementation of Larry use case.

Return Value: Exit status is the number of failures.

See Also:

	Larry Use Case: Introduction for current chapter

This program demonstrates the functions needed by a parallel EXODUS application.

main is a function defined in exo_par_wt.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: Creates a SAF [https://github.com/markcmiller86/SAF] database in parallel, emulating a parallel EXODUS writing client.

The code may be somewhat confusing but the subset relation graph (SRG) is straightforward.
The SRG looks like this:

TOP_SET
|
|
|—DOMAIN_0
| |
| |
| |—BLOCK_0_DOMAIN_0
| | .
| | .
| |—BLOCK_num_blocks_DOMAIN_0
|
|—DOMAIN_1
| .
| .
| .
|—DOMAIN_num_domains
| |
| |
| |—BLOCK_0_DOMAIN_num_domains
| | .
| | .
| |—BLOCK_num_blocks_DOMAIN_num_domains
|
|
|
|
|—BLOCK_0
| |
| |
| |—BLOCK_0_DOMAIN_0 (same set as subset of DOMAIN_0)
| | .
| | .
| |—BLOCK_0_DOMAIN_num_domains
|
|—BLOCK_1
| .
| .
| .
|—BLOCK_num_blocks

|—BLOCK_num_blocks_DOMAIN_0
| .
| .
|—BLOCK_num_blocks_DOMAIN_num_domains

Parallel Notes: This is a parallel client.

See Also:

	Tests: Introduction for current chapter

Basic EXODUS test

main is a function defined in exo_basic_wt.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: The exo_basic_wt and exo_basic_rd test the SAF [https://github.com/markcmiller86/SAF] library to ensure that all serial EXODUS
functionality is supported.

Parallel Notes: This tests SAF [https://github.com/markcmiller86/SAF] in serial. There are corresponding tests (exo_par_wt and exo_par_rd) to
test SAF [https://github.com/markcmiller86/SAF] in parallel.

See Also:

	Tests: Introduction for current chapter

Main entry point

main is a function defined in triangle_mesh.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: See *Triangle Mesh*.

See Also:

	Triangle Mesh: Introduction for current chapter

Main entry point

main is a function defined in storagew.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: See *Storagew*

See Also:

	Storagew: Introduction for current chapter

Main program for Birth and Death of Elements Use Case

main is a function defined in birth_death_w.c.

Synopsis:

	
int main(int argc, char **argv)

	

Formal Arguments:

	argc: command line argument count

	argv: command line arguments

Description: This is the main code for the birth and death use case. It gets the steps of additions/deletions of elements
either from a file or uses the default steps, initializes the database, loops over all the steps and then
closes the database.

If “do_multifile” is present on the command-line, each cycle output will be written to different files.
Otherwise, it will all be written to one file.

Parallel Notes: Parallel and serial behavior is identical due to use of SAF__ALL mode in all calls.

Issues: because we are in a try block here, all failures in any code here or in functions we call from here will send
us to the one and only catch block at the end of this test

See Also:

	Birth and Death Use Case: Introduction for current chapter

Main program for Hadaptive Use Case

main is a function defined in hadaptive.c.

Synopsis:

	
int main(int argc, char **argv)

	

Formal Arguments:

	argc: command line argument count

	argv: command line arguments

Issues: This is really only a parallel test. It doesn’t make much sense to run it in serial

See Also:

	Hadaptive Use Case: Introduction for current chapter

Main program for Dynamic Load Balance Use Case

main is a function defined in loadbalance.c.

Synopsis:

	
int main(int argc, char **argv)

	

Formal Arguments:

	argc: command line argument count

	argv: command line arguments

Description: This is the main code for the dynamic load balance use case.

Here are the command-line options…

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 -multifile
 each cycle output will be written to different files. Otherwise, it will all be written to one file.
 -numToShift %d
 specify the number of elements to shift on each step [10].
 -meshSize %d %d %d
 specify size of mesh in 1, 2 or 3 dimensions. Specify 0 for each dimension you do not want to have.
 For example, -meshSize 5 0 0 specifies a 1D mesh of size 5 elements [10 10 0]
 -histElem %d
 specify an element, using a global element id, whose pressure history is to displayed at the
 end of the run. In this case, the database is closed and then re-opened. For each instant of the mesh in
 the database, the specified element's pressure is is found by first finding which processor set the
 element was assigned to. This find step is done in parallel. Once the processor-set is known, that
 processor re-opens the database and reads the field, using partial I/O on that specifc set for the
 specific element and prints a value. If you want to specify an element that you know has been
 shifted, use an element id within <numToShift> elements of the highest element number.

Issues: Only two of the proc-to-top subset relations are different in each step. It would be nice to re-use the
data already written when the relations are identical to some other previous step. A function such as
saf_usewritten_rel``(``SAF__Rel theRel, SAF__Rel alreadyWrittenRel); would do the job.

It might be nice to provide a -histNode command-line option. Node history is a little different because
some nodes are shared between processors.

This is intended to be only a parallel client. In serial, this example should be skipped.

This is really only a parallel test. It doesn’t make much sense to run it in serial

See Also:

	Dynamic Load Balance Use Case: Introduction for current chapter

Main entry point

main is a function defined in remap_n21.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: See N to 1 Remapping Use Case.

See Also:

	N to 1 Remapping Use Case: Introduction for current chapter

make_base_space

This object has overloaded definitions.

Members

	make_base_space [Public function]

	make_base_space [Public function]

	make_base_space [Public function]

Construct the mesh

make_base_space is a function defined in larry1w.c.

Synopsis:

	
void make_base_space(void)

	

Description: Constructs the mesh for Larry use case and writes it to a file.

See Also:

	Larry Use Case: Introduction for current chapter

Construct triangle mesh

make_base_space is a function defined in triangle_mesh.c.

Synopsis:

	
void make_base_space(SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes, SAF_Cat *elems, int edge_ct_x, int edge_ct_y)

	

Description: Constructs the triangle mesh and writes it to SAF__FILE.

See Also:

	Triangle Mesh: Introduction for current chapter

Create mesh

make_base_space is a function defined in storagew.c.

Synopsis:

	
void make_base_space(void)

	

Description: Constructs the mesh for storagew and writes it to the file.

See Also:

	Storagew: Introduction for current chapter

Tests

No description available.

Members

	main [Public function]

	main [Public function]

This program demonstrates the functions needed by a parallel EXODUS application.

main is a function defined in exo_par_wt.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: Creates a SAF [https://github.com/markcmiller86/SAF] database in parallel, emulating a parallel EXODUS writing client.

The code may be somewhat confusing but the subset relation graph (SRG) is straightforward.
The SRG looks like this:

TOP_SET
|
|
|—DOMAIN_0
| |
| |
| |—BLOCK_0_DOMAIN_0
| | .
| | .
| |—BLOCK_num_blocks_DOMAIN_0
|
|—DOMAIN_1
| .
| .
| .
|—DOMAIN_num_domains
| |
| |
| |—BLOCK_0_DOMAIN_num_domains
| | .
| | .
| |—BLOCK_num_blocks_DOMAIN_num_domains
|
|
|
|
|—BLOCK_0
| |
| |
| |—BLOCK_0_DOMAIN_0 (same set as subset of DOMAIN_0)
| | .
| | .
| |—BLOCK_0_DOMAIN_num_domains
|
|—BLOCK_1
| .
| .
| .
|—BLOCK_num_blocks

|—BLOCK_num_blocks_DOMAIN_0
| .
| .
|—BLOCK_num_blocks_DOMAIN_num_domains

Parallel Notes: This is a parallel client.

See Also:

	Tests: Introduction for current chapter

Basic EXODUS test

main is a function defined in exo_basic_wt.c.

Synopsis:

	
int main(int argc, char **argv)

	

Description: The exo_basic_wt and exo_basic_rd test the SAF [https://github.com/markcmiller86/SAF] library to ensure that all serial EXODUS
functionality is supported.

Parallel Notes: This tests SAF [https://github.com/markcmiller86/SAF] in serial. There are corresponding tests (exo_par_wt and exo_par_rd) to
test SAF [https://github.com/markcmiller86/SAF] in parallel.

See Also:

	Tests: Introduction for current chapter

Permuted Index

Table 2 Permuted Index

	Concept

	Key

	Reference

	Form the sequence of element

	additions and deletions

	GetAddDelSequence

	
	
	

	This program demonstrates the functions needed by a parallel EXODUS

	application.

	main

	
	
	

	Create rectangular

	array of triangles

	make_mesh_connectivity

	
	
	

	Main program for Dynamic Load

	Balance Use Case

	main

	
	
	

	
	Basic EXODUS test

	main

	
	
	

	Main program for

	Birth and Death of Elements Use Case

	main

	
	
	

	Main program for Birth and Death of Elements Use

	Case

	main

	
	
	

	Main program for Dynamic Load Balance Use

	Case

	main

	
	
	

	Main program for Hadaptive Use

	Case

	main

	
	
	

	
	Close the database

	CloseDatabase

	
	
	

	
	Construct coordinate field

	make_coord_field

	
	
	

	
	Construct scalar field

	make_scalar_field

	
	
	

	
	Construct stress field

	make_stress_field

	
	
	

	
	Construct the coordinate field

	make_global_coord_field

	
	
	

	
	Construct the displacement field

	make_displacement_field

	
	
	

	
	Construct the distribution factors

	make_distribution_factors_on_ss2_field

	
	
	

	
	Construct the mesh

	make_base_space

	
	
	

	
	Construct the stress field

	make_stress_on_cell_1_field

	
	
	

	
	Construct the stress field

	make_pressure_on_ss1_field

	
	
	

	
	Construct the temparature field

	make_temperature_on_ns1_field

	
	
	

	
	Construct the temperature field

	make_temperature_on_cell_2_field

	
	
	

	
	Construct the time field

	make_time_base_field

	
	
	

	
	Construct triangle mesh

	make_base_space

	
	
	

	Construct

	coordinate field

	make_coord_field

	
	
	

	Construct the

	coordinate field

	make_global_coord_field

	
	
	

	Create

	coordinate field

	make_coord_field_dofs

	
	
	

	Create direct

	coordinate field

	make_direct_coord_field

	
	
	

	Create indirect

	coordinate field

	make_indirect_coord_field

	
	
	

	
	Create coordinate field

	make_coord_field_dofs

	
	
	

	
	Create direct coordinate field

	make_direct_coord_field

	
	
	

	
	Create direct temperature field

	make_direct_temperature_field

	
	
	

	
	Create indirect coordinate field

	make_indirect_coord_field

	
	
	

	
	Create indirect temperature field

	make_indirect_temperature_field

	
	
	

	
	Create initial suite

	make_init_suite

	
	
	

	
	Create mesh

	make_base_space

	
	
	

	
	Create rectangular array of triangles

	make_mesh_connectivity

	
	
	

	
	Create scalar on mesh

	make_scalar_field_dofs

	
	
	

	
	Create stress field

	make_stress_field_dofs

	
	
	

	
	Create time suite

	make_time_suite

	
	
	

	Write

	current mesh to the SAF database

	WriteCurrentMesh

	
	
	

	Write

	current mesh to the SAF database

	WriteCurrentMesh

	
	
	

	Write

	current mesh to the SAF database

	WriteCurrentMesh

	
	
	

	Update the database to the

	current step

	UpdateDatabase

	
	
	

	Close the

	database

	CloseDatabase

	
	
	

	Query an element’s history from the

	database

	ReadBackElementHistory

	
	
	

	Write current mesh to the SAF

	database

	WriteCurrentMesh

	
	
	

	Write current mesh to the SAF

	database

	WriteCurrentMesh

	
	
	

	Write current mesh to the SAF

	database

	WriteCurrentMesh

	
	
	

	Open a new

	database and do some prepratory work on it

	OpenDatabase

	
	
	

	Open a new

	database and do some prepratory work on it

	OpenDatabase

	
	
	

	Open a new

	database and do some prepratory work on it

	OpenDatabase

	
	
	

	Update the

	database to the current step

	UpdateDatabase

	
	
	

	Main program for Birth and

	Death of Elements Use Case

	main

	
	
	

	Form the sequence of element additions and

	deletions

	GetAddDelSequence

	
	
	

	This program

	demonstrates the functions needed by a parallel EXODUS application.

	main

	
	
	

	Create

	direct coordinate field

	make_direct_coord_field

	
	
	

	Create

	direct temperature field

	make_direct_temperature_field

	
	
	

	Construct the

	displacement field

	make_displacement_field

	
	
	

	Construct the

	distribution factors

	make_distribution_factors_on_ss2_field

	
	
	

	Open a new database and

	do some prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and

	do some prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and

	do some prepratory work on it

	OpenDatabase

	
	
	

	Main program for

	Dynamic Load Balance Use Case

	main

	
	
	

	Form the sequence of

	element additions and deletions

	GetAddDelSequence

	
	
	

	Query an

	element’s history from the database

	ReadBackElementHistory

	
	
	

	Main program for Birth and Death of

	Elements Use Case

	main

	
	
	

	Main

	entry point

	main

	
	
	

	Main

	entry point

	main

	
	
	

	Main

	entry point

	main

	
	
	

	Main

	entry point

	main

	
	
	

	This program demonstrates the functions needed by a parallel

	EXODUS application.

	main

	
	
	

	Basic

	EXODUS test

	main

	
	
	

	Construct the distribution

	factors

	make_distribution_factors_on_ss2_field

	
	
	

	Construct coordinate

	field

	make_coord_field

	
	
	

	Construct scalar

	field

	make_scalar_field

	
	
	

	Construct stress

	field

	make_stress_field

	
	
	

	Construct the coordinate

	field

	make_global_coord_field

	
	
	

	Construct the displacement

	field

	make_displacement_field

	
	
	

	Construct the stress

	field

	make_stress_on_cell_1_field

	
	
	

	Construct the stress

	field

	make_pressure_on_ss1_field

	
	
	

	Construct the temparature

	field

	make_temperature_on_ns1_field

	
	
	

	Construct the temperature

	field

	make_temperature_on_cell_2_field

	
	
	

	Construct the time

	field

	make_time_base_field

	
	
	

	Create coordinate

	field

	make_coord_field_dofs

	
	
	

	Create direct coordinate

	field

	make_direct_coord_field

	
	
	

	Create direct temperature

	field

	make_direct_temperature_field

	
	
	

	Create indirect coordinate

	field

	make_indirect_coord_field

	
	
	

	Create indirect temperature

	field

	make_indirect_temperature_field

	
	
	

	Create stress

	field

	make_stress_field_dofs

	
	
	

	
	Form the sequence of element additions and deletions

	GetAddDelSequence

	
	
	

	This program demonstrates the

	functions needed by a parallel EXODUS application.

	main

	
	
	

	Main program for

	Hadaptive Use Case

	main

	
	
	

	Query an element’s

	history from the database

	ReadBackElementHistory

	
	
	

	Create

	indirect coordinate field

	make_indirect_coord_field

	
	
	

	Create

	indirect temperature field

	make_indirect_temperature_field

	
	
	

	Create

	initial suite

	make_init_suite

	
	
	

	Open a new database and do some prepratory work on

	it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory work on

	it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory work on

	it

	OpenDatabase

	
	
	

	Main program for Dynamic

	Load Balance Use Case

	main

	
	
	

	
	Main entry point

	main

	
	
	

	
	Main entry point

	main

	
	
	

	
	Main entry point

	main

	
	
	

	
	Main entry point

	main

	
	
	

	
	Main program for Birth and Death of Elements Use Case

	main

	
	
	

	
	Main program for Dynamic Load Balance Use Case

	main

	
	
	

	
	Main program for Hadaptive Use Case

	main

	
	
	

	Construct the

	mesh

	make_base_space

	
	
	

	Construct triangle

	mesh

	make_base_space

	
	
	

	Create

	mesh

	make_base_space

	
	
	

	Create scalar on

	mesh

	make_scalar_field_dofs

	
	
	

	Write current

	mesh to the SAF database

	WriteCurrentMesh

	
	
	

	Write current

	mesh to the SAF database

	WriteCurrentMesh

	
	
	

	Write current

	mesh to the SAF database

	WriteCurrentMesh

	
	
	

	This program demonstrates the functions

	needed by a parallel EXODUS application.

	main

	
	
	

	Open a

	new database and do some prepratory work on it

	OpenDatabase

	
	
	

	Open a

	new database and do some prepratory work on it

	OpenDatabase

	
	
	

	Open a

	new database and do some prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory work

	on it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory work

	on it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory work

	on it

	OpenDatabase

	
	
	

	Create scalar

	on mesh

	make_scalar_field_dofs

	
	
	

	
	Open a new database and do some prepratory work on it

	OpenDatabase

	
	
	

	
	Open a new database and do some prepratory work on it

	OpenDatabase

	
	
	

	
	Open a new database and do some prepratory work on it

	OpenDatabase

	
	
	

	This program demonstrates the functions needed by a

	parallel EXODUS application.

	main

	
	
	

	Main entry

	point

	main

	
	
	

	Main entry

	point

	main

	
	
	

	Main entry

	point

	main

	
	
	

	Main entry

	point

	main

	
	
	

	Open a new database and do some

	prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and do some

	prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and do some

	prepratory work on it

	OpenDatabase

	
	
	

	This

	program demonstrates the functions needed by a parallel EXODUS application.

	main

	
	
	

	Main

	program for Birth and Death of Elements Use Case

	main

	
	
	

	Main

	program for Dynamic Load Balance Use Case

	main

	
	
	

	Main

	program for Hadaptive Use Case

	main

	
	
	

	
	Query an element’s history from the database

	ReadBackElementHistory

	
	
	

	Create

	rectangular array of triangles

	make_mesh_connectivity

	
	
	

	Write current mesh to the

	SAF database

	WriteCurrentMesh

	
	
	

	Write current mesh to the

	SAF database

	WriteCurrentMesh

	
	
	

	Write current mesh to the

	SAF database

	WriteCurrentMesh

	
	
	

	Construct

	scalar field

	make_scalar_field

	
	
	

	Create

	scalar on mesh

	make_scalar_field_dofs

	
	
	

	Form the

	sequence of element additions and deletions

	GetAddDelSequence

	
	
	

	Open a new database and do

	some prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and do

	some prepratory work on it

	OpenDatabase

	
	
	

	Open a new database and do

	some prepratory work on it

	OpenDatabase

	
	
	

	Update the database to the current

	step

	UpdateDatabase

	
	
	

	Construct

	stress field

	make_stress_field

	
	
	

	Construct the

	stress field

	make_stress_on_cell_1_field

	
	
	

	Construct the

	stress field

	make_pressure_on_ss1_field

	
	
	

	Create

	stress field

	make_stress_field_dofs

	
	
	

	Create initial

	suite

	make_init_suite

	
	
	

	Create time

	suite

	make_time_suite

	
	
	

	Construct the

	temparature field

	make_temperature_on_ns1_field

	
	
	

	Construct the

	temperature field

	make_temperature_on_cell_2_field

	
	
	

	Create direct

	temperature field

	make_direct_temperature_field

	
	
	

	Create indirect

	temperature field

	make_indirect_temperature_field

	
	
	

	Basic EXODUS

	test

	main

	
	
	

	
	This program demonstrates the functions needed by a parallel EXODUS application.

	main

	
	
	

	Construct the

	time field

	make_time_base_field

	
	
	

	Create

	time suite

	make_time_suite

	
	
	

	Construct

	triangle mesh

	make_base_space

	
	
	

	Create rectangular array of

	triangles

	make_mesh_connectivity

	
	
	

	
	Update the database to the current step

	UpdateDatabase

	
	
	

	Main program for Birth and Death of Elements

	Use Case

	main

	
	
	

	Main program for Dynamic Load Balance

	Use Case

	main

	
	
	

	Main program for Hadaptive

	Use Case

	main

	
	
	

	Open a new database and do some prepratory

	work on it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory

	work on it

	OpenDatabase

	
	
	

	Open a new database and do some prepratory

	work on it

	OpenDatabase

	
	
	

	
	Write current mesh to the SAF database

	WriteCurrentMesh

	
	
	

	
	Write current mesh to the SAF database

	WriteCurrentMesh

	
	
	

	
	Write current mesh to the SAF database

	WriteCurrentMesh

SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later

Acknowledgements

Table of Contents

	Introduction [chapter]

	Library [chapter]
	Members
	ss_init_func [Public function]

	ss_initialized [Public function]

	ss_finalize [Public function]

	ss_zap [Public function]

	ss_error [Public function]

	ss_bytes [Public function]

	ss_insert_commas [Public function]

	ss_init [Public macro]

	Environment_Variables [chapter]
	Members
	SSLIB [Public datatype]

	Error_Handling [chapter]
	Members
	SS_MINOR [Public datatype]

	SS_ASSERT_TYPE [Public macro]

	SS_ASSERT_MEM [Public macro]

	SS_ASSERT_CLASS [Public macro]

	SS_CHECKING [Public macro]

	SS_FAILED [Public symbol]

	SS_FAILED_WHEN [Public macro]

	SS_SKIPPED [Public symbol]

	SS_SKIPPED_WHEN [Public macro]

	SS_END_CHECKING [Public symbol]

	SS_END_CHECKING_WITH [Public macro]

	Magic_Numbers [chapter]
	Members
	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC [Public macro]

	SS_MAGIC_OK [Public macro]

	SS_MAGIC_CLASS [Public macro]

	SS_MAGIC_SEQUENCE [Public macro]

	SS_MAGIC_CONS [Public macro]

	SS_MAGIC_OF [Public macro]

	Properties [chapter]
	Members
	ss_prop_new [Public function]

	ss_prop_dup [Public function]

	ss_prop_cons [Public function]

	ss_prop_dest [Public function]

	ss_prop_add [Public function]

	ss_prop_has [Public function]

	ss_prop_set [Public function]

	ss_prop_set_i [Public function]

	ss_prop_set_u [Public function]

	ss_prop_set_f [Public function]

	ss_prop_get [Public function]

	ss_prop_get_i [Public function]

	ss_prop_get_u [Public function]

	ss_prop_get_f [Public function]

	ss_prop_buffer [Public function]

	ss_prop_type [Public function]

	ss_prop_appendable [Public function]

	ss_prop_modifiable [Public function]

	ss_prop_immutable [Public function]

	Persistent_Objects [chapter]
	Members
	ss_pers_new [Public function]

	ss_pers_copy [Public function]

	ss_pers_reset [Public function]

	ss_pers_dest [Public function]

	ss_pers_deref [Public function]

	ss_pers_update [Public function]

	ss_pers_refer [Public function]

	ss_pers_scope [Public function]

	ss_pers_file [Public function]

	ss_pers_iswritable [Public function]

	ss_pers_topscope [Public function]

	ss_pers_eq [Public function]

	ss_pers_equal [Public function]

	ss_pers_state [Public function]

	ss_pers_cmp [Public function]

	ss_pers_cmp_ [Public function]

	ss_pers_cksum [Public function]

	ss_pers_find [Public function]

	ss_pers_modified [Public function]

	ss_pers_unique [Public function]

	ss_pers_debug [Public function]

	ss_pers_decode_cb [Public function]

	SS_PERS_DEST [Public macro]

	SS_PERS_NEW [Public macro]

	SS_PERS_COPY [Public macro]

	SS_PERS_FIND [Public macro]

	SS_PERS_EQ [Public macro]

	SS_PERS_EQUAL [Public macro]

	SS_PERS_MODIFIED [Public macro]

	SS_PERS_ISNULL [Public macro]

	SS_PERS_UNIQUE [Public macro]

	Persistent_Object_Tables [chapter]
	Members
	ss_table_indirect [Public function]

	Strings [chapter]
	Members
	ss_string_get [Public function]

	ss_string_ptr [Public function]

	ss_string_set [Public function]

	ss_string_memset [Public function]

	ss_string_reset [Public function]

	ss_string_realloc [Public function]

	ss_string_cmp [Public function]

	ss_string_cmp_s [Public function]

	ss_string_cat [Public function]

	ss_string_splice [Public function]

	ss_string_len [Public function]

	ss_string_memlen [Public function]

	Variable_Length_Arrays [chapter]
	Members
	ss_array_target [Public function]

	ss_array_targeted [Public function]

	ss_array_resize [Public function]

	ss_array_get [Public function]

	ss_array_put [Public function]

	ss_array_reset [Public function]

	ss_array_nelmts [Public function]

	Files [chapter]
	Members
	ss_file_open [Public function]

	ss_file_references [Public function]

	ss_file_openall [Public function]

	ss_file_create [Public function]

	ss_file_isopen [Public function]

	ss_file_istransient [Public function]

	ss_file_iswritable [Public function]

	ss_file_readonly [Public function]

	ss_file_synchronize [Public function]

	ss_file_synchronized [Public function]

	ss_file_flush [Public function]

	ss_file_close [Public function]

	ss_file_registry [Public function]

	ss_file_topscope [Public function]

	Global_File_Information [chapter]
	Members
	ss_gfile_debug_all [Public function]

	ss_gfile_debug_one [Public function]

	Scopes [chapter]
	Members
	ss_scope_open [Public function]

	ss_scope_close [Public function]

	ss_scope_isopen [Public function]

	ss_scope_isopentop [Public function]

	ss_scope_istransient [Public function]

	ss_scope_iswritable [Public function]

	ss_scope_synchronize [Public function]

	ss_scope_synchronized [Public function]

	ss_scope_flush [Public function]

	ss_scope_comm [Public function]

	Object_Attributes [chapter]
	Members
	ss_attr_new [Public function]

	ss_attr_find [Public function]

	ss_attr_count [Public function]

	ss_attr_get [Public function]

	ss_attr_put [Public function]

	ss_attr_modify [Public function]

	ss_attr_describe [Public function]

	Values [chapter]
	Members
	ss_val_dump [Public function]

	ss_val_cmp_t [Public datatype]

	HDF5 [chapter]
	Members
	H5Tcmp [Public function]

	H5T_NATIVE [Public datatype]

	H5F_ACC_TRANSIENT [Public symbol]

	Datatypes [chapter]
	Members
	SS_MAX_INDEXDIMS [Public symbol]

	SS_MAX_BASEQS [Public symbol]

	SAF_SROLE_ANY [Public symbol]

	ss_silrole_t [Public datatype]

	Miscellaneous [chapter]
	Members
	SS [Public datatype]

	Notes [chapter]
	Members

	Debugging [chapter]
	Members
	ss_debug [Public function]

	ss_debug_env [Public function]

	ss_debug_s [Public function]

	Overloaded_Definitions [chapter]
	Members
	SS_MAGIC_ss

	Members
	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	Permuted_Index [chapter]

Introduction

The SAF [https://github.com/markcmiller86/SAF] Support Library (SSlib) grew out of experience the Sets and Fields (SAF [https://github.com/markcmiller86/SAF]) team had with the former
Vector Bundle Tables (VBT) layer and Data Sharability Layer (DSL) and to some extent with the Hierarchical
Data Format version 5, HDF5 (support.hdfgroup.org/HDF5/doc/index.html [https://support.hdfgroup.org/HDF5/doc/index.html]) library from NCSA. It was
decided that in order to increase performance, generalize some underlying functionality, and improve code
engineering that we would embark on an effort to rewrite most of VBT and DSL with these goals in mind:

	Reduced Communication: We learned by experience that designing an API that requires underlying communication

	makes it extremely difficult to optimize for performance at a later time, and that algorithms that require
communication can be substantially slower than those that don’t. So algorithms will be used to reduce
communication and the API will be designed so that cases of repeated communication in the old VBT/DSL API
can be performed just once, and cases of related communication can be combined into single messages.

	Variable Length Datatypes: The VBT design set aside a fixed size character array for every string, which

	resulted in substantial wasted file space and lower bandwidth and precluded the client from using arbitrary
length strings. The SSlib will employ HDF5 variable length datatypes to avoid these problems.

	Transient Objects: The original VBT specification had no provision for creating objects that exist only in

	memory, although eventually this was patched in using HDF5’s core virtual file driver. Transient objects
are designed into SSlib.

	Object Deletion: VBT did not allow for easy deletion of objects from the database. Although SSlib probably

	won’t allow individual objects to be deleted, it will allow entire scopes to be deleted, freeing up memory
in the HDF5 file as provided by the HDF5 library and file format.

	Every File a Database: SAF [https://github.com/markcmiller86/SAF] had a notion of supplemental data files that were pointed to by a single

	master file, collectively called the database. It was not possible to open just a supplemental file, but
one always had to open the master file. SSlib will make no distinction between master and supplemental
files, rather every file will be a self-contained database. SAF [https://github.com/markcmiller86/SAF] allowed supplemental files to be missing;
SSlib allows databases to be missing.

	Partial Metadata Reads: VBT always read all the object definitions from the database whenever a database

	was opened. SSlib will only read subsets of a file called “scopes” and only when those scopes are accessed
and only by the tasks accessing those scopes.

	Interfile Object References: A VBT file could only refer to objects that were also in the same file. SSlib

	files will have the capability to refer to objects that are in some other file.

	Multiple References: In SSlib, two or more objects may make references to a common third object or to

	common raw data, thus reducing the required storage.

	Object Copying: Tools such as safdiff formerly needed extensive coding in order to copy an object (e.g.,

	a field) from one database to another. SSlib will provide that functionality at a much lower layer. This
also simplifies the implementation of Object Registries in SAF [https://github.com/markcmiller86/SAF] by moving much of that functionality downward
in the software stack.

	Common Error Handling: A code engineering aspect of SSlib is to generalize the HDF5 error handling

	subsystem, turn it into a public programming interface, and use it for SSlib and eventually higher
software layers. This unifies the error recording and reporting features of all layers involved.

	Flexible File Decomposition: As mentioned already, SAF [https://github.com/markcmiller86/SAF] required all object metadata to be stored in a

	single master file with optional supplemental files to hold raw field data. SSlib relaxes that constraint
so that operational environments like SILO’s multi-file output are possible, where the MPI job is
partitioned into smaller subsets of tasks with each subset responsible for a single database, the databases
being “sewed” together later.

	Reduced Code Generation: SSlib replaces the more than 12,000 lines of vbtgen (a table parser and C code

	generator) with a few hundred lines of perl that does something very similar. In addition, the perl script
parses standard C typedefs instead of a custom language.

	Better**HDF5**Coupling: The DSL datatype interface (more than 12,000 lines of library code) will be replaced

	with the HDF5 datatype interface plus a few additional functions that may migrate into the HDF5 library.

The plots below show the before and after scalability and performance improvements achieved.

Pre-optimized raw data I/O aggregate bandwidth scalability

[image: ../../_images/plot01.jpg]

Pre-optimized overall I/O aggregate bandwidth scalability

[image: ../../_images/plot02.jpg]

Optimized raw data I/O aggregate bandwidth scalability

[image: ../../_images/plot03.jpg]

Optimized overall I/O aggregate bandwidth scalability

[image: ../../_images/plot04.jpg]

Comparison of SAF [https://github.com/markcmiller86/SAF] and Silo Ale3d restart file dump times

[image: ../../_images/plot05.jpg]

Comparison of SAF [https://github.com/markcmiller86/SAF] Ale3d restart file dump times by functionality

[image: ../../_images/plot06.jpg]

Library

The SSlib library must be explicitly initialized before being used and should be finalized when the client
is finished using it. In addition, this chapter contains some additional functions that operate on the
library as a whole.

Members

	ss_init_func [Public function]

	ss_initialized [Public function]

	ss_finalize [Public function]

	ss_zap [Public function]

	ss_error [Public function]

	ss_bytes [Public function]

	ss_insert_commas [Public function]

	ss_init [Public macro]

Initialize the library

ss_init_func is a function defined in sslib.c.

Synopsis:

	
herr_t ss_init_func(MPI_Comm communicator)

	

Formal Arguments:

	communicator: Library communicator defining the maximal set of MPI tasks that can be involved in
various collective SSlib function calls. However, many collective SSlib functions
can operate on a subset of this communicator. If SSlib is implicitly initialized
then MPI_COMM_WORLD is assumed. When SSlib is compiled without MPI support then the
communicator argument is just an integer that’s ignored by this function.

Description: Call this function to initialize SSlib. It’s use is entirely optional since SSlib generally initializes each
layer of its software stack as it becomes necessary. However, if only a subset of the MPI tasks will be
making calls to SSlib then this function can be invoked to define what tasks own the library.

This function initializes the collective parts of some other layers as well when those other layers are
largely independent and might not have an opportunity to do their own collective initialization.

Normally the client initializes the library with the ss_init macro.

Return Value: Returns non-negative on success; negative on failure. It is an error to call this function more than one time
or to call it after the library has been implicitly initialized.

Parallel Notes: Collective across the specified communicator.

Issues: We cannot pass things to this function with property lists since those property lists rely on SSlib having
been initialized first.

See Also:

	ss_init: 2.8: Initialize the library

	ss_initialized: 2.2: Test library initialization state

	Library: Introduction for current chapter

Test library initialization state

ss_initialized is a function defined in sslib.c.

Synopsis:

	
htri_t ss_initialized(void)

	

Description: Tests whether the library has been successfully initialized but not yet finalized.

Return Value: Returns true (positive) if the library has been initialized but not yet finalized and false otherwise. This
function never fails and does not implicitly initialize the library.

Parallel Notes: Independent, although typically called collectively.

See Also:

	Library: Introduction for current chapter

Terminate the library

ss_finalize is a function defined in sslib.c.

Synopsis:

	
herr_t ss_finalize(void)

	

Description: A call to this function will flush all pending data to the layers below SSlib, and then release as many
resources as possible. This function is a no-op if called after a previous successful call or before the
library is initialized (explicitly or implicitly). Obviously this function does not implicitly initialize the
library.

Calling this function near the end of execution is strongly encouraged though not strictly necessary if all
files have been explicitly flushed and/or closed. This function is suitable for registration with atexit
provided care is taken to ensure that layers below SSlib are not finalized first.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library’s communicator.

See Also:

	Library: Introduction for current chapter

Mark library as finalized

ss_zap is a function defined in sslib.c.

Synopsis:

	
herr_t ss_zap(void)

	

Description: Sometimes it’s necessary to mark the library as finalized but without actually finalizing it. For instance,
a call to MPI_Abort may eventually call exit (e.g., from MPID_SHMEM_Abort) which would cause SSlib’s
atexit handler to be invoked. But we really don’t want that because the handler tries to do some MPI
communication. So this function is supplied to make the atexit handler think ss_finalize has already
been called.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library’s communicator, although this function does no MPI communication.

Issues: This function is here only because some libraries (e.g., MPICH’s MPI_Abort) incorrectly call exit
instead of calling _exit.

We should really set handlers back to their default values now and unmask them

See Also:

	ss_finalize: 2.3: Terminate the library

	Library: Introduction for current chapter

Start debugger for error

ss_error is a function defined in sslib.c.

Synopsis:

	
herr_t ss_error(void)

	

Description: This function gets called whenever SSlib pushes an error onto the error stack. If the error’s identification
number matches what the user wishes to debug as set with the SSLIB_DEBUG environment variable then the
debugger is started. This function is also a useful place to set debugger breakpoints.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Library: Introduction for current chapter

Renders human readable numbers

ss_bytes is a function defined in sslib.c.

Synopsis:

	
char * ss_bytes(hsize_t nbytes, char *buf)

	

Formal Arguments:

	buf: Optional buffer to hold the results. If the user supplies the buffer then it should be
large enough to hold the result. On a 64-bit machine that would be at least 62 bytes. If
the caller passes the null pointer then one of six static buffers will be used (don’t
make more than six calls to this function in a single printf argument list).

Description: Often when printing a very large decimal number it’s not obvious whether that number is some multiple of a
power of 1024. This function breaks down the nbytes argument into GB, MB, and kB and stores it in a buffer
supplied by the caller or a buffer allocated in this function. The output format will be something along the
lines of:

	1

	 4,197,386 (4M+3k+10)

If the nbytes has all bits set then it will be printed in hexadecimal. If it is less than 1024 then the
parenthesised part will be omitted.

This function has no provision for limiting the size of the result string. The maximum string length on a
64-bit machine would be 62 bytes counting the NUL terminator:

	1

	 ##,###,###,###,###,###,### (##,###,###,###G+####M+####k+####)

Return Value: Returns a pointer to the NUL-terminated string containing the number on success; null on failure.

Parallel Notes: Independent

See Also:

	Library: Introduction for current chapter

Insert commas into an integer

ss_insert_commas is a function defined in sslib.c.

Synopsis:

	
char * ss_insert_commas(char *buf)

	

Description: Given a string containing a decimal integer, this function will insert commas between every third digit in
order to make it more human readable.

Return Value: Returns buf after having modified it in place. Returns null on failure.

Parallel Notes: Independent

See Also:

	Library: Introduction for current chapter

Initialize the library

ss_init is a macro defined in sslib.h.

Synopsis:

	
ss_init(COMM)

	

Description: This is a macro around ss_init_func that also checks header/library compatibility.

Return Value: Same as ss_init_func

Parallel Notes: Same as ss_init_func

See Also:

	ss_init_func: 2.1: Initialize the library

	Library: Introduction for current chapter

Environment Variables

No description available.

Members

	SSLIB [Public datatype]

Environment Variables

SSLIB is a collection of related C preprocessor symbols defined in ssenv.h.

Synopsis:

SSLIB_DEBUG: See ss_debug_env for details

SSLIB_2PIO: See ss_blob_set_2pio for details

Description: SSlib is controlled by various environment variables documented here.

See Also:

	Environment Variables: Introduction for current chapter

Error Handling

SSlib functions and the functions that SSlib calls all indicate errors by returning special values. SSlib code
inspects return values and enters an error recovery mode when an error is detected. In order to make the SSlib
code base cleaner and to facilitate changes in error handling policies, we use a number of macros. The goal is
to have a system that is easy to program, easy to optimize, and easy to read (lean, mean, and clean).

Almost every function will begin and end with SS_ENTER and SS_LEAVE calls. Somewhere in between them will
be an SS_CLEANUP label that marks the boundary between normal flow of control and error recovery code. Inside
the normal flow of control will be calls to SS_ERROR or SS_ERROR_FMT when an error is detected, or various
calls to SS_STATUS macros to get information about an error.

Sometimes, particularly during a parallel run, error recovery is impossible, prohibitively expensive, or
unusually complex. In such cases SSlib may call MPI_Abort. (A version of SSlib compiled with MPI support but
run with a single MPI task as the library communicator is considered a serial run.)

Members

	SS_MINOR [Public datatype]

	SS_ASSERT_TYPE [Public macro]

	SS_ASSERT_MEM [Public macro]

	SS_ASSERT_CLASS [Public macro]

	SS_CHECKING [Public macro]

	SS_FAILED [Public symbol]

	SS_FAILED_WHEN [Public macro]

	SS_SKIPPED [Public symbol]

	SS_SKIPPED_WHEN [Public macro]

	SS_END_CHECKING [Public symbol]

	SS_END_CHECKING_WITH [Public macro]

Minor error numbers

SS_MINOR is a collection of related C preprocessor symbols defined in sserr.h.

Synopsis:

SS_MINOR_ASSERT: assertion failed

SS_MINOR_CONS: constructor failed

SS_MINOR_CORRUPT: file file corruption

SS_MINOR_DOMAIN: value outside valid domain

SS_MINOR_EXISTS: already exists

SS_MINOR_FAILED: a catch-all

SS_MINOR_HDF5: HDF5 call failed

SS_MINOR_INIT: not initialized

SS_MINOR_MPI: MPI call failed

SS_MINOR_NOTFOUND: not found

SS_MINOR_NOTIMP: not implemented

SS_MINOR_NOTOPEN: not open

SS_MINOR_OVERFLOW: arithmetic or buffer overflow

SS_MINOR_PERM: not permitted

SS_MINOR_RESOURCE: insufficient resources

SS_MINOR_SKIPPED: operation skipped by request

SS_MINOR_TYPE: bad datatype

SS_MINOR_USAGE: incorrect usage

Issues: These C preprocessor symbols would normally just be defined as the corresponding global variable, however
error class numbers are generated at runtime with HDF5 calls and thus they must be initialized as a side
effect of referencing them. The initialization is done by calling ss_err_init1 and passing the address of
the global minor error class variable. That function does the initialization and then returns the contents of
that global variable.

See Also:

	Error Handling: Introduction for current chapter

Asserts object runtime type

SS_ASSERT_TYPE is a macro defined in sserr.h.

Synopsis:

	
SS_ASSERT_TYPE(_obj_, _type_)

	

Description: The first argument should be an object of the specified type, valid at runtime. If it isn’t then a TYPE
error is raised. The _type_ argument is a C datatype like ss_fieldtmpl_t.

See Also:

	Error Handling: Introduction for current chapter

Asserts object runtime type and existence

SS_ASSERT_MEM is a macro defined in sserr.h.

Synopsis:

	
SS_ASSERT_MEM(_obj_, _type_)

	

Description: The first argument should be an object of the specified type, valid at runtime. If it isn’t then a TYPE
error is raised. The _type_ argument is a C datatype like ss_fieldtmpl_t. This function is like
SS_ASSERT_TYPE except it also checks that the _obj_ exists in memory (i.e., the object can be dereferenced).

See Also:

	SS_ASSERT_TYPE: 4.2: Asserts object runtime type

	Error Handling: Introduction for current chapter

Asserts object runtime class

SS_ASSERT_CLASS is a macro defined in sserr.h.

Synopsis:

	
SS_ASSERT_CLASS(_obj_, _cls_)

	

Description: The first argument should be an object of the specified class, valid at runtime. If it isn’t then a TYPE
error is raised. The _cls_ argument should be a C class datatype like ss_pers_t.

See Also:

	Error Handling: Introduction for current chapter

Begin a functionality test

SS_CHECKING is a macro defined in sserr.h.

Synopsis:

	
SS_CHECKING(_what_)

	

Description: This family of macros can be used in the SSlib test suite to perform a test of some functionality. The
SS_CHECKING and SS_END_CHECKING macros should be paired with curly braces. Inside the body of that
construct may be zero or more calls to SS_FAILED or SS_FAILED_WHEN. If either of the failure macros is
executed flow control branches to the SS_END_CHECKING macro.

The SS_END_CHECKING_WITH macro can be used in place of SS_END_CHECKING. It takes a single argument which
is arbitrary code to execute if an error was detected in the body of the SS_CHECKING construct. Typically
the argument will be something alone the lines of return ``FAILURE`’ or `goto error’.

The argument for SS_CHECKING should be a string that will be printed to stderr after the word “checking”.
The string is printed only if _print is non-zero (similarly for the output from related macros).

	1
2
3
4
5
6
7
8

	 FILE *_print = 0==self ? stderr : NULL;
 int nerrors=0;
 SS_CHECKING("file opening operations") {
 file1 = ss_file_create(....);
 if (!file1) SS_FAILED_WHEN("creating");
 file2 = ss_file_open(....);
 if (!file2) SS_FAILED_WHEN("opening");
 } SS_END_CHECKING_WITH(nerrors++);

	1
2
3

	 SS_CHECKING("file close") {
 if (ss_file_close(....)<0) SS_FAILED;
 } SS_END_CHECKING;

See Also:

	SS_END_CHECKING: 4.10: End functionality test

	SS_END_CHECKING_WITH: 4.11: End functionality test

	SS_FAILED: 4.6: Indicate functionality test failure

	SS_FAILED_WHEN: 4.7: Indicate functionality test failure

	Error Handling: Introduction for current chapter

Indicate functionality test failure

SS_FAILED is a symbol defined in sserr.h.

Synopsis:

	
SS_FAILED

	

Description: See SS_CHECKING

See Also:

	SS_CHECKING: 4.5: Begin a functionality test

	Error Handling: Introduction for current chapter

Indicate functionality test failure

SS_FAILED_WHEN is a macro defined in sserr.h.

Synopsis:

	
SS_FAILED_WHEN(_mesg_)

	

Description: See SS_CHECKING

See Also:

	SS_CHECKING: 4.5: Begin a functionality test

	Error Handling: Introduction for current chapter

Indicate functionality test skipped

SS_SKIPPED is a symbol defined in sserr.h.

Synopsis:

	
SS_SKIPPED

	

Description: See SS_CHECKING

See Also:

	SS_CHECKING: 4.5: Begin a functionality test

	Error Handling: Introduction for current chapter

Indicate functionality test skipped

SS_SKIPPED_WHEN is a macro defined in sserr.h.

Synopsis:

	
SS_SKIPPED_WHEN(_mesg_)

	

Description: See SS_CHECKING

See Also:

	SS_CHECKING: 4.5: Begin a functionality test

	Error Handling: Introduction for current chapter

End functionality test

SS_END_CHECKING is a symbol defined in sserr.h.

Synopsis:

	
SS_END_CHECKING

	

Description: See SS_CHECKING

See Also:

	SS_CHECKING: 4.5: Begin a functionality test

	Error Handling: Introduction for current chapter

End functionality test

SS_END_CHECKING_WITH is a macro defined in sserr.h.

Synopsis:

	
SS_END_CHECKING_WITH(_code_)

	

Description: See SS_CHECKING

See Also:

	SS_CHECKING: 4.5: Begin a functionality test

	Error Handling: Introduction for current chapter

Magic Numbers

Many of the SSlib data structures have an unsigned int member that will contain a magic number
while the struct is allocated. The magic number serves to run-time type the struct. The most significant 12
bits are 0x5af (looks sort of like “Saf”). The next eight bits are a type class number (e.g., all storable
object handles belong to a certain class). The least significant 12 bits are a unique sequence number for that
particular type class and are sometimes used as indices into various arrays.

Members

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC [Public macro]

	SS_MAGIC_OK [Public macro]

	SS_MAGIC_CLASS [Public macro]

	SS_MAGIC_SEQUENCE [Public macro]

	SS_MAGIC_CONS [Public macro]

	SS_MAGIC_OF [Public macro]

Miscellaneous (class 0x5af01000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_prop_t:

SS_MAGIC_ss_table_t:

SS_MAGIC_ss_string_table_t:

SS_MAGIC_ss_gblob_t:

See Also:

	Magic Numbers: Introduction for current chapter

Persistent object links (class 0x5af02000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_pers_t: just the class part

SS_MAGIC_ss_scope_t:

SS_MAGIC_ss_field_t:

SS_MAGIC_ss_role_t:

SS_MAGIC_ss_basis_t:

SS_MAGIC_ss_algebraic_t:

SS_MAGIC_ss_evaluation_t:

SS_MAGIC_ss_relrep_t:

SS_MAGIC_ss_quantity_t:

SS_MAGIC_ss_unit_t:

SS_MAGIC_ss_cat_t:

SS_MAGIC_ss_collection_t:

SS_MAGIC_ss_set_t:

SS_MAGIC_ss_rel_t:

SS_MAGIC_ss_fieldtmpl_t:

SS_MAGIC_ss_tops_t:

SS_MAGIC_ss_blob_t:

SS_MAGIC_ss_indexspec_t:

SS_MAGIC_ss_file_t:

SS_MAGIC_ss_attr_t:

Description: These are the magic numbers for persistent object links, which are the handles to persistent objects that
the client usually works with.

Issues: These magic numbers must be in the same order as the persistent object magic numbers (class 0x5af03000).

See Also:

	Magic Numbers: Introduction for current chapter

Persistent objects (class 0x5af03000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_persobj_t: just the class part

SS_MAGIC_ss_scopeobj_t:

SS_MAGIC_ss_fieldobj_t:

SS_MAGIC_ss_roleobj_t:

SS_MAGIC_ss_basisobj_t:

SS_MAGIC_ss_algebraicobj_t:

SS_MAGIC_ss_evaluationobj_t:

SS_MAGIC_ss_relrepobj_t:

SS_MAGIC_ss_quantityobj_t:

SS_MAGIC_ss_unitobj_t:

SS_MAGIC_ss_catobj_t:

SS_MAGIC_ss_collectionobj_t:

SS_MAGIC_ss_setobj_t:

SS_MAGIC_ss_relobj_t:

SS_MAGIC_ss_fieldtmplobj_t:

SS_MAGIC_ss_topsobj_t:

SS_MAGIC_ss_blobobj_t:

SS_MAGIC_ss_indexspecobj_t:

SS_MAGIC_ss_fileobj_t:

SS_MAGIC_ss_attrobj_t:

Description: These are the magic numbers for the persistent objects themselves. They do not appear in the file but are
part of the transient information for an object. The order of things here is such that when synchronizing
a scope we minimize the number of forward references. That is, if objects of type A can point to objects of
type B then we should synchronize type B before type A.

Issues: These magic numbers must be in the same order as the persistent object link magic numbers (class 0x5af02000).
Also, they are mentioned in ss_pers_init when constructing an HDF5 enumeration datatype.

If you add items here and they don’t show up as tables in the files then the SS_PERS_NCLASSES constant defined
in sspers.h is probably not large enough.

See Also:

	Magic Numbers: Introduction for current chapter

Obtain magic number for type

SS_MAGIC is a macro defined in ssobj.h.

Synopsis:

	
SS_MAGIC(_type_)

	

Description: Returns the magic number for the specified SSlib datatype.

Return Value: Returns an unsigned magic number.

See Also:

	Magic Numbers: Introduction for current chapter

Determine magicness

SS_MAGIC_OK is a macro defined in ssobj.h.

Synopsis:

	
SS_MAGIC_OK(M)

	

Description: Determines if number or class M looks magic.

Return Value: True if M is probably a magic number; false otherwise.

See Also:

	Magic Numbers: Introduction for current chapter

Obtain magic number class

SS_MAGIC_CLASS is a macro defined in ssobj.h.

Synopsis:

	
SS_MAGIC_CLASS(M)

	

Description: Given a magic number M, return the class part by masking off the low-order 12 bits.

Return Value: An unsigned int magic class number.

See Also:

	Magic Numbers: Introduction for current chapter

Obtain magic sequence number

SS_MAGIC_SEQUENCE is a macro defined in ssobj.h.

Synopsis:

	
SS_MAGIC_SEQUENCE(M)

	

Description: Given a magic number M, return the sequence number stored in the 12 low-order bits.

Return Value: An unsigned int magic sequence number.

See Also:

	Magic Numbers: Introduction for current chapter

Construct a magic number

SS_MAGIC_CONS is a macro defined in ssobj.h.

Synopsis:

	
SS_MAGIC_CONS(C, S)

	

Description: Given a magic class number like what is returned by SS_MAGIC_CLASS and a sequence number like
what is returned by SS_MAGIC_SEQUENCE, construct a magic number. The class, C, and sequence, S, don’t have
to be purely a class or sequence because they’ll be filtered.

Return Value: An unsigned int magic number constructed from a class and sequence number.

See Also:

	SS_MAGIC_CLASS: 5.6: Obtain magic number class

	SS_MAGIC_SEQUENCE: 5.7: Obtain magic sequence number

	Magic Numbers: Introduction for current chapter

Obtain magic number from a pointer

SS_MAGIC_OF is a macro defined in ssobj.h.

Synopsis:

	
SS_MAGIC_OF(OBJ)

	

Description: Given a pointer to any object, return the magic number stored in that object.

Return Value: An unsigned int magic number or zero if OBJ is the null pointer.

See Also:

	Magic Numbers: Introduction for current chapter

Properties

SSlib uses property lists to pass miscellaneous information to various functions, to pass properties through
entire layers of the library, and as a mechanism to message pass information between MPI tasks. It relies
heavily on HDF5’s datatype description interface and data conversion functionality. The property list class
ss_prop_t is a subclass of ss_obj_t and therefore has a magic number (see *Magic Numbers*).

Property lists are created and destroyed with ss_prop_new, ss_prop_dup, ss_prop_cons, and ss_prop_dest.

Once a property list exists, properties can be added and initialized to default values with ss_prop_add. The
various ss_prop_set and ss_prop_get functions and their variants set and retrieve values of individual
properties. The ss_prop_buffer function is similar to the ss_prop_get functions, but returns a pointer
without copying the memory, and ss_prop_type returns a datatype instead of the value.

The ss_prop_appendable, ss_prop_modifiable, and ss_prop_immutable define (or query) what operations can
be performed on a property list.

Members

	ss_prop_new [Public function]

	ss_prop_dup [Public function]

	ss_prop_cons [Public function]

	ss_prop_dest [Public function]

	ss_prop_add [Public function]

	ss_prop_has [Public function]

	ss_prop_set [Public function]

	ss_prop_set_i [Public function]

	ss_prop_set_u [Public function]

	ss_prop_set_f [Public function]

	ss_prop_get [Public function]

	ss_prop_get_i [Public function]

	ss_prop_get_u [Public function]

	ss_prop_get_f [Public function]

	ss_prop_buffer [Public function]

	ss_prop_type [Public function]

	ss_prop_appendable [Public function]

	ss_prop_modifiable [Public function]

	ss_prop_immutable [Public function]

Create a new property list from scratch

ss_prop_new is a function defined in ssprop.c.

Synopsis:

	
ss_prop_t * ss_prop_new(const char *name)

	

Formal Arguments:

	name: optional name for debugging

Description: Creates a new property list and initializes it. An optional name may be specified and is used only for debugging.

Return Value: Returns new property list on success; null on failure.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Create a new property list from an existing list

ss_prop_dup is a function defined in ssprop.c.

Synopsis:

	
ss_prop_t * ss_prop_dup(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: source property list

	name: optional name for debugging

Description: Duplicates an existing property list, giving it a new name (or a name generated from the source property
list). The new property list’s property names, values, and datatypes are copied from the specified prop list.
The new list is marked as appendable (new properties can be added) and modifiable (property values can be
changed).

Return Value: Returns a new property list on success; null on failure.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Property constructor

ss_prop_cons is a function defined in ssprop.c.

Synopsis:

	
ss_prop_t * ss_prop_cons(hid_t type, void *values, const char *name)

	

Formal Arguments:

	type: Property datatype (copied by this function)

	values: Optional initial values, of type type

	name: Optional property list name

Description: Construct a property from a datatype and optional memory. The datatype must be an HDF5 compound datatype and
the memory must match that datatype. If a values buffer is supplied then the property list will be marked as
non-appendable (new properties cannot be added) but modifiable (property values can be changed) and the
ss_prop_dest function will not free the memory. But if values is null then a buffer will be allocated and
initialized to zeros.

Return Value: Returns a new property list on success; null on failure.

Parallel Notes: Independent

See Also:

	ss_prop_dest: 6.4: Destroy a property list

	Properties: Introduction for current chapter

Destroy a property list

ss_prop_dest is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_dest(ss_prop_t *prop)

	

Description: All resources associated with the specified property list are released and the property list is marked as
invalid and should not be referenced. If the caller had not supplied a buffer to hold the values then that
memory is also freed.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Add new property to a list

ss_prop_add is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_add(ss_prop_t *prop, const char *name, hid_t type, const void *value)

	

Formal Arguments:

	prop: property list to which is added a property

	name: name of property to add

	type: datatype for stored property value

	value: optional initial property value

Description: A new property called name is added to property list prop. The new property can be given an initial value (or
else all bits are cleared). If a value is specified it must be of type type, which is the datatype of the
property as stored in the property list.

Return Value: Returns non-negative on success; negative on failure. It is an error to add a property to the list if a
property by that name already exists in the list. Only appendable property lists can have new properties
added.

See Also:

	Properties: Introduction for current chapter

Determine if property exists

ss_prop_has is a function defined in ssprop.c.

Synopsis:

	
htri_t ss_prop_has(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: property list being queried

	name: name of property to be tested

Description: This function determines if a property by the specified name exists in the property list.

Return Value: Returns true (positive) if name exists in prop and false if not. Returns negative on failure.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Change a property value

ss_prop_set is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_set(ss_prop_t *prop, const char *name, hid_t type, const void *value)

	

Formal Arguments:

	prop: property list to be modified

	name: optional name of property to be modified

	type: optional datatype for supplied value

	value: optional new property value

Description: A property’s value can be modified by supplying a new value with this function. If type is specified then the
value will be of this type, which must be conversion-compatible with the type declared when the property was
added to the list. Otherwise, when no type is specified the value should be of the type originally specified
to ss_prop_add. If name is null then type and value refer to the entire property list rather than a single
property. The value is copied into the property list, and if value is a null pointer then the property (or
entire property list if name is null) is reset to zero.

Return Value: Returns non-negative on success; negative on failure. The property list must be marked as “modifiable” in
order to change a property value. If the specified type is not conversion compatible with the stored type
then the property is not modified.

Parallel Notes: Indepdnent

See Also:

	ss_prop_add: 6.5: Add new property to a list

	Properties: Introduction for current chapter

Change a signed integer property value

ss_prop_set_i is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_set_i(ss_prop_t *prop, const char *name, int value)

	

Formal Arguments:

	prop: property list to be modified

	name: name of property to be modified

	value: new integer value

Description: This is a convenience function for modifying an integer-valued property. See ss_prop_set for details.

Return Value: See ss_prop_set.

Parallel Notes: Independent

See Also:

	ss_prop_set: 6.7: Change a property value

	Properties: Introduction for current chapter

Change an unsigned integer property value

ss_prop_set_u is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_set_u(ss_prop_t *prop, const char *name, size_t value)

	

Formal Arguments:

	prop: property list to be modified

	name: name of property to be modified

	value: new unsigned (size_t) value

Description: This is a convenience function for modifying an unsigned integer-valued property. See ss_prop_set for
details.

Return Value: See ss_prop_set.

Parallel Notes: Independent

See Also:

	ss_prop_set: 6.7: Change a property value

	Properties: Introduction for current chapter

Change a floating-point property value

ss_prop_set_f is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_set_f(ss_prop_t *prop, const char *name, double value)

	

Formal Arguments:

	prop: property list to be modified

	name: name of property to be modified

	value: new floating-point value

Description: This is a convenience function for modifying a floating-point property. See ss_prop_set for details.

Return Value: See ss_prop_set.

Parallel Notes: Independent

See Also:

	ss_prop_set: 6.7: Change a property value

	Properties: Introduction for current chapter

Query a property value

ss_prop_get is a function defined in ssprop.c.

Synopsis:

	
void * ss_prop_get(ss_prop_t *prop, const char *name, hid_t type, void *buffer)

	

Formal Arguments:

	prop: property list to be queried

	name: name of queried property

	type: optional type of data to return

	buffer: optional result buffer

Description: The value of a property (or entire property list) can be queried by providing a handle to the property list
and the name of the property (or NULL). If a datatype is supplied then it must be conversion-compatible with
the declared property (or property list) datatype, and the result will be returned as the specified datatype,
otherwise the result is returned in the original datatype. If a buffer is supplied then the value is copied
into the buffer (the caller must ensure that the buffer is large enough), otherwise a buffer is allocated for
the result.

Return Value: On success, returns either the supplied buffer or an newly allocated buffer which the caller should eventually
free. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Query an integer property

ss_prop_get_i is a function defined in ssprop.c.

Synopsis:

	
int ss_prop_get_i(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: property list to be queried

	name: name of queried property

Description: This is a convenience function for querying integer-valued properties. See ss_prop_get for details.

Return Value: Returns -1 on failure. Since this can also be a valid property value, the caller should examine the error
stack to determine if an error in fact occurred.

Parallel Notes: Independent

See Also:

	ss_prop_get: 6.11: Query a property value

	Properties: Introduction for current chapter

Query an unsigned integer property

ss_prop_get_u is a function defined in ssprop.c.

Synopsis:

	
size_t ss_prop_get_u(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: property list to be queried

	name: name of queried property

Description: This is a convenience function for querying unsigned integer-valued properties. See ss_prop_get for details.

Return Value: Returns SS_NOSIZE on failure. Since this can also be a valid property value, the caller should examine the
error stack to determine if an error in fact occurred.

Parallel Notes: Independent

See Also:

	ss_prop_get: 6.11: Query a property value

	Properties: Introduction for current chapter

Query a floating point property

ss_prop_get_f is a function defined in ssprop.c.

Synopsis:

	
double ss_prop_get_f(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: property list to be queried

	name: name of queried property

Description: This is a convenience function for querying floating point properties. See ss_prop_get for details.

Return Value: Returns negative on failure. Since this can also be a valid property value, the caller should examine the
error stack to determine if an error in fact occurred.

Parallel Notes: Independent

See Also:

	ss_prop_get: 6.11: Query a property value

	Properties: Introduction for current chapter

Obtain pointer direct to value

ss_prop_buffer is a function defined in ssprop.c.

Synopsis:

	
void * ss_prop_buffer(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: property list to be queried

	name: optional property name

Description: This function is similar to ss_prop_get except instead of copying the value or values into a new buffer, it
returns a pointer directly into the property list values buffer. If a property name is specified then the
pointer is to the beginning of the specified property, otherwise the pointer is to the beginning of the entire
property values buffer.

Return Value: Returns a pointer into the buffer holding property values on success; null on failure. If the client supplied
the buffer for the values via the ss_prop_cons function then the returned pointer is valid at least until
the property list is destroyed, otherwise the pointer is valid only until the list is destroyed or a new
property is added, whichever occurs first.

Parallel Notes:
.. _SC_ss_prop_buffer:

	1

	 *

See Also:

	ss_prop_cons: 6.3: Property constructor

	ss_prop_get: 6.11: Query a property value

	Properties: Introduction for current chapter

Query the datatype of a property or property list

ss_prop_type is a function defined in ssprop.c.

Synopsis:

	
hid_t ss_prop_type(ss_prop_t *prop, const char *name)

	

Formal Arguments:

	prop: property list to be queried

	name: optional property name

Description: When given a property list and a property name, return the HDF5 datatype that was originally used to declare
the property. If no property name is specified then return the HDF5 datatype of the whole property list (which
is guaranteed to be a compound datatype).

Return Value: Returns an HDF5 datatype on success; negative on failure. The client should eventually call H5Tclose on the
returned datatype. It is a failure to try to obtain the datatype of an empty property.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Queries/sets property list appendability

ss_prop_appendable is a function defined in ssprop.c.

Synopsis:

	
htri_t ss_prop_appendable(ss_prop_t *prop, htri_t new_value)

	

Description: Queries and/or sets whether the property list is appendable. That is, whether new properties can be added to
the property list. If new_value is negative then the appendability status remains unchanged, otherwise it is
set to the new value. Once a property list is marked as not appendable it cannot be later marked as appendable.

Return Value: Returns true (positive) if the property list was appendable before this call, false otherwise. Returns
negative on failure. It is an error to attempt to make a non-appendable property list appendable.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Queries/sets property list modifiability

ss_prop_modifiable is a function defined in ssprop.c.

Synopsis:

	
htri_t ss_prop_modifiable(ss_prop_t *prop, htri_t new_value)

	

Description: Queries and/or sets whether the property list is modifiable. That is, whether property values can be changed.
If new_value is negative then the modifiability status remains unchanged, otherwise it is set to the new
value. Once a property list is marked as not modifiable it cannot be later marked as modifiable.

Return Value: Returns true (positive) if the property list was modifiable before this call, false otherwise. Returns
negative on failure. It is an error to attempt to make a non-modifiable property list modifiable.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Make a property list immutable

ss_prop_immutable is a function defined in ssprop.c.

Synopsis:

	
herr_t ss_prop_immutable(ss_prop_t *prop)

	

Description: This function that marks a property list as non-appendable and non-modifiable and non-destroyable. Once a
property list is marked this way it is said to be immutable and cannot be changed in any way (not even
destroyed except when the library is closed).

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Properties: Introduction for current chapter

Persistent Objects

A persistent object is anything that typically gets stored in an SSlib database. Examples are sets, fields,
relations, templates thereof, etc. For each class of persistent object SSlib creates a link datatype, which
is akin to a C pointer in that it’s a lightweight piece of data (a small C struct with no dynamically
allocated components). But it’s also more than a C pointer because it can point to disk-resident objects, and
the links can be stored in files. Also like C pointers, the object to which a link points must be
dereferenced in order to get to to the actual object, and SSlib provides macros for doing such. In fact, SSlib
provides three macros for each persistent object class.

	SS_FIELD: Takes one argument, field, of type ss_field_t and dereferences that link to obtain a pointer to

	the C struct that implements the field object. The returned value is of type ss_fieldobj_t. The
same pattern is followed for other persistent classes.

	SS_FIELD_M: Just like SS_FIELD except it also takes a member name whose value it returns via C’s arrow

	operator. There really isn’t much point in using this macro but it’s supplied for completeness.

	SS_FIELD_P: Just like SS_FIELD_M except it returns the address of the member instead of the member value.

	This macro is used most often to obtain a pointer to a link that’s stored in some object because
objects store links but almost all SSlib functions take pointers to links. It’s only supplied
for completeness because one can do the same thing by using the “address of” (ampersand) C
operator in front of SS_FIELD_M.

Generally the SAF [https://github.com/markcmiller86/SAF] library will pass around links to objects and dereference the link whenever access to
members of the actual object’s struct is necessary. The primary reason for passing around links instead of
object pointers is that it allows SSlib to relocate objects in memory in order to do certain memory management
tasks and optimizations. However, it’s not really a big performance penalty to repeatedly dereference links
because the link caches the pointer in such a way that most dereferencing operations will incur only two
memory comparisons. And precisely for that reason it is normal practice to pass non-const-qualified pointers
to links when calling most functions: it allows SSlib library to update the link itself and propagate that
change up through the call stack.

Members

	ss_pers_new [Public function]

	ss_pers_copy [Public function]

	ss_pers_reset [Public function]

	ss_pers_dest [Public function]

	ss_pers_deref [Public function]

	ss_pers_update [Public function]

	ss_pers_refer [Public function]

	ss_pers_scope [Public function]

	ss_pers_file [Public function]

	ss_pers_iswritable [Public function]

	ss_pers_topscope [Public function]

	ss_pers_eq [Public function]

	ss_pers_equal [Public function]

	ss_pers_state [Public function]

	ss_pers_cmp [Public function]

	ss_pers_cmp_ [Public function]

	ss_pers_cksum [Public function]

	ss_pers_find [Public function]

	ss_pers_modified [Public function]

	ss_pers_unique [Public function]

	ss_pers_debug [Public function]

	ss_pers_decode_cb [Public function]

	SS_PERS_DEST [Public macro]

	SS_PERS_NEW [Public macro]

	SS_PERS_COPY [Public macro]

	SS_PERS_FIND [Public macro]

	SS_PERS_EQ [Public macro]

	SS_PERS_EQUAL [Public macro]

	SS_PERS_MODIFIED [Public macro]

	SS_PERS_ISNULL [Public macro]

	SS_PERS_UNIQUE [Public macro]

Create a new persistent object

ss_pers_new is a function defined in sspers.c.

Synopsis:

	
ss_pers_t * ss_pers_new(ss_scope_t *scope, unsigned tableid, const ss_persobj_t *init, unsigned flags, ss_pers_t *buf, ss_prop_t UNUSED *props)

	

Formal Arguments:

	scope: The scope that will own this new object.

	tableid: A magic number whose sequence part defines a table

	init: Optional initial data of type ss_persobj_t or a type derived therefrom. The type must
be appropriate for the class of object being created. This argument can be used to
copy a persistent object. ISSUE: Should this be a link instead?

	flags: Creation flags, like SS_ALLSAME

	buf: Optional buffer for return value

	props: Additional properties (none defined yet)

Description: Creates a new persistent object of the specified object type in the specified scope. Normally this function
assumes that every caller could be creating its own object and the table synchronization algorithm will
determine later how many objects were actually created by comparing their contents. However, synchronization
can be an expensive operation which can be avoided when the caller knows that all tasks of the scope’s
communicator are participating to create a single object. This is situation is noted by passing the
SS_ALLSAME bit in the flags argument.

Return Value: Returns a link to the new object on success; the null pointer on failure. If buf is supplied then that will be
the successful return value, otherwise a persistent object link will be allocated.

Parallel Notes: Independent or collective. This function must be collective across the scope’s communicator (although
communication-free) if the SS_ALLSAME bit is passed in the flags argument. In other words, if all
tasks are participating to create one single object, then the call must be collective if we wish to avoid the
synchronization costs later. However, it is still possible for all tasks to create one single object
independently (i.e., creation order doesn’t matter) if they don’t pass SS_ALLSAME and they don’t
mind paying the synchronization cost later.

See Also:

	ss_pers_copy: 7.2: Copy an object

	Persistent Objects: Introduction for current chapter

Copy an object

ss_pers_copy is a function defined in sspers.c.

Synopsis:

	
ss_pers_t * ss_pers_copy(ss_pers_t *pers, ss_scope_t *scope, unsigned flags, ss_pers_t *buf, ss_prop_t *props)

	

Formal Arguments:

	pers: The object to be copied.

	scope: The destination scope that will own the new object.

	flags: Creation flags like SS_ALLSAME (see ss_pers_new).

	buf: Optional buffer for return value.

	props: Additional properties (none defined yet)

Description: Copy the given object and return a link to it. If the object contains memory that needs to be copied (like
character strings or variable length arrays) then those are copied also. Other objects to which the original
pointed are not copied – the new object has links to the same ones.

Return Value: Returns a link to the new object on success; the null pointer on failure. If buf is supplied then that will
be the successful return value, otherwise a persistent object link will be allocated.

Parallel Notes: Independent or collective. This function must be collective across the scope’s communicator (althrough
communication-free) if the SS_ALLSAME bit is passed in the flags argument. In other words, if all tasks are
participating to create one single new object then the call must be collecitve if we wish to avoid the
synchronization costs later. However, it is still possible for all tasks to create one single object
independently (i.e., creation order doesn’t matter) if they don’t pass SS_ALLSAME and they don’t mind paying
the synchronization cost later.

See Also:

	ss_pers_new: 7.1: Create a new persistent object

	Persistent Objects: Introduction for current chapter

Sets persistent object to initial state

ss_pers_reset is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_reset(ss_pers_t *pers, unsigned flags)

	

Formal Arguments:

	pers: The object to be reset

	flags: Bit flags such as SS_ALLSAME

Description: This function sets a persistent object to an initial state of an all-zero bit pattern. The ss_foo``*obj*``_tm and
ss_foo``*obj*``_tf parts of the C struct are set to zero but the other stuff is left unmodified (except the dirty
bit is set).

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent. However, if the SS_ALLSAME bit flag is set then this function should be called collectively
across the communicator of the scope that owns the object.

See Also:

	Persistent Objects: Introduction for current chapter

Destructor

ss_pers_dest is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_dest(ss_pers_t *pers)

	

Description: Destroys a persistent object link by releasing those resources used by a persistent object link. If the link
was allocated on the heap then the caller should free it.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Dereference an object link

ss_pers_deref is a function defined in sspers.c.

Synopsis:

	
ss_persobj_t * ss_pers_deref(ss_pers_t *pers)

	

Description: Given a link to a persistent object, dereference that link and return a pointer to the object itself. This may
involve reading a table into memory if this is the first dereference into that table.

This function is almost never invoked directly by client code. Instead, the client will use macros appropriate
for each object class which will check the link class and cast the return value to the appropriate type. For
instance, SS_FIELD is a macro that takes a field object link as an argument, compile-time checks that the
argument is an ss_field_t pointer, run-time check that the pointer is valid, and return an ss_fieldobj_t
pointer.

Return Value: Returns an object pointer on success; the null pointer on failure.

Parallel Notes: Independent

Issues: We should probably accumulate some sort of statistics here to make sure that the object caching is performing
as expected.

See Also:

	Persistent Objects: Introduction for current chapter

Updates an object link

ss_pers_update is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_update(ss_pers_t *pers)

	

Description: This function makes information in the object link as current as possible. If the object has a permanent home
in the table but the object index stored in the link is indirect then it is converted to a direct index. If
the object is in memory then the link is moved to the `memory’ state. If the `mapidx’ value stored in the
object is different than the object index in the link then the object index is updated in the link.

This function is essentially a weaker version of ss_pers_deref.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	ss_pers_deref: 7.5: Dereference an object link

	Persistent Objects: Introduction for current chapter

Create an object link

ss_pers_refer is a function defined in sspers.c.

Synopsis:

	
ss_pers_t * ss_pers_refer(ss_scope_t *scope, ss_persobj_t *persobj, ss_pers_t *pers)

	

Formal Arguments:

	scope: The scope to which persobj belongs.

	persobj: The object to which the new link will point.

	pers: Optional memory for the link.

Description: This function creates (or fills in) a link to a new object that exists in memory.

Return Value: Returns a pointer to a persisent object link (either the supplied pers or a newly allocated one) on success;
the null pointer on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Obtain scope for an object

ss_pers_scope is a function defined in sspers.c.

Synopsis:

	
ss_scope_t * ss_pers_scope(ss_pers_t *pers, ss_scope_t *buf)

	

Formal Arguments:

	pers: Persistent object link to query

	buf [OUT]: Optional buffer for the result scope link

Description: Every persistent object belongs to a scope and this function returns a link to that scope.

Return Value: On success, returns a link to the scope containing pers. If the caller supplied a buffer for the result in the
buf argument then that’s the success pointer returned. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Obtain file for an object

ss_pers_file is a function defined in sspers.c.

Synopsis:

	
ss_file_t * ss_pers_file(ss_pers_t *pers, ss_file_t *file)

	

Formal Arguments:

	pers: Persistent object link to query

	file [OUT]: Optional buffer for the result file link

Description: Every persistent object belongs to a file and this function returns a link to that file.

Return Value: On success, returns a link to the file containing pers. If the caller supplied a buffer for the result in the
file argument then that’s the success pointer returned. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Test whether an object can be modified

ss_pers_iswritable is a function defined in sspers.c.

Synopsis:

	
htri_t ss_pers_iswritable(ss_pers_t *pers)

	

Description: An object can be modified if it belongs to a scope that is modifiable. This function tests whether that is
true.

Return Value: Returns true (positive) if pers points to a persistent object that exists in a writable scope and false
otherwise. If pers points to a persistent object that is not in memory (e.g., it’s file is not open or its
file has been subsequently closed) then this function returns false. Errors are indicated with a negative
return value.

Parallel Notes: Independent

Issues: Since the client can always obtain a pointer into memory for the object by dereferencing the link, there is
nothing stopping the client from modifying that memory and setting the object’s dirty bit and since all of
that can be done with straight C code (without SSlib assistance) it is impossible for SSlib to warn about that
situation. However, a synchronization should be able to detect and report it.

See Also:

	Persistent Objects: Introduction for current chapter

Obtain top scope for an object

ss_pers_topscope is a function defined in sspers.c.

Synopsis:

	
ss_scope_t * ss_pers_topscope(ss_pers_t *pers, ss_scope_t *buf)

	

Formal Arguments:

	pers: Persistent object link to query

	buf [OUT]: Optional buffer for the result scope link

Description: Every persistent object belongs to a scope, every scope belongs to a file, and every file has one top-scope.
This function returns a link to that top-scope.

Return Value: On success, returns a link to the top-scope for pers. If the caller supplied a buffer for the result in the
buf argument then that’s the success pointer returned. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Determine link equality

ss_pers_eq is a function defined in sspers.c.

Synopsis:

	
htri_t ss_pers_eq(ss_pers_t *pers1, ss_pers_t *pers2)

	

Description: This function determines if two links point to the same object.

Return Value: Returns true (positive) if PERS1 and PERS2 refer to the same object without actually dereferencing the link,
false if not, and negative on error. The names ss_pers_eq and ss_pers_equal come from LISP where the eq
function tests whether its operands refer to the same object and equal that recursively compares its operands
to determine if they have the same value.

Parallel Notes: Independent

See Also:

	ss_pers_equal: 7.13: Determine object equality

	Persistent Objects: Introduction for current chapter

Determine object equality

ss_pers_equal is a function defined in sspers.c.

Synopsis:

	
htri_t ss_pers_equal(ss_pers_t *pers1, ss_pers_t *pers2, ss_prop_t UNUSED *props)

	

Formal Arguments:

	props: A property list to indicate how the comparison should proceed. No properties
are currently defined. If an object contains persistent object links then the
pointed-to objects will be compared with ss_pers_eq instead of recursively
calling ss_pers_equal.

Description: This function determines if two links point to objects that could be consistered to be the same object
even if they don’t point to the same memory. In other words, a “meter” in one database is almost certainly
the same to a “meter” in some other database even though the two object handles point to distinct objects
in memory (i.e., ss_pers_equal is true but ss_pers_eq is false).

Return Value: Returns true (positive) if PERS1 and PERS2 refer to objects whose internals are equal or if PERS1 and
PERS2 both point to the same object or both are null pointers.

Parallel Notes: Independent

See Also:

	ss_pers_eq: 7.12: Determine link equality

	Persistent Objects: Introduction for current chapter

Change link state

ss_pers_state is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_state(ss_pers_t *pers, ss_pers_link_state_t state)

	

Formal Arguments:

	pers: The persistent object link whose state is to be changed.

	state: Desired state for the link, one of the SS_PERS_LINK constants.

Description: A persistent object link can be in either a Closed or Memory state (not including the Filed state of links as
they appear in a file). This function moves a link from state to state and also makes sure all the information
in the link is up to date.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Compares two persistent objects

ss_pers_cmp is a function defined in sspers.c.

Synopsis:

	
int ss_pers_cmp(ss_pers_t *p1, ss_pers_t *p2, const ss_persobj_t *mask)

	

Formal Arguments:

	p1: First of two objects to compare.

	p2: Second of two objects to cmpare.

	mask: Optional mask to use for deep comparisons. A null value implies a shallow
comparison, which means that the comparison should only look at the object
handles and not the objects themselves.

Description: Compares two objects, P1 and P2, and returns a value similar to memcmp or strcmp.

If mask is the null pointer then only the contents of the links P1 and P2 are consulted and the underlying
objects are never referenced, a so called shallow comparison. The return value will be one of the following:

	1
2
3
4

	 | 1 if A > B by some well defined global ordering
 ss_pers_cmp(A,B,NULL) = | 0 if A and B point to the same object
 | -1 if A < B
 | -2 on error

On the other hand, if mask is not null then a deep comparison is performed and mask should be a block of
memory the same size as the objects to which P1 and P2 point (mask is not referenced if P1 and P2 point to
objects of different types). The block of memory should be initialized to zero except where a comparison in
the two underlying objects is desired. For instance, when comparing the roles and topological dimensions of
two categories (SAF__Cat) you would do the following:

	1
2
3
4
5
6

	 SAF_Cat a=...; b=...;
 ss_catobj_t mask;
 memset(&mask, 0, sizeof mask);
 memset(&mask.role, SS_VAL_CMP_DFLT, 1); // default comparison mode for roles
 memset(&mask.tdim, SS_VAL_CMP_DFLT, 1); // default comparison mode for topological dimensions
 ss_pers_cmp((ss_pers_t*)&a, (ss_pers_t*)&b, (ss_persobj_t*)&mask);

Note two things: (1) only the first non-zero byte in the mask corresponding to any particular member is
consulted to determine the kind of comparison, and (2) ss_pers_t and ss_persobj_t are the types from which all
persistent object links and objects are derived and are binary compatible with all links and objects.

To compare all fields of two categories you could just set the whole mask to the desired comparison because
ss_pers_cmp will skip over parts of the mask that don’t actually correspond to things that can be compared
(e.g., padding bytes inserted by the compiler between members of the object and parts of the objects that
are SSlib’s private bookkeeping records):

	1

	 memset(&mask, SS_VAL_CMP_DFLT, sizeof mask);

The various flags defining comparisons are defined by the ss_val_cmp_t type.

Return Value: Similar to memcmp except successful return value is one of: -1, 0, or 1 instead of arbitrary negative and
positive values. This allows -2 (or less) to indicate failure, which is standard practice in SSlib for
comparison functions.

Parallel Notes: Independent

Issues: Deep comparisons are not yet fully recursive. I.e., if P1 and P2 are being deeply compared and the objects to
which P1 and P2 point contain object links which are being compared because they correspond to non-zero bits
in mask, then only a shallow comparison is performed on those links. We plan to add a property list argument
to this function that would allow finer-grained control of the deep comparison recursion.

See Also:

	SS_PERS_EQ: 7.27: Determine link equality

	SS_PERS_EQUAL: 7.28: Determine object equality

	ss_pers_eq: 7.12: Determine link equality

	ss_pers_equal: 7.13: Determine object equality

	Persistent Objects: Introduction for current chapter

Compares two persistent objects

ss_pers_cmp_ is a function defined in sspers.c.

Synopsis:

	
int ss_pers_cmp_(ss_persobj_t *p1, ss_persobj_t *p2, const ss_persobj_t *mask)

	

Formal Arguments:

	p1: First of two objects to compare. This is normally considered to be the
“haystack”.

	p2: Second of two objects to compare. This is normally considered to be the
“needle” and might contain special things like regular expressions, etc.
depending on the values contained in the mask.

	mask: Which elements of P1 and P2 to compare. This isn’t really a true object but
rather a chunk of memory the same size as the objects that is filled with
bytes that say which members of P1 and P2 to compare and how to compare
them.

Description: This is an internal version of ss_pers_cmp and does only a deep comparison of the two objects.

Return Value: On success returns -1, 0, or 1 depending on whether P1 is less than, equal, or greater than P2 by some
arbitrary but consistent comparison algorithm. Returns -2 on failure.

Parallel Notes: Independent

See Also:

	ss_pers_cmp: 7.15: Compares two persistent objects

	Persistent Objects: Introduction for current chapter

Compute a checksum for a persistent object

ss_pers_cksum is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_cksum(ss_persobj_t *persobj, ss_val_cksum_t *cksum)

	

Formal Arguments:

	persobj: Persistent object whose checksum will be computed.

	cksum [OUT]: The computed checksum.

Description: Computes a checksum for the persistent part of a persistent object in memory.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Find objects in a scope

ss_pers_find is a function defined in sspers.c.

Synopsis:

	
ss_pers_t * ss_pers_find(ss_scope_t *scope, ss_pers_t *key, ss_persobj_t *mask, size_t nskip, size_t *nfound, ss_pers_t *buffer, ss_prop_t *props)

	

Formal Arguments:

	scope: Scope to be searched

	key: Value for which to search. This is required even if mask is null because
the key determines the type of objects for which to search.

	mask: Which elements of key to consider when searching. It is an error if no bits
of mask are set, but if mask is the null pointer then key is assumed to
match every object. If non-null then mask and key must be of the same
type. The reason mask is an object pointer rather than an object link is
that the memory is really only used to store one-byte flags that control
how the matching is performed. In other words, mask isn’t truly an
object–it just has to be the same size as an object.

	nskip: Number of initial matched results that should be skipped.

	nfound [INOUT]: The input value limits the matching to the specified number of

	buffer: Optional buffer to fill in with handles to items that were found. If this
is the constant SS_PERS_TEST then this function behaves exactly as if the
caller had supplied a buffer but does not attempt to return links to the
matching objects.

	props: Optional properties (See *Persistent Object Properties*)

Description: This function will find all objects in a particular scope that match certain fields of a specified key object.
The key and mask must refer to persistent objects of the same type where key contains the values to compare
against and mask specifies which part of key to consider and how to compare. However, the mask is not a true
object in that it doesn’t need to be created in some table with ss_pers_new; it can just be allocated on the
stack. Any atomic element of mask that has at least one bit set indicates that the corresponding element of
key is to be considered during the comparison. If no bits of mask are set then an error is raised, but if
mask is the null pointer then we treat the key as matching every object in the scope.

If nfound is non-null then its incoming value will be used to limit the search to the specified number of
returned matches. If more items match than what was specified then the additional items are simply ignored as
if they didn’t even exist (unless the “detect_overflow” property is true, in which case an error is raised).
The caller can pass in SS_NOSIZE if no limit is desired. If nfound is the null pointer (it can only be so if
buffer is also null) then it is treated as if it had pointed to SS_NOSIZE.

The caller can supply a buffer for the result or, by passing a null pointer, request that the library allocate
the buffer. If buffer is supplied then it must contain at least nfound (as set on entry to this function)
elements to hold the result. But if buffer is the special constant SS_PERS_TEST then the function behaves as
if a valid buffer was supplied except that it does not attempt to initialize that buffer in any way. This can
be used to count how many matches would be found and even limit the counting by supplying an initial value for
nfound.

A positive value for an nskip argument causes this function to act as if the first nskip matched objects
didn’t, in fact, match.

Return Value: On success this function returns an array of matching persistent object links into the specified scope (the
caller supplied buffer or one allocated by the library) or the constant SS_PERS_TEST and nfound (if supplied)
will point to the number of matches found limited by the incoming value of nfound (or SS_NOSIZE). If space
permits, the last element of the return value will be followed by a null persistent link, which makes it
possible to loop over the return value even if nfound was the null pointer.

In order to distinguish the case where no item is found from the case where an error occurs, the former
results in a non-null return value (the library will allocate an array of size one if the caller didn’t supply
a buffer and initialize it to SS_PERS_NULL). The nfound returned value is zero in either case.

If no objects match in the specified scope and the object type is not ss_scope_t or ss_file_t and the
noregistries’ property is false or not set then each registry scope associated with the file containing ``scope`
will be searched until matches are found in some scope or all registries are processed.

This function returns the null pointer for failure. It is not considered a failure when the key simply doesn’t
match any of the available objects.

Parallel Notes: Independent

Example: Example 1: Find all fields with an association ratio of 1 in the main scope:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 // Obtain key from a transient scope; allocate the mask on the stack
 ss_field_t *key = SS_PERS_NEW(transient, ss_field_t, SS_ALLSAME);
 ss_fieldobj_t mask;
 // Set key value for which to search and indicate such in the mask
 SS_FIELD(key)->assoc_ratio = 1;
 memset(&mask, 0, sizeof mask);
 mask.assoc_ratio = SS_VAL_CMP_DFLT; //default comparison
 // Search for matches
 size_t nfound = SS_NOSIZE;
 ss_field_t *found = ss_pers_find(main, key, mask, 0, &nfound, NULL, NULL);
 // Print names of all matches
 for (i=0; i<nfound; i++)
 printf("match %d name=\"%s\"\n",i,ss_string_ptr(SS_FIELD_P(found+i,name)));

Example 2: Find first 10 fields with a name consisting of the word “field” in any combination of upper and
lower case letters, followed by one or more digits:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 // Obtain key from a transient scope; allocate the mask on the stack
 ss_field_t *key = SS_PERS_NEW(transient, ss_field_t, SS_ALLSAME);
 ss_fieldobj_t mask;
 // Set key value for which to search and indicate such in the mask
 ss_string_set(SS_FIELD_P(key,name), "^field[0-9]+$");
 memset(&mask, 0, sizeof mask);
 memset(&(mask.name), SS_VAL_CMP_RE_ICASE, 1);
 // Search for matches
 size_t nfound = 10;
 ss_field_t found[10];
 ss_pers_find(main, key, &mask, 0, &nfound, found, NULL);

Example 3: Count how many fields are in the scope proc1:

	1
2
3
4

	 ss_field_t *key =; // any field object
 size_t nfound = SS_NOSIZE; // do not limit the search
 ss_pers_find(proc1, key, NULL, 0, &nfound, SS_PERS_TEST, NULL);
 printf("found %lu item(s)\n", (unsigned long)nfound);

See Also:

	ss_pers_new: 7.1: Create a new persistent object

	Persistent Objects: Introduction for current chapter

Mark object as modified

ss_pers_modified is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_modified(ss_pers_t *pers, unsigned flags)

	

Formal Arguments:

	pers: Persistent object to mark as modified

	flags: Bitflags such as SS_ALLSAME

Description: If a persistent object is modified then it should also be marked as such by invoking this function. If all
tasks modify the persistent object in the same manner then the second argument can be SS_ALLSAME, otherwise it
should be zero. The SS_PERS_MODIFIED macro is a convenience for this function since the client is often
passing a subclass of ss_pers_t and may get compiler warnings.

The client can call this function either before or after making a modification to the object, but it’s
generally safer to make this call first so that the object is marked as modified even if the modification is
interrupted by an error. It doesn’t hurt to mark an object as modified and then not actually modify it – it
just causes the synchronization algorithm to take longer to discover that there weren’t any changes.

The `dirty’ flag is always set to true to indicate that the object’s new value differs (or is about to differ)
from what is stored in the file.

If flags has the SS_ALLSAME bit set then the client is indicating that all tasks belonging to the scope have
(or will) make identical modifications. In this case, if the object’s synced’ flag is set we promote it to
:ref:`SS_ALLSAME <SS> to indicate that the object is synchronized but its sync_cksum and sync_serial values are outdated.
Otherwise the object’s `synced’ flag is set to false.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

Issues: We should really check whether the scope owning the object is read-only, otherwise we won’t get any indication
of an error until we try to synchronize.

See Also:

	SS_PERS_MODIFIED: 7.29: Mark object as modified

	Persistent Objects: Introduction for current chapter

Make a new object unique

ss_pers_unique is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_unique(ss_pers_t *pers)

	

Formal Arguments:

	pers: Persistent object to make unique

Description: If N MPI tasks each create an object that is identical across all the tasks (such as happens when
saf_declare_set is called with all arguments the same) then SSlib will merge those N new objects into a
single permanent object. A similar thing happens when a single tasks creates multiple new identical objects.
The merging happens during a synchronization operation and only for objects that are new (i.e., objects that
were not created with the SS_ALLSAME bit flag).

By calling this function on a persistent object, the persistent object is modified in a unique manner which
causes it to be different than any other object on this MPI task or any other MPI task. The uniqueness should
only be set for new objects.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Debugging aid

ss_pers_debug is a function defined in sspers.c.

Synopsis:

	
herr_t ss_pers_debug(ss_pers_t *pers)

	

Description: Prints all known information about an object to the standard output stream.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Decode persistent object links

ss_pers_decode_cb is a function defined in sspers.c.

Synopsis:

	
size_t ss_pers_decode_cb(void *buffer, const char *serbuf, size_t size, size_t nelmts)

	

Formal Arguments:

	buffer: Array of objects into which to decode serbuf.

	serbuf: Encoded information to be decoded.

	size: Size of each element in buffer array.

	nelmts: Number of elements in buffer array.

Description: Decodes the stuff encoded by ss_pers_encode_cb.

Return Value: Returns total number of bytes consumed from serbuf on success; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Destructor

SS_PERS_DEST is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_DEST(_pers_)

	

Description: This is simply a convenience function for ss_pers_dest so that the caller doesn’t have to cast the argument
and return value. The underlying object is not destroyed–only the link to that object.

Return Value: Always returns null so it can be easily assigned to the object link being destroyed.

Example:
.. _SC_SS_PERS_DEST:

	1

	 field = SS_OBJ_DEST(field);

See Also:

	ss_pers_dest: 7.4: Destructor

	Persistent Objects: Introduction for current chapter

Constructor

SS_PERS_NEW is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_NEW(_scope_, _type_, _flags_)

	

Description: This is simply a convenience function for ss_pers_new so that the caller doesn’t have to cast the argument
and return value. The _type_ should be one of the persistent object link datatypes like ss_field_t, and not
one of the persistent object types like ss_fieldobj_t.

Return Value: Returns a pointer to a link to the new object on success; null on failure.

Example:
.. _SC_SS_PERS_NEW:

	1
2

	 To create a new Field object:
 field = SS_PERS_NEW(scope, ss_field_t, SS_ALLSAME);

See Also:

	ss_pers_new: 7.1: Create a new persistent object

	Persistent Objects: Introduction for current chapter

Copy constructor

SS_PERS_COPY is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_COPY(_old_, _scope_, _flags_)

	

Description: This is simply a convenience function for ss_pers_copy so that the caller doesn’t have to cast the arguments
and return value.

Return Value: Returns a pointer to a link to the new object on success; null on failure.

See Also:

	ss_pers_copy: 7.2: Copy an object

	Persistent Objects: Introduction for current chapter

Find objecs in a scope

SS_PERS_FIND is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_FIND(scope, key, mask, limit, nfound)

	

Description: This is simply a convenence function for ss_pers_find so that the caller doesn’t have to cast the arguments
to ss_pers_t pointers (they’ll still be run-time type checked).

Return Value: See ss_pers_find

Parallel Notes: See ss_pers_find

See Also:

	ss_pers_find: 7.18: Find objects in a scope

	Persistent Objects: Introduction for current chapter

Determine link equality

SS_PERS_EQ is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_EQ(link1, link2)

	

Description: This macro returns true if two links point to the same object. Arguments are cast appropriately.

Return Value: True (positive) if same object, false if different, negative on error.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Determine object equality

SS_PERS_EQUAL is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_EQUAL(link1, link2)

	

Description: This macro returns true if two links point to equivalent objects. Arguments are cast appropriately.

Return Value: True (positive) if objects are equal, false if not equal, negative on error.

Parallel Notes: Independent.

See Also:

	Persistent Objects: Introduction for current chapter

Mark object as modified

SS_PERS_MODIFIED is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_MODIFIED(_pers_, _flags_)

	

Description: This macro is simply a wrapper around ss_pers_modified so the caller doesn’t have to cast arguments.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	ss_pers_modified: 7.19: Mark object as modified

	Persistent Objects: Introduction for current chapter

Check if link is null

SS_PERS_ISNULL is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_ISNULL(_pers_)

	

Description: A null persistent object link is indicated by the link being in the SS_PERS_LINK_NULL state.

Return Value: Returns true if the specified link a null pointer or is in the null state; false otherwise.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Make an object unique

SS_PERS_UNIQUE is a macro defined in sspers.h.

Synopsis:

	
SS_PERS_UNIQUE(_pers_)

	

Description: Makes an object unique by giving it a unique serial number. The number is unique across all the MPI tasks so
that when N tasks create N identical new objects that only differ in serial number, SSlib will convert them to
N identical permanent objects instead of merging them all into a single permanent object.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Persistent Objects: Introduction for current chapter

Persistent Object Tables

No description available.

Members

	ss_table_indirect [Public function]

Find indirect indices for an object

ss_table_indirect is a function defined in sstable.c.

Synopsis:

	
size_t ss_table_indirect(ss_table_t *table, size_t idx, size_t beyond)

	

Formal Arguments:

	table: Table in which idx exists

	idx: Index for the object for which we are searching for an indirect index. This
is usually a direct index but doesn’t necessarily have to be such.

	beyond: Return an indirect index greater than this value. A value of zero means to
return the first indirect index. This argument can be used to scan through
a table looking for all matching indirect indices for a particular direct
index. If this is a direct index (such as zero) then the first matching
indirect index is returned.

Description: Given a direct index for a table object, return the first indirect index which also points to the object and
which is larger than beyond.

Return Value: Returns a matching indirect index on success; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

	Persistent Object Tables: Introduction for current chapter

Strings

Variable length strings as stored in persistent objects are manipulated through the SSlib string interface
and use a datatype ss_string_t which is opaque to the client. This allows the implementation of persistent
object strings to be changed as necessary to keep pace with functionality and performance improvements in the
HDF5 string datatype.

As it turns out, HDF5 is unable to output variable length strings in parallel (1.7.3 2003-09-12). Therefore it
has become necessary to change the implementation in SSlib already: all character strings for all objects of a
particular scope will be stored in an extendible “Strings” dataset of type H5T_NATIVE_UCHAR in the same scope.
Any object that contains a variable length string will contain an index into the “Strings” dataset, and when the
object is in memory it will also contain a pointer directly to the string value. We employ an opaque HDF5
datatype to represent the string in memory and register a conversion function to allocate/find the string in
the “strings” dataset during I/O. The only problem with this approach is that HDF5-level tools don’t
understand that the offset is an index into the Strings dataset for a character string.

When a new task is opened all strings will initially have the same contents for the variable length string
buffer, which is read by ss_string_boot. As execution progresses different tasks will add different strings
to the buffer in different orders and the tasks will become out of sync. When objects of a scope are
synchronized we will be guaranteed that all tasks contain a valid Strings buffer, although the order of the
new values in the buffer may differ between tasks. The ss_string_flush function is responsible for choosing
one of the scope tasks to write the string data back to the file.

SSlib variable length strings support uses length rather than NUL characters to mark the end of a string and
are therefore capable of storing strings of bytes that might have embedded NUL characters.

Members

	ss_string_get [Public function]

	ss_string_ptr [Public function]

	ss_string_set [Public function]

	ss_string_memset [Public function]

	ss_string_reset [Public function]

	ss_string_realloc [Public function]

	ss_string_cmp [Public function]

	ss_string_cmp_s [Public function]

	ss_string_cat [Public function]

	ss_string_splice [Public function]

	ss_string_len [Public function]

	ss_string_memlen [Public function]

Get a C string from a persistent string

ss_string_get is a function defined in ssstring.c.

Synopsis:

	
char * ss_string_get(const ss_string_t *str, size_t bufsize, char *buf)

	

Formal Arguments:

	bufsize: Size of buf (only referenced if buf is non-null).

	buf: Optional buffer in which to store the C string. This buffer is assumed to be an
array of at least bufsize characters.

Description: Given information about a persistent string, return a pointer to a C string, i.e., an array of NUL-terminated
characters. If the caller supplies a buffer then the string will be copied into that buffer and NUL
terminated, otherwise this function mallocs a new buffer to hold the result.

Return Value: On success, returns buf if non-null or else allocates a result buffer. On failure returns the null pointer.
It is a failure to supply a bufsize which is not large enough to hold the entire string value with its NUL
terminator. The caller is responsible for freeing any return value allocated by this function.

Parallel Notes: Independent

Issues: SSlib stores strings with a byte count, so if the string was stored without a terminating NUL character then
it will also be returned as such.

See Also:

	Strings: Introduction for current chapter

Obtain pointer into string object

ss_string_ptr is a function defined in ssstring.c.

Synopsis:

	
const char * ss_string_ptr(const ss_string_t *str)

	

Description: This function is similar to ss_string_get except rather than copying the string to some other memory it
returns a pointer directly into the ss_string_t object. The caller should expect that the pointer is valid
only until some other operation on that object.

Return Value: On success, returns a temporary pointer directly into the str object. If the value is zero bytes long then a
pointer to a NUL character is returned instead of null.

Parallel Notes: Independent

Issues: The returned value is `const’ because if it points into the Strings array then it might be the case that
multiple strings currently having the same value are sharing the same storage.

See Also:

	ss_string_get: 9.1: Get a C string from a persistent string

	Strings: Introduction for current chapter

Store a C string in a persistent string

ss_string_set is a function defined in ssstring.c.

Synopsis:

	
herr_t ss_string_set(ss_string_t *str, const char *s)

	

Formal Arguments:

	str: The destination persistent string.

	s: The source C string to copy.

Description: Given a C-style NUL-terminated character string stored in s, make the persistent string object str have that
same value. The ss_string_memset function can be used to store arbitrary data that might have embedded NUL
characters or that might not be NUL-terminated.

Return Value: Returns non-negative on success and negative on failure. The success side effect is that str has the same
value as s.

Parallel Notes: Independent

See Also:

	ss_string_memset: 9.4: Store a byte array in a string

	Strings: Introduction for current chapter

Store a byte array in a string

ss_string_memset is a function defined in ssstring.c.

Synopsis:

	
herr_t ss_string_memset(ss_string_t *str, const void *value, size_t nbytes)

	

Formal Arguments:

	str: The destination variable length string.

	value: The optional value to assign to str. If NULL then a value of all zero bytes is
used.

	nbytes: The number of bytes in value.

Description: This function is similar to ss_string_set except the number of bytes in value is explicitly passed instead
of looking for the first NUL character.

Return Value: Returns non-negative on success and negative on failure.

Parallel Notes: Independent

See Also:

	ss_string_set: 9.3: Store a C string in a persistent string

	Strings: Introduction for current chapter

Free memory associated with the string

ss_string_reset is a function defined in ssstring.c.

Synopsis:

	
herr_t ss_string_reset(ss_string_t *str)

	

Description: Frees the character array value stored in str but does not free str itself.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Weakly reset a string

ss_string_realloc is a function defined in ssstring.c.

Synopsis:

	
herr_t ss_string_realloc(ss_string_t *str)

	

Description: Sometimes we want a variable length string to keep the same value it had but to be reallocated in the string
backing store. For instance, when a variable length string is copied from one scope to another we want to to
keep the same value but it cannot continue to have the same dataset offset since the new scope has a
completely different dataset for string storage.

Return Value: Returns non-negative on success; negative on failure

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Compares two variable length strings

ss_string_cmp is a function defined in ssstring.c.

Synopsis:

	
int ss_string_cmp(const ss_string_t *s1, const ss_string_t *s2)

	

Description: This function is similar to memcmp but its arguments are variable length strings instead.

Return Value: Returns -1 if the value of S1 is less than S2, 1 if S1 is greater than S2, and zero if they are equal in
value. Returns -2 on failure (beware that this is a refinement of the more general negative returns on
failure used throughout SSlib). It is an error if S1 or S2 is a null pointer, but not if either or both have
no associated value. Lack of a value is less than any other value and if S1 and S2 both lack a value they are
considered equal.

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Compare persistent string with C string

ss_string_cmp_s is a function defined in ssstring.c.

Synopsis:

	
int ss_string_cmp_s(const ss_string_t *str, const char *s)

	

Description: This function is similar to strcmp but its first argument is a persistent string instead. It compares the
value of the persistent string with the C string s.

Return Value: Returns -1 if the value of str is less than s, 1 if str is greater than s, and zero if they are
equal in value. Returns -2 on failure (beware that this is a refinement of the more general negative returns
on failure used throughout SSlib).

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Append one string to another

ss_string_cat is a function defined in ssstring.c.

Synopsis:

	
herr_t ss_string_cat(ss_string_t *str, const char *s)

	

Description: Changes the value of the persistent string by appending another string.

Return Value: Returns non-negative on success; negative on failure. Successful side effect is that the value of str is
modified by appending the string s, which should be a C NUL-terminated string. If the original value of str
is NUL-terminated then the additional s value will replace that NUL, otherwise the additional value will be
added after the existing value.

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Substring modification

ss_string_splice is a function defined in ssstring.c.

Synopsis:

	
herr_t ss_string_splice(ss_string_t *str, const char *value, size_t start, size_t nbytes, size_t nreplace)

	

Formal Arguments:

	str: String object to be modified by this operation.

	value: Optional new data for part of the string value. If this argument is the
null pointer and nbytes is positive then the new data will be all NUL
characters (this allows for an easy way to extend the length of a string).

	start: Byte offset at which to place the new data in the string.

	nbytes: Length of the new data in bytes.

	nreplace: Number of bytes replaced by the new data. If SS_NOSIZE is passed then all
bytes from start to the end of the original value will be replaced by the
new value.

Description: This function is able to modify a string value by modifying, inserting, or deleting bytes. It does not assume
that value is a C-style NUL-terminated string.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Query the length of a persistent string

ss_string_len is a function defined in ssstring.c.

Synopsis:

	
size_t ss_string_len(const ss_string_t *str)

	

Description: This function returns the number of initial non-NUL characters in a string’s value. If str’s value is a
typicall NUL-terminated C-style string then this function’s return value is identical to strlen. However,
if str’s value has no NUL characters then this function’s return value is identical to ss_string_memlen.

Return Value: Returns the number of initial non-NUL characters in a string on success; returns SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

	ss_string_memlen: 9.12: Query the length of a persistent string

	Strings: Introduction for current chapter

Query the length of a persistent string

ss_string_memlen is a function defined in ssstring.c.

Synopsis:

	
size_t ss_string_memlen(const ss_string_t *str)

	

Description: Given a persistent string, return the number of characters contained in that string, including the terminating NUL
character if any. Note that for NUL terminated strings this is one more than what strlen would have
returned, but this behavior is necessary since SSlib byte-counts all string data in order to allow strings
that have embedded NUL characters and that might lack a NUL terminator. In other words, SSlib strings can
store any type of data.

Return Value: On success, returns the actual number of bytes stored for the string including a NUL terminator if any.
Returns SS_NOSIZE on error.

Parallel Notes: Independent

See Also:

	Strings: Introduction for current chapter

Variable Length Arrays

SSlib has support for small, variable-length, arrays with independent operations. The array elements can be
either persistent object links or a user-defined datatype without embedded SSlib special types.
The data for all variable length arrays in a scope is aggregated (together with the variable length strings)
into a single dataset which is read in its entirety when a scope is opened.

The reason for the distinction between whether the array stores SSlib datatypes or not is because conversion
between memory and file representations, calculation of checksums, and interprocess communication require
facilities provided by SSlib for those types and aren’t available (or are handled entirely differently) for
the non-SSlib datatypes. In practice this doesn’t turn out to be a problem because variable length arrays are
generally only used to store persistent object links (as in a Set object pointing to Collections) or native
integers (as in a Field’s permutation vector).

An array is born with zero elements of of ss_pers_t type. If the array is intended to store something other
than object links then its datatype must be changed with ss_array_target. The number of elements in an array
is changed with ss_array_resize. The ss_array_get and ss_array_put functions query or modify elements of
an array and ss_array_reset sets the array back to an initial state.

Members

	ss_array_target [Public function]

	ss_array_targeted [Public function]

	ss_array_resize [Public function]

	ss_array_get [Public function]

	ss_array_put [Public function]

	ss_array_reset [Public function]

	ss_array_nelmts [Public function]

Change array element datatype

ss_array_target is a function defined in ssarray.c.

Synopsis:

	
herr_t ss_array_target(ss_array_t *array, hid_t ftype)

	

Formal Arguments:

	array: Array whose datatype is to be modified.

	ftype: Datatype of the array elements as stored in the file.

Description: Every array has two datatypes associated with it: a datatype for the elements as they are stored in the file,
and a datatype of the elements as they exist in memory with the ss_array_put and ss_array_get functions.
When a new array is created the memory datatype is the HDF5 equivalent of ss_pers_t (a persistent object link)
and the file datatype is its counterpart, ss_pers_tf. This function sets the file datatype to the specified
value and clears the memory buffer and associated memory datatype.

Return Value: Returns non-negative on success; negative on failure. It is an error to modify the file datatype if the array
size is positive.

Parallel Notes: Independent

See Also:

	ss_array_get: 10.4: Obtain array value

	ss_array_put: 10.5: Modify part of an array

	Variable Length Arrays: Introduction for current chapter

Inquire about array file datatype

ss_array_targeted is a function defined in ssarray.c.

Synopsis:

	
hid_t ss_array_targeted(ss_array_t *array)

	

Description: Every array has a file datatype that dermines how values are stored in a file. This function returns a copy of
that datatype.

Return Value: On success, a positive object ID for a copy of the file datatype. If an array stores links to other objects
then the returned datatype is a copy of ss_pers_tf. Returns negative on failure.

Parallel Notes: Independent

See Also:

	Variable Length Arrays: Introduction for current chapter

Change the size of a variable length array

ss_array_resize is a function defined in ssarray.c.

Synopsis:

	
herr_t ss_array_resize(ss_array_t *array, size_t nelmts)

	

Formal Arguments:

	array: Array whose size is to be changed.

	nelmts: Number of total elements to be contained in the array.

Description: Elements can be added or removed from the end of an array. If items are added then they are also initialized
to zero.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent. If more than one task changes the size of an array then they must all make identical changes to
the size.

See Also:

	Variable Length Arrays: Introduction for current chapter

Obtain array value

ss_array_get is a function defined in ssarray.c.

Synopsis:

	
void * ss_array_get(ss_array_t *array, hid_t mtype, size_t offset, size_t nelmts, void *buffer)

	

Formal Arguments:

	array: Array from which to retrieve data.

	mtype: Datatype for memory. Pass ss_pers_tm (or preferably negative) for an array
of persistent object links.

	offset: First element to be returned. It is an error to specify a starting element
that is outside the valid range of values defined for the array.

	nelmts: Number of elements to return. The offset and nelmts define a range of
elements to be returned. If the range extends beyond the end of the defined
range of elements for array then an error is raised; but if nelmts is the
constant SS_NOSIZE then all elements up to and including the last element
are returned.

	buffer: The optional caller-supplied buffer to be filled in by the request. If the
caller didn’t supply a buffer then one will be created.

Description: This function extracts the array value or subpart thereof. The value is copied into the optional
caller-supplied buffer (or a buffer is allocated). If the value consists of more than one
element then desired elements to be returned can be specified with an offset and length.

Return Value: Returns a pointer (buffer if non-null) on success; null on failure. If the caller doesn’s supply buffer then
this function will allocate one.

Parallel Notes: Independent

See Also:

	Variable Length Arrays: Introduction for current chapter

Modify part of an array

ss_array_put is a function defined in ssarray.c.

Synopsis:

	
herr_t ss_array_put(ss_array_t *array, hid_t mtype, size_t offset, size_t nelmts, const void *value)

	

Formal Arguments:

	array: The array whose value will be modified.

	mtype: The datatype of the values pointed to by value. If the array contains
persistent object links then pass ss_pers_tm (or preferably negative).

	offset: The array element number at which to put value.

	nelmts: The number of array elements in value. If this is the constant SS_NOSIZE
then we assume that value contains enough data to fill up the current size
of the array beginning at the specified offset.

	value: The value to be written into the array.

Description: nelmts values beginning at array element offset are modified by setting them to value.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

Issues: there really isn’t any point in actually converting the existing values to memory format and initializing the
array’s mbuf if we’re about to overwrite the whole thing anyway.

See Also:

	Variable Length Arrays: Introduction for current chapter

Free memory associated with the array

ss_array_reset is a function defined in ssarray.c.

Synopsis:

	
herr_t ss_array_reset(ss_array_t *array)

	

Description: Frees the array value stored in array but does not free array itself.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Variable Length Arrays: Introduction for current chapter

Query the number of elements

ss_array_nelmts is a function defined in ssarray.c.

Synopsis:

	
size_t ss_array_nelmts(const ss_array_t *array)

	

Description: This function returns the number of elements defined in array.

Return Value: Number of elements on success; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

	Variable Length Arrays: Introduction for current chapter

Files

An SSlib file is an HDF5 file with a certain minimum internal structure: all SSlib files contain a group named
“/SAF” which serves as the top-level scope for the file (there may be additional groups that also implement
other scopes). The top-level scope is always opened with the file’s communicator and has a Scope table in
addition to the usual tables. The Scope table is a list of all scopes contained in the file and the first
element of that table is the top-level scope itself.

Every scope also has a File table that lists all files referred to by objects stored in that scope. The first
element of every File table is understood to be the file containing that table.

Files are always opened with the ss_file_open function (or the convenience ss_file_create) and closed with
ss_file_close. The file-related functions operate on or return a link of type ss_file_t, which points to
some entry in a top-scope’s File table.

In addition to the collection of File tables in all scopes of all files that are currently
open, the library maintains a per-task list of files and a mapping from the File table members to
this global list. The mapping from a File table member to the gfile array is accomplished with the
ss_file_open function. This allows the following:

	Members from multiple File tables can point to a common underlying HDF5 file,

	The file whose name was originally recorded in the File table can be temporarily renamed,

	Newly discovered file objects can be implicitly opened if they match a previous open file.

The implicit opening needs more discussion: whenever SSlib opens a file (call it the master file) it looks
at the File tables of the master file to discover the names of all subordinate files that might
be referenced by the master file (i.e., all ss_file_t objects except the first one in each table,
which refers to the master file itself). If any of the subordinate names are relative, it temporarily converts
them to absolute names using the master file’s directory as the current working directory and uses these
converted names when searching for matching entries in the GFile array. If the subordinate file under
consideration matches a name in the GFile array then the subordinate file will point to that entry, thus
sharing the entry with some other file; otherwise the subordinate file will point to a brand new entry. In any
case, the subordinate file’s explicit_open flag will be set to false and the GFile entry’s cur_opens
counter will not be incremented. If the GFile entry is marked as currently open then the subordinate
file is also implicitly open, sharing the same underlying HDF5 file and MPI communicator. Any implicitly
opened file can be reopened at any time, either with the same flags as it already shares or with a brand new
name, and once that happens the file is considered to be explicitly opened. Care should be taken to ensure
that object links weren’t already dereferenced through the implicitly opened file, or two or more links that
look identical might not be so (this could actually be checked by SSlib with an appropriate counter).
Only files that are explicitly opened can be explicitly closed. Any implicitly opened files will implicitly
close once all explicitly opened files in common are closed.

Members

	ss_file_open [Public function]

	ss_file_references [Public function]

	ss_file_openall [Public function]

	ss_file_create [Public function]

	ss_file_isopen [Public function]

	ss_file_istransient [Public function]

	ss_file_iswritable [Public function]

	ss_file_readonly [Public function]

	ss_file_synchronize [Public function]

	ss_file_synchronized [Public function]

	ss_file_flush [Public function]

	ss_file_close [Public function]

	ss_file_registry [Public function]

	ss_file_topscope [Public function]

Open or create a file

ss_file_open is a function defined in ssfile.c.

Synopsis:

	
ss_file_t * ss_file_open(ss_file_t *file, const char *name, unsigned flags, ss_prop_t *props)

	

Formal Arguments:

	file: Optional handle to a persistent file object from a File table.

	name: Optional name of file to be opened.

	flags: HDF5-style file access flags.

	props: Optional file property list (see *File Properties*).

Description: Explititly opens an SSlib file and returns a link to the ss_file_t object for that file. Either file or name
or both may be specified. If one or the other (but not both) is specified then the file is simply opened with
the name contained in the file object or the specified name. If both are specified then a mapping from the
file object to the specified name is established, which is necessary if the name originally recorded in the
Files table is no longer valid due to the file being moved in the file system.

Depending on flags, the file might be created if it doesn’t exist (H5_ACC_CREATE) or truncated if it does exist
(H5_ACC_TRUNC). If the file is truncated, files which were mentioned in its File table are not
automatically deleted or truncated and other files which link to this truncated file will subsequently contain
dangling or invalid links.

SSlib supports transient objects by placing them in transient files. A transient file is simply a special
SSlib file that doesn’t correspond to any underlying storage (not even an HDF5 file using the core virtual
file driver). Such files support more or less the same SSlib operations as real files although some
operations may be tuned for this special case (e.g., ss_file_flush). Transient files are always created for
read and write access as are the scopes they contain, and are denoted as such by the the bit H5F_ACC_TRANSIENT
in the flags argument. They share the same name space as their permanent cousins, and thus it is not possible
to have a transient and permanent file both named “foo.saf” although creating a transient file doesn’t affect
any file that might already exist by that name.

All File tables of the file that is newly opened are scanned and all of their members are added to the
GFile array. If that array already had the name marked as open then the corresponding entry of the File
table will be implicitly opened. Files opened implicitly need not be closed and can be opened explicitly at
any time (although if one is going to open it explicitly it’s best to do so early on).

The ss_file_create function is a convenience for creating a new file.

Return Value: Returns a link to the ss_file_t object for the newly opened file on success; null on failure. If the file
argument is supplied then this will be the successful return value.

Parallel Notes: Collective across the file’s communicator as specified by props.comm, defaulting to the same thing as
the library’s communicator.

Issues: HDF5 doesn’t yet (1.6.0) support the H5F_ACC_TRANSIENT bit, which would essentially make all operations on the
file no-ops. Therefore this functionality must be supported in SSlib.

See Also:

	ss_file_create: 11.4: Create a new file

	ss_file_flush: 11.11: Write pending data to file

	Files: Introduction for current chapter

Obtain information about referenced files

ss_file_references is a function defined in ssfile.c.

Synopsis:

	
ss_file_ref_t * ss_file_references(ss_file_t *master, size_t *nfiles, ss_file_ref_t *fileref, ss_prop_t UNUSED *props)

	

Formal Arguments:

	master: The file in question

	nfiles [INOUT]: Upon return this argument will point to the number of valid entries

	fileref: Optional pointer to an array of file reference information that will be
initialized by this function and returned (if non-null) as the successful
return value of this function.

	props: File properties (none defined yet)

Description: A SAF [https://github.com/markcmiller86/SAF] database can consist of many files which reference each other. This function will return information
about all such files that might be referenced by the master file. The caller is expected to fill in certain
members of the returned array and then use that array to call ss_file_openall.

Return Value: On success, returns either fileref (if non-null) or an allocated array and the nfiles argument indicates how
many elements of the return value have been initialized. Returns the null pointer on failure.

Parallel Notes: Independent.

See Also:

	ss_file_openall: 11.3: Open many files

	Files: Introduction for current chapter

Open many files

ss_file_openall is a function defined in ssfile.c.

Synopsis:

	
herr_t ss_file_openall(size_t nfiles, ss_file_ref_t *fileref, unsigned flags, ss_prop_t *props)

	

Formal Arguments:

	nfiles: Number of entries in the fileref array.

	fileref: Array of information for files to be opened.

	flags: Flags to control how files are opened.

	props: Additional file opening properties (see *File Properties*).

Description: This function opens all files specified in the arguments.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the union of communicators specified in the fileref array.

See Also:

	Files: Introduction for current chapter

Create a new file

ss_file_create is a function defined in ssfile.c.

Synopsis:

	
ss_file_t * ss_file_create(const char *name, unsigned flags, ss_prop_t *props)

	

Formal Arguments:

	name: Name of file to be created.

	flags: HDF5-style file access flags (see ss_file_open).

	props: Optional file property list (see *File Properties*).

Description: Creates and initializes an SSlib file. This is actually just a convenience function for calling ss_file_open
with a flags argument of H5F_ACC_RDWR | H5F_ACC_TRUNC | H5F_ACC_CREAT in addition to those bit flags passed
into this function.

Return Value: Same as ss_file_open.

Parallel Notes: Same as ss_file_open.

See Also:

	ss_file_open: 11.1: Open or create a file

	Files: Introduction for current chapter

Test file open status

ss_file_isopen is a function defined in ssfile.c.

Synopsis:

	
hid_t ss_file_isopen(ss_file_t *file, const char *name)

	

Formal Arguments:

	file: Optional handle to a persistent File object.

	name: Optional real name of file to test for open status.

Description: Determines whether a file named name (names normalized with ss_file_fixname before being compared) is open,
or whether the persistent file object file corresponds to an open file, or whether file is currently mapped to
name depending on whether only name is specified, only file is specified, or both name and file are specified,
respectively.

Return Value: Returns true (a positive HDF5 file handle) if the file is currently open (explicitly or implicitly); false
if the file is not currently open; negative otherwise. The HDF5 file handle is not duplicated and the client
should not invoke H5Fclose on the return value.

Parallel Notes: Independent. However, since the underlying HDF5 file was opened collectively, many operations on that file
must necessarily be collective and therefore if the return value is to be used as a file (instead of a logic
value) then this function will most likely be called collectively across the file’s communicator.

Issues: The returned HDF5 file handle is not duplicated before being returned for three reasons: (1) the H5Freopen
function returns a handle which does not participate in the same file mount structure as the original and thus
we cannot guarantee that SSlib’s file view would be consistent with that of the returned handle, (2) the
H5Freopen function is collective which would preclude this function from being usable as an independent test
of file availability, and (3) requiring the caller to H5Fclose the return value gets in the way of using
this function as a predicate.

Since transient files are not supported by HDF5 there can be no HDF5 file handle for a file created with the
H5F_ACC_TRANSIENT bit set. This function returns the integer 1 for such files, which is a positive true value
but which is not a valid HDF5 file handle (or any valid handle for that matter).

See Also:

	Files: Introduction for current chapter

Tests transient state of a file

ss_file_istransient is a function defined in ssfile.c.

Synopsis:

	
htri_t ss_file_istransient(ss_file_t *file)

	

Formal Arguments:

	file: A link to some File object

Description: This function tests whether file is a transient file. Transient files don’t correspond to any underlying
permanent storage (not even to an HDF5 file with a core driver).

Return Value: Returns true (positive) if file is a transient file; false if file is a permanent file; negative on error. It
is an error to query a file which isn’t in memory yet and therefore doesn’t correspond to an open file.

Parallel Notes: Independent

See Also:

	Files: Introduction for current chapter

Test file writability

ss_file_iswritable is a function defined in ssfile.c.

Synopsis:

	
htri_t ss_file_iswritable(ss_file_t *file)

	

Formal Arguments:

	file: A link to some File object

Description: Files can be open for read-only access or for read and write access. This function tests the writing
capability of the file in question.

Return Value: Returns true (positive) if file was opened with the H5F_ACC_RDWR flag and false otherwise; returns negative on
failure, including when file is not open.

Parallel Notes: Independent

See Also:

	Files: Introduction for current chapter

Mark file as read-only

ss_file_readonly is a function defined in ssfile.c.

Synopsis:

	
herr_t ss_file_readonly(ss_file_t *file)

	

Description: A file can be marked as read-only even after it is opened for read-write. This is often useful when a file is
created since a read-only file results in certain optimizations (such as knowing that such a file is always in
a synchronized state). Marking a file as read-only can be substantially faster than closing the file and then
reopening it since no I/O needs to happen.

The file should be in a synchronized state before this function is called.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file’s communicator.

Issues: It would be nice if HDF5 had a similar function, which would add an extra level of error checking to prevent
SSlib from accidently writing to the HDF5 file after it was marked as read-only.

See Also:

	Files: Introduction for current chapter

Synchronize all scopes of a file

ss_file_synchronize is a function defined in ssfile.c.

Synopsis:

	
herr_t ss_file_synchronize(ss_file_t *file, ss_prop_t *props)

	

Formal Arguments:

	file: The file to synchronize.

	props: Optional synchronization properties.

Description: As mentioned in ss_scope_synchronize, persistent object tables may become unsynchronized across the MPI
tasks that own them. This function is simply a convenience function to synchronize all tables of all scopes
that belong to the specified open file. See *Synchronization Algorithm* for more details.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file’s communicator.

Issues: If the caller supplies a property list then the `err_newptrs’ integer property should be a member of that list
since it is used internally by this function.

See Also:

	ss_scope_synchronize: 13.7: Synchronize a scope

	Files: Introduction for current chapter

Query file synchronization state

ss_file_synchronized is a function defined in ssfile.c.

Synopsis:

	
htri_t ss_file_synchronized(ss_file_t *file)

	

Formal Arguments:

	file: An open file

Description: As detailed in ss_scope_synchronize, scopes may become out of sync across the MPI tasks that own them. This
function queries all open scopes of the specified file to determine if any of them need to be synchronized,
and may be faster than calling ss_file_synchronize even when all scopes are in a synchronized state.

Return Value: Returns true (positive) if all scopes of file are currently synchronized; false if any scope needs to be
synchronized; negative on failure.

Parallel Notes: Collective across the file’s communicator.

See Also:

	ss_file_synchronize: 11.9: Synchronize all scopes of a file

	ss_scope_synchronize: 13.7: Synchronize a scope

	Files: Introduction for current chapter

Write pending data to file

ss_file_flush is a function defined in ssfile.c.

Synopsis:

	
herr_t ss_file_flush(ss_file_t *file, ss_prop_t *props)

	

Formal Arguments:

	file: The file to be flushed.

	props: Flushing properties. See ss_scope_flush.

Description: As objects are created or modified the library caches changes in memory to prevent repeatedly writing to disk.
This function writes that data to disk. However, to reduce the amount of communication necessary in cases where
the caller knows the file is synchronized, the various data flushing functions do not synchronize first, so
the caller should invoke ss_file_synchronize. The flushing functions also do not generally guarantee that
the data is flushed from HDF5 to the underlying file.

Flushing a transient file is a no-op.

The ss_file_close function both synchronizes and flushes.

Return Value: Returns non-negative on success, negative on failure. It is an error to attempt to flush a file which is not
open.

Parallel Notes: Collective across the file’s communicator (see ss_file_open).

Example: The following code flushes data to HDF5 and then tells HDF5 to flush its data to the file:

	1
2
3
4
5

	 ss_file_t file = ss_file_open(....);

 ss_file_synchronize(file);
 ss_file_flush(file, NULL);
 H5Fflush(ss_file_isopen(file), H5F_SCOPE_GLOBAL);

See Also:

	ss_file_close: 11.12: Close a file

	ss_file_open: 11.1: Open or create a file

	ss_file_synchronize: 11.9: Synchronize all scopes of a file

	ss_scope_flush: 13.9: Write pending data to file

	Files: Introduction for current chapter

Close a file

ss_file_close is a function defined in ssfile.c.

Synopsis:

	
herr_t ss_file_close(ss_file_t *file)

	

Formal Arguments:

	file: The file to be closed

Description: Closes a file and all scopes belonging to that file. All scopes belonging to the file are synchronized
and flushed to the file first, and then all such scopes are closed. If the file contains scopes that were
serving as registries for other files, those scopes will be removed from those files’ registry stacks.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file’s communicator (see ss_file_open).

Issues: Closing a file simply causes the cur_open reference counter to be decremented in the GFile array. When
this counter reaches zero the file is considered to be closed and we call H5Fclose, but we don’t entirely
reset the GFile array entry to zero just in case there are still things pointing into this file.

See Also:

	ss_file_flush: 11.11: Write pending data to file

	ss_file_open: 11.1: Open or create a file

	ss_file_synchronize: 11.9: Synchronize all scopes of a file

	Files: Introduction for current chapter

Attach an object registry scope

ss_file_registry is a function defined in ssfile.c.

Synopsis:

	
herr_t ss_file_registry(ss_file_t *file, ss_scope_t *registry)

	

Formal Arguments:

	file: The file that is getting the new registry.

	registry: The open scope to serve as the registry. This need not be a top-level scope though
it usually is. It could even be some scope within file in an extreme case.

Description: A find operation searches a specific scope for objects that match some partially initialized key value.
However, sometimes object definitions are in a separate object registry instead and should be “sucked into”
the main file as necessary. An object registry is simply a stack of additional scopes to search when a find
operation for the specified scope fails to locate any matching objects.

If a scope of file is searched during a find operation and results in no matches, then the registry scope is
searched (registries are searched in the order defined with this function) and the object handle that gets
returned is marked as coming from a registry. The current version of the library simply makes links to the
registry scope, but a future version might copy the object from the registry into the specified file along
with all prerequisites.

Registry lists are associated with the shared file information in the GFile array. That is, if two
ss_file_t objects are opened and refer to the same underlying HDF5 file, then adding a registry to one of
those ss_file_t links will cause the other link to also see the registry. This allows files that are opened
implicitly to automatically use the same registry as their explicitly opened counterpart.

	Note: The File, Scope, and Blob tables, which describe infrastructure, do not use object

	registries during find operations. If the registry scope is closed then it is automatically removed from
all the files for which it’s serving as a registry.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent, although it’s typically used in such a way that all tasks of the file communicator make identical
calls to this function to define a common set of object registries.

Example: Here’s how this function might be used:

	1
2
3
4

	 ss_file_t file = ss_file_open("registry.saf",H5F_ACC_RDONLY,NULL);
 ss_scope_t registry = ss_file_topscope(file);
 ss_file_t myfile = ss_file_create("myfile.saf",H5F_ACC_RDWR,NULL);
 ss_file_registry(myfile,registry);

See Also:

	Files: Introduction for current chapter

Obtain top scope

ss_file_topscope is a function defined in ssfile.c.

Synopsis:

	
ss_scope_t * ss_file_topscope(ss_file_t *file, ss_scope_t *buf)

	

Formal Arguments:

	file: File for which to obtain a link to a top scope.

	buf: Optional buffer in which to store the resulting link.

Description: Given a file, return a link to the top scope of that file. This is really just a convenience function for
ss_pers_topscope that exists mostly for compile-time type checking since this is an exceedingly common
operation.

Return Value: Returns a pointer to a top-scope link on success (buf if that was non-null); null on failure.

Parallel Notes: Independent

See Also:

	ss_pers_topscope: 7.11: Obtain top scope for an object

	Files: Introduction for current chapter

Global File Information

No description available.

Members

	ss_gfile_debug_all [Public function]

	ss_gfile_debug_one [Public function]

Print global file table

ss_gfile_debug_all is a function defined in ssgfile.c.

Synopsis:

	
herr_t ss_gfile_debug_all(FILE *out)

	

Description: Displays information about all global files

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Global File Information: Introduction for current chapter

Print information about a global file entry

ss_gfile_debug_one is a function defined in ssgfile.c.

Synopsis:

	
herr_t ss_gfile_debug_one(size_t idx, FILE *out, const char *prefix)

	

Description: Prints information about a single entry in the global file array.

Return Value: Returns non-negative on success; negative on failure

Parallel Notes: Independent

See Also:

	Global File Information: Introduction for current chapter

Scopes

A scope is a collection of persistent object tables that belong to a single file. A file always has one
top-level scope called “SAF [https://github.com/markcmiller86/SAF]” which is returned when the file is opened (see ss_file_open), but may have any
number of additional scopes. Each scope is associated with a communicator which is a subset of the
communicator for file containing the scope, and that communicator defines what tasks “own” the scope.
Operations that open, close, or create scopes are generally collective over the file communicator; operations
that modify the contents of a scope are generally collective over the scope communicator; operations that
simply access the scope are generally independent.

Scopes satisfy a number of design goals:

	Scopes minimize communication by isolating certain objects to a subset of MPI_COMM_WORLD.

	Scopes provide a mechanism for controlled partial reads of the SAF [https://github.com/markcmiller86/SAF] metadata.

	Scopes provide a framework for transient objects.

	Scopes will allow for a crude form of object deletion but at a finer granularity than entire files.

	Scopes turn SAF [https://github.com/markcmiller86/SAF]’s auxiliary files into standalone SAF [https://github.com/markcmiller86/SAF] databases.

A scope is a type of persistent object pointed to by a variable of type ss_scope_t (see *Persistent Objects*).
As such, a scope is simply an entry in a table that gets written to a file. Each file has only one scope table,
called /SAF/Scopes. That is, only the top-level scope contains a Scopes table and the first entry in
that table is always the top-level scope itself, /SAF.

Since a scope is a persistent object, scopes are created, modified, destroyed, and queried just like any other
persistent object. However, since a scope is also part of the file infrastructure, additional operations are
defined and documented in this chapter.

Members

	ss_scope_open [Public function]

	ss_scope_close [Public function]

	ss_scope_isopen [Public function]

	ss_scope_isopentop [Public function]

	ss_scope_istransient [Public function]

	ss_scope_iswritable [Public function]

	ss_scope_synchronize [Public function]

	ss_scope_synchronized [Public function]

	ss_scope_flush [Public function]

	ss_scope_comm [Public function]

Opens a scope

ss_scope_open is a function defined in ssscope.c.

Synopsis:

	
herr_t ss_scope_open(ss_scope_t *scope, unsigned flags, ss_prop_t *props)

	

Formal Arguments:

	scope: A link to a scope object, probably the result of a find operation.

	flags: Various bit flags to control common scope open switches.

	props: Scope opening properties (see *Scope Properties*).

Description: Given a link to a scope (i.e., a link to an entry in the top-level Scopes table of some file that is
currently open), open the scope. The flags argument determines the mode for opening the scope. The following
bits are supported at this time:

H5F_ACC_RDONLY: The scope is opened for read-only access.

H5F_ACC_RDWR: The scope is opened for both read and write access.

H5F_ACC_DEBUG: Turn on scope debugging.

The H5F_ACC_EXCL, H5F_ACC_TRUNC, and H5F_ACC_CREAT bits are not supported by this function because they
require participation of all tasks in the file’s communicator, and therefore SSlib separates scope creation
from scope opening.

The H5F_ACC_RDWR flag can only be used if the containing file is also H5F_ACC_RDWR.

The scope will be a transient scope if and only if the file was opened with H5F_ACC_TRANSIENT. Therefore this
function simply ignores that bit in the flags vector.

Return Value: Returns non-negative on success; negative on failure.

It is an error to open a scope that is already open. However, since the original open might have been
performed on a disjoint subset of tasks, the current operation might not be able to detect a duplicate open.
If disjoint sets of tasks open the same scope for read-only access and no task has the scope open for writing
then things will most likely work properly.

Parallel Notes: Collective across the scope’s communicator, props.comm, defaulting to the same communicator as the file in
which the scope exists.

See Also:

	Scopes: Introduction for current chapter

Closes a scope

ss_scope_close is a function defined in ssscope.c.

Synopsis:

	
herr_t ss_scope_close(ss_scope_t *scope)

	

Description: Closes the specified scope without totally destroying the memory representation. Specifically, the top-scope’s
Scope table is left intact as are the indirect map arrays in all scopes that have them. This is required for
the following common scenario:

The application has two files called File-A and File-B. The application creates a new object (e.g., a
quantity) in File-A without using the SS_ALLSAME flag and then creates another object (e.g., a unit) in
File-B that refers to the object in File-A. The application closes File-A which closes all the
scopes in that file. It then attempts to close File-B, which includes a synchronization and a flush.
However, when flushing, SSlib will need to convert a persistent object link from the Memory state to the
Closed state and convert its indirect object index to a direct object index. The only way this can be done is
by having the indirect mappings for the table that contained the object in File-A.

The scope is assumed to already be synchronized and flushed. In fact, it would not even be possible to flush
the scope from this function because doing so may require a call to H5Dextend, which is file collective.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the scope’s communicator. This is the same set of tasks that originally opened the scope.

See Also:

	Scopes: Introduction for current chapter

Query scope open status

ss_scope_isopen is a function defined in ssscope.c.

Synopsis:

	
hid_t ss_scope_isopen(ss_scope_t *scope)

	

Formal Arguments:

	scope: A link to a scope object.

Description: A scope is either opened or closed at any given time on any given task. This function returns that status.

Return Value: Returns true (a positive HDF5 group handle) if scope is currently opened by the calling task; false if scope
is currently closed; negative on error. The group handle is not duplicated and the caller should not invoke
H5Gclose on the return value. This function returns an error (instead of false) if the scope is not even
booted. To be “booted” means the scope object corresponds to some HDF5 group which is open.

Parallel Notes: Independent

Issues: The group handle return value is not duplicated by this function because (1) not doing so is consistent with
ss_file_isopen and (2) doing so would require this function to be collective.

Since transient files are not supported by HDF5 there can be no HDF5 file handle for a scope created in a
transient file. This function returns the integer 1 for such files, which is a positive true value
but which is not a valid HDF5 group handle (or any valid handle for that matter).

See Also:

	ss_file_isopen: 11.5: Test file open status

	Scopes: Introduction for current chapter

Determines if scope is an open top-scope

ss_scope_isopentop is a function defined in ssscope.c.

Synopsis:

	
htri_t ss_scope_isopentop(ss_scope_t *scope)

	

Description: Determines if scope is open and a top-scope. A scope can be in an opened or closed state. Every file has
exactly one top-level scope which is the first entry in that scope’s Scope table.

Return Value: Returns true (positive) if scope is open and a top-scope or false if not. Returns negative on failure.

Parallel Notes: Independent

Issues: It might be better to just look to see if the specified scope has a communicator other than MPI_COMM_NULL and
has a non-null pointer for a Scope table since only top-level scopes have a Scope table.

See Also:

	Scopes: Introduction for current chapter

Tests transient state of a scope

ss_scope_istransient is a function defined in ssscope.c.

Synopsis:

	
htri_t ss_scope_istransient(ss_scope_t *scope)

	

Formal Arguments:

	scope: Any open scope.

Description: This function tests whether scope is a transient scope. A scope is transient if it belongs to a transient file.

Return Value: Returns true (positive) if scope is a transient scope; false if scope is a permanent scope; negative on error. It
is an error to query a scope which isn’t open.

Parallel Notes: Independent

See Also:

	Scopes: Introduction for current chapter

Tests whether scope can be modified

ss_scope_iswritable is a function defined in ssscope.c.

Synopsis:

	
htri_t ss_scope_iswritable(ss_scope_t *scope)

	

Formal Arguments:

	scope: Any open scope.

Description: If a scope is opened for read-only access then the objects in that scope cannot be modified. This function
tests for that condition.

Return Value: Returns true (positive) if scope is open with write access (that is, the ss_scope_open call was passed the
H5F_ACC_RDWR flag); returns false if the scope is opened for read-only access; returns negative on failures.
It is considered a failure if scope is not open on the calling task.

Parallel Notes: Independent

See Also:

	ss_scope_open: 13.1: Opens a scope

	Scopes: Introduction for current chapter

Synchronize a scope

ss_scope_synchronize is a function defined in ssscope.c.

Synopsis:

	
herr_t ss_scope_synchronize(ss_scope_t *scope, unsigned tableidx, ss_prop_t *props)

	

Formal Arguments:

	scope: A link to an open scope that should be synchronized.

	tableidx: Magic number to define which table to synchronize. If tableidx is
SS_TABLE_ALL then all tables of the scope will be synchronized.

	props: See *Synchronization Properties*

Description: Various scope modifying operations that would normally be collective across the scope’s communicator can be
carried out locally. When this happens the various tasks of the scope’s communicator may store differing
information for the scope. This function is intended to synchronize the various tables of a particular scope
across all the MPI tasks that “own” that scope. See *Synchronization Algorithm* for more details.

Return Value: Returns non-negative on success; negative on failure. It is an error to attempt to synchronize a scope that is
not open.

Parallel Notes: Collective across the scope’s communicator. Substantial communication may be required.

See Also:

	Scopes: Introduction for current chapter

Query scope synchronization state

ss_scope_synchronized is a function defined in ssscope.c.

Synopsis:

	
htri_t ss_scope_synchronized(ss_scope_t *scope, unsigned tableidx)

	

Formal Arguments:

	scope: A link to the scope whose synchronization state is to be queried.

	tableidx: Magic number to define which table to query. If tableidx is greater than or
equal to SS_NPERSL_CLASSES then all tables of the specified scope must be
in a synchronized state before this function returns true.

Description: As detailed in ss_scope_synchronize, scopes may become out of sync when tasks independently modify table
entries. This function will query whether a scope (or some table of the scope) is out of sync without
synchronizing the scope. In fact, even when the scope is in a synchronized state, calling this function may be
faster than calling ss_scope_synchronize.

Return Value: Returns true (positive) if the scope is in a synchronized state; false if synchronization is necessary;
negative on error. It is an error to make this query about a scope which is not open.

Parallel Notes: Collective across a superset of the scope’s communicator. Communication is required within the scope
communicator and other tasks will return true (positive) because the scope is not open there.

See Also:

	ss_scope_synchronize: 13.7: Synchronize a scope

	Scopes: Introduction for current chapter

Write pending data to file

ss_scope_flush is a function defined in ssscope.c.

Synopsis:

	
herr_t ss_scope_flush(ss_scope_t *scope, unsigned tableidx, ss_prop_t UNUSED *props)

	

Formal Arguments:

	scope: A link to the open scope to be flushed.

	tableidx: Magic number to define which table to flush, or SS_TABLE_ALL

	props: Scope flushing properties (none defined yet)

Description: Flushing a scope causes all of its tables to be written to HDF5. It does not include synchronizing the tables
or telling HDF5 to flush its cached data to the file or telling the operating system to flush dirty blocks to
disk. That can be done with code similar to the following:

	1
2

	 ss_scope_flush(scope, SS_MAGIC(ss_field_t), properties);
 H5Fflush(ss_scope_isopen(scope), H5F_SCOPE_GLOBAL); // flushes the whole hdf5 file and all mounts

Return Value: Returns non-negative on success, negative on failure.

Parallel Notes: Conceptually this function is collective across the scope’s communicator, however because ss_table_write and
ss_string_flush are file-collective due to HDF5 API restrictions this function must also be file collective.
Fortunately the scope argument is available on all tasks of the file which makes this restriction easy to
program around.

Issues: When flushing a specific table the variable length string values are not written to the file.

See Also:

	Scopes: Introduction for current chapter

Query the scope communicator

ss_scope_comm is a function defined in ssscope.c.

Synopsis:

	
herr_t ss_scope_comm(ss_scope_t *scope, MPI_Comm *comm, int *self, int *ntasks)

	

Formal Arguments:

	comm: Optional returned communicator, not duplicated.

	self: Optional returned calling task’s rank within communicator

	ntasks: Optional returned size of communicator

Description: Given a scope, return the scope’s communicator without dup’ing it. This is either the scope’s communicator or
the communicator of the file to which the scope belongs.

Return Value: Returns non-negative on success, negative on failure. The communicator is returned through the comm argument
when the function is successful.

Parallel Notes: Independent

See Also:

	Scopes: Introduction for current chapter

Object Attributes

Attributes are small pieces of data which fall outside the scope of the sharable data model and thus cannot be
represented by sets, fields, etc. The meaning of a particular attribute is determined by convention, requiring
additional a priori agreement between the writer and the reader, often in the form of documentation or word of
mouth.

Any persistent object may have zero or more attributes and each attribute has a name, datatype, element count
(as if it were a one dimensional array), and a value. Operations on attributes are largely independent and
since attributes are implemented as a scope table, those operations are similar to operations that can be
performed on other persistent objects. One restriction on the attribute table, however, is that the attribute
can only belong to an object stored in the same scope. This is necessary in order for an object to be able to
efficiently find its attributes.

Members

	ss_attr_new [Public function]

	ss_attr_find [Public function]

	ss_attr_count [Public function]

	ss_attr_get [Public function]

	ss_attr_put [Public function]

	ss_attr_modify [Public function]

	ss_attr_describe [Public function]

Add a new attribute to an object

ss_attr_new is a function defined in ssattr.c.

Synopsis:

	
ss_attr_t * ss_attr_new(ss_pers_t *owner, const char *name, hid_t type, size_t count, const void *value, unsigned flags, ss_attr_t *buf, ss_prop_t *props)

	

Formal Arguments:

	owner: The object with which the new attribute is associated.

	name: The name of the new attribute.

	type: The datatype of the attribute.

	count: Number of values in the attribute.

	value: Optional array of count values each of type type. If this array is not
supplied then the attribute’s value will be initialized to all zero bytes.

	flags: Bit flags, such as SS_ALLSAME.

	buf: The optional buffer for the returned attribute link.

	props: Attribute properties (none defined yet).

Description: This function adds a new attribute to the owner object (which must not be an attribute itself). An attribute
can be thought of as a one dimensional array of values all having the same datatype.

Return Value: Returns a non-null attribute link on success; null on failure. If buf is supplied then it will be the success
return value.

Parallel Notes: Independent. However if all tasks are collectively creating a single attribute and all are passing the same
type, count, and value then they may pass the SS_ALLSAME bit in the flags argument, thereby allowing a
synchronization to do less work later. When the SS_ALLSAME bit is passed then the call should be collective
across the communicator of the scope containing the owner object.

See Also:

	Object Attributes: Introduction for current chapter

Find attributes for an object

ss_attr_find is a function defined in ssattr.c.

Synopsis:

	
ss_attr_t * ss_attr_find(ss_pers_t *owner, const char *name, size_t nskip, size_t maxret, size_t *nret, ss_attr_t *result)

	

Formal Arguments:

	owner: The object for which we’re searching for attributes.

	name: An optional attribute name on which to restrict the search.

	nskip: Skip the first SKIP matching attributes.

	maxret: Return at most maxret matching attributes. If the caller passes SS_NOSIZE
then all matching attributes are returned. If more than maxret attributes
could be returned the remainder are simply discarded. If result is
non-null then this argument should reflect the size of that array.

	nret [OUT]: The number of attributes stored in the returned array of links.

	result: An optional buffer in which to store links to the matching attributes. If
supplied, this will be the successful return value. The constant
SS_PERS_TEST can be supplied in order to prevent the library from
allocating a return value (this is useful if the caller simply wants to
count the matches).

Description: This function finds all attributes for the persistent object owner and returns handles to those attributes.
The returned array of handles can be restricted by supplying an attribute name which must match all returned
attributes. The SKIP and maxret arguments can select a contiguous subset of the available attributes.

Return Value: On success, returns an array of links to matching attributes; returns a null pointer on failure. If no
matching attributes are found then a non-null malloc’d pointer is returned and nret points to zero. That is,
the case were no attributes match the search criteria is not considered an error.

Parallel Notes: Independent

See Also:

	Object Attributes: Introduction for current chapter

Count matching attributes

ss_attr_count is a function defined in ssattr.c.

Synopsis:

	
size_t ss_attr_count(ss_pers_t *owner, const char *name)

	

Description: Counts the number of attributes that belong to owner and have the optional string name as their name. If no
name is supplied then all attributes belonging to owner are counted.

Return Value: On success, the number of attributes found to match the owner and name pair; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

	Object Attributes: Introduction for current chapter

Obtain attribute value

ss_attr_get is a function defined in ssattr.c.

Synopsis:

	
void * ss_attr_get(ss_attr_t *attr, hid_t type, size_t offset, size_t nelmts, void *buffer)

	

Formal Arguments:

	attr: The attribute in question.

	type: The desired datatype of the returned value.

	offset: The first element of the value to return (an element index, not byte index)

	nelmts: The total number of elements to return. If the offset and nelmts arguments
describe a range of elements that is outside that which is known to the
attribute then an error is raised. If nelmts is SS_NOSIZE then the number
of returned values is not limited (except perhaps by the non-zero offset).

	buffer: The optional buffer in which to store the returned values.

Description: This function extracts the attribute value, or subpart thereof. The value is converted to the desired type,
which must be conversion compatible with the datatype used to store the attribute value. The converted value
is copied into the optional caller-supplied buffer (or a buffer is allocated). If the value consists of more
than one element then desired elements to be returned can be specified with an offset and length.

Return Value: Returns a pointer (buffer if non-null) on success; null on failure. If the caller doesn’t supply buffer then
this function allocates one.

Parallel Notes: Independent

See Also:

	Object Attributes: Introduction for current chapter

Change an attribute value

ss_attr_put is a function defined in ssattr.c.

Synopsis:

	
herr_t ss_attr_put(ss_attr_t *attr, hid_t type, size_t offset, size_t nelmts, const void *value, unsigned flags)

	

Formal Arguments:

	attr: The attribute in question.

	type: The datatype of value.

	offset: The element number at which to put value.

	nelmts: The number of elements in value.

	value: The value to be written to the attribute.

	flags: Flags such as SS_ALLSAME.

Description: An attribute’s value can be changed by calling this function. If the attribute stores more than one value then
the supplied new value can be for either the whole attribute or for just part of the attribute as determined
by the offset and nelmts arguments. The datatype of each element of value is specified by type and must be
conversion compatible with the datatype already registered with the attribute.

Return Value: Returns non-negative on success; negative on failure. It is an error if offset and nelmts specify a range of
elements ouside that which the attribute already knows about.

Parallel Notes: Independent. However, if the SS_ALLSAME bit is passed in the flags argument the call should be collective
across all tasks of the communicator for the scope that owns the attribute and all such tasks must pass
identical values for offset and nelmts and a type and value such that the converted value is identical on all
tasks.

See Also:

	Object Attributes: Introduction for current chapter

Modify attribute type and size

ss_attr_modify is a function defined in ssattr.c.

Synopsis:

	
herr_t ss_attr_modify(ss_attr_t *attr, hid_t type, size_t nelmts, unsigned flags)

	

Formal Arguments:

	attr: The attribute whose size will be changed.

	type: The new datatype for the attribute, or H5I_INVALID_HID if the type is not
to be changed. If the datatype is changed but is conversion compatible with
the previous type then the attribute’s data will be converted to the new
datatype. Otherwise the attribute’s data will be initialized to all zero.

	nelmts: The new number of elements in the attribute value, or SS_NOSIZE if the
number of elements is not to be changed. If the number of elements
decreases then the extra elements are discarded. If the number of elements
increases then the new elements will be initialized to all zero bytes.

	flags: Bit flags such as SS_ALLSAME.

Description: This function modifies the storage datatype and/or number of elements of an attribute.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent. However if the SS_ALLSAME bit is set in the flags argument then this function is collective
across the communicator of the scope that owns the attribute and all tasks must pass identical values for the
type and nelmts.

See Also:

	Object Attributes: Introduction for current chapter

Query attribute metadata

ss_attr_describe is a function defined in ssattr.c.

Synopsis:

	
const char * ss_attr_describe(ss_attr_t *attr, ss_pers_t *owner, hid_t *type, size_t *nelmts)

	

Formal Arguments:

	attr: The attribute to be described.

	owner [OUT]: Optional object to which attribute belongs.

	type [OUT]: Optional datatype of attribute data. The caller should invoke

	nelmts [OUT]: Optional number of elements stored by the attribute.

Description: This is really just a convenience function so if the caller wants the attribute datatype they don’t need to
do the work of calling H5decode on the attribute type field.

	Return Value: Returns the attribute name on success; null on failure. The name is simply the ss_string_ptr value of the

	name field of the attribute.

Parallel Notes: Independent

See Also:

	ss_string_ptr: 9.2: Obtain pointer into string object

	Object Attributes: Introduction for current chapter

Values

These functions operate on values of pretty much any HDF5 datatype.

Members

	ss_val_dump [Public function]

	ss_val_cmp_t [Public datatype]

Print an arbitrary datum

ss_val_dump is a function defined in ssval.c.

Synopsis:

	
herr_t ss_val_dump(void *val, hid_t type, void *_parent, FILE *out, const char *html_tag)

	

Formal Arguments:

	val: Value to be printed

	type: Datatype of val

	_parent: Optional persistent object into which val points

	out: Stream to which output should be sent

	html_tag: Optional HTML tag to use in output; NULL means output plain text

Description: Given memory of a certain type, print it to the specified stream.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

	Values: Introduction for current chapter

Value comparison flags

ss_val_cmp_t is a collection of related C preprocessor symbols defined in ssval.h.

Synopsis:

SS_VAL_CMP_DFLT:

SS_VAL_CMP_SUBSTR: Strings: NUL terminated substring

SS_VAL_CMP_SUBMEM: Strings: binary comparison of substring

SS_VAL_CMP_RE: Strings: NUL terminated regular expression

SS_VAL_CMP_RE_EXTENDED:

SS_VAL_CMP_RE_ICASE:

SS_VAL_CMP_RE_NEWLINE:

SS_VAL_CMP_EQ: Link: compare with ss_pers_eq

SS_VAL_CMP_EQUAL: Link: compare with ss_pers_equal

Description: The various comparison functions (such as ss_val_cmp) can be influenced to use different algorithms during
their operation by passing a bit vector describing the mode of operation. For ss_val_cmp the bit vector is
contained in the first non-zero byte of the mask for each value being compared. Generally, if the flags bits
are unrecognized or unsupported by a particular comparator a default algorithm is used.

The Default Algorithm

All comparison functions support a notion of a default comparison algorithm. This is indicated by setting all
eight low-order bits in the flag, which can be done with the constant SS_VAL_CMP_DFLT.

String Comparisons

	SS_VAL_CMP_SUBSTR: If the key value is a substring of the buffer being tested then the comparator

	reports that they are equal. Otherwise the key is always considered to be less than the
buffer. Both the key and buffer must be C-style NUL-terminated strings in order
for a match to be detected.

	SS_VAL_CMP_SUBMEM: This is similar to SS_VAL_CMP_SUBSTRING except the key and mask are considered to be

	bytes of memory and all bytes of the key (including NUL bytes if any) must match at
some location in buffer. If there is no match then the key is considered to be
less than the buffer.

	SS_VAL_CMP_RE: The key value is interpreted as a POSIX regular expression and if that regular

	expression matches the contents of buffer then the comparator reports that key
and buffer are equal, otherwise the key is considered to be less than the buffer.

If the SS_VAL_CMP_RE bit is set then the following bits are also supported (they actually each contain the
SS_VAL_CMP_RE bit as well):

	SS_VAL_CMP_RE_EXTENDED: The key value is treated as an extended regular expression rather than a basic

	regular expression. Refer to the documentation for the REG_EXTENDED flag of
regcomp for details.

SS_VAL_CMP_RE_ICASE: Ignore case when matching letters.

	SS_VAL_CMP_RE_NEWLINE: Treat a newline in key as dividing buffer into multiple lines, so that a dollar

	sign can match before the newline and a carat can match after. Also, don’t permit
a dot to match a newline, and don’t permit a complemented character class (square
brackets with a leading carat) to match a newline. Otherwise, newline acts like any
other ordinary character.

Object Link Comparisons

SS_VAL_CMP_EQ: When comparing two persistent object links use ss_pers_eq. This is the default.

SS_VAL_CMP_EQUAL: When comparing two persistent object links use ss_pers_equal.

Issues: Since these bits must be passed as the bytes of a mask they must be only eight bits wide. The type, however,
is defined as unsigned because of argument promotion rules.

See Also:

	ss_pers_eq: 7.12: Determine link equality

	ss_pers_equal: 7.13: Determine object equality

	Values: Introduction for current chapter

HDF5

These functions provide features that are missing from HDF5.

Members

	H5Tcmp [Public function]

	H5T_NATIVE [Public datatype]

	H5F_ACC_TRANSIENT [Public symbol]

Compares two datatypes

H5Tcmp is a function defined in sshdf5.c.

Synopsis:

	
int H5Tcmp(hid_t t1, hid_t t2)

	

Description: This is essentially a public version of H5T_cmp

Return Value: 1, 0, or 1 depending on whether T1 is less than, equal to, or greater than T2. Returns -2 on failure.

Parallel Notes: Independent

Issues: This function calls internal HDF5 functions for which we have no prototypes.

See Also:

	HDF5: Introduction for current chapter

Extra native datatypes

H5T_NATIVE is a collection of related C preprocessor symbols defined in sshdf5.h.

Synopsis:

H5T_NATIVE_SIZE:

H5T_NATIVE_HID:

H5T_NATIVE_VOIDP:

H5T_NATIVE_MPI_COMM:

H5T_NATIVE_MPI_INFO:

Description: These are useful native datatypes that are missing from HDF5.

See Also:

	HDF5: Introduction for current chapter

Declare a file to be transient

H5F_ACC_TRANSIENT is a symbol defined in sshdf5.h.

Synopsis:

	
H5F_ACC_TRANSIENT

	

Description: When this bit is passed as the *flags* argument to ss_file_open or ss_file_create then a no-op HDF5 file is
created. Since HDF5 doesn’t support this functionality, SSlib simply notes that there is no underlying HDF5
file.

Issues: We commandeer a high-order bit for our purposes, knowing that the H5F API uses the low-order bits. This
bit will never make it into HDF5, but we need to insure that it doesn’t conflict with the other H5F_ACC bits.

See Also:

	ss_file_create: 11.4: Create a new file

	ss_file_open: 11.1: Open or create a file

	HDF5: Introduction for current chapter

Datatypes

No description available.

Members

	SS_MAX_INDEXDIMS [Public symbol]

	SS_MAX_BASEQS [Public symbol]

	SAF_SROLE_ANY [Public symbol]

	ss_silrole_t [Public datatype]

Maximum IndexSpec dimensionality

SS_MAX_INDEXDIMS is a symbol defined in sspers.h.

Synopsis:

	
SS_MAX_INDEXDIMS

	

Description: This constant represents the maximum number of dimensions that can be described by an index specification.

See Also:

	Datatypes: Introduction for current chapter

Number of base quantities

SS_MAX_BASEQS is a symbol defined in sspers.h.

Synopsis:

	
SS_MAX_BASEQS

	

Description: All quantities can be defined in terms of seven basic quantities.

See Also:

	Datatypes: Introduction for current chapter

Wildcard SIL role

SAF_SROLE_ANY is a symbol defined in sspers.h.

Synopsis:

	
SAF_SROLE_ANY

	

Description: This constant can be used as a wildcard when searching based on SIL role.

See Also:

	Datatypes: Introduction for current chapter

SIL roles

ss_silrole_t is an enumerated type defined in sspers.h.

Synopsis:

````:

SAF_SROLE_SPACE: sil is for space

SAF_SROLE_STATE: for state space

SAF_SROLE_PARAM: sil is generic param space

SAF_SROLE_CTYPE: sil is for a cell

SAF_SROLE_ATYPE: sil is for an algebraic type

SAF_SROLE_USERD: sil has a user defined role

SAF_SROLE_SUITE: for a suite

Description: These are the roles that can appear in a subset inclusion lattice. One additional constant SAF__SROLE_ANY,
although not part of this enumeration due to it never appearing in a file, can be used as a wildcard for
searching.

See Also:


	Datatypes: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Miscellaneous

No description available.


Members



	SS [Public datatype]











          

      

      

    

  

    
      
          
            
  
Global bit flags

SS is a collection of related C preprocessor symbols defined in sslib.h.

Synopsis:

SS_ALLSAME: All applicable tasks are supplying identical data or performing the
same operation.  For instance, in a call to ss_pers_new this
indicates that the new object can be “born synchronized” because
all tasks will have the same value for the object without needing
to communicate. Absence of this bit simply means that different
tasks might be supplying different data but doesn’t guarantee that
the data is different. (Note: this value must be distinct from TRUE,
but don’t worry, it’s checked at runtime.)

SS_STRICT: Flag that causes certain functions to “try harder” to do something

Description: Various bit flags that are useful to different interfaces. These global flags use the high-order bits of
a word while the interface-specific flags use the low-order bits.

See Also:


	Miscellaneous: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Notes

Miscellaneous notes.


Members










          

      

      

    

  

    
      
          
            
  
Debugging

SSlib has a fair amount of debugging support built in, most of which is runtime selectable from the SSLIB_DEBUG
environment variable and documented in the ss_debug_env function.


Members



	ss_debug [Public function]

	ss_debug_env [Public function]

	ss_debug_s [Public function]











          

      

      

    

  

    
      
          
            
  
Enter an interactive debugging loop

ss_debug is a function defined in ssdebug.c.

Synopsis:


	
herr_t ss_debug(void)

	



Description: Read and execute debugging commands if the commands’ word was present in the :ref:`SSLIB_DEBUG <SSLIB> environment
variable. The file containing the commands is also specified in SSLIB_DEBUG. See ss_debug_env for complete
documentation for that variable. If commands’ is not specified in :ref:`SSLIB_DEBUG <SSLIB> for the calling task or if the
command input file is empty then this function is a no-op.

The commands accepted by this function are defined in ss_debug_s. In addition, the command detach’ causes
this function to immediately return. The ``ss_debug` function may be called more than once in any given
executable.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	ss_debug_env: 22.2:  Parse debug setup statements


	ss_debug_s: 22.3:  Evaluate a debug command


	Debugging: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Parse debug setup statements

ss_debug_env is a function defined in ssdebug.c.

Synopsis:


	
herr_t ss_debug_env(MPI_Comm UNUSED_SERIAL comm, const char *s_const)

	



Formal Arguments:


	comm: The library communicator. Pass any integer value when using a version of
SSlib compiled without MPI support.


	s_const: Optional string to use instead of looking at the SSLIB_DEBUG environment
variable. Pass null to use SSLIB_DEBUG instead. Passing an empty string
(or all white space) accomplishes nothing. Task zero broadcasts this string
to all the other tasks.




Description: This function looks at the contents of the SSLIB_DEBUG environment variable. It is a semicolon separated list
of terms which control various things. Valid terms are:


	task=*n*: Controls which tasks will be affected by subsequent debugging terms. A value of n with an

	initial plus sign will add task n to the list of selected tasks; a leading minus sign removes
the task from the list; lack of a plus or minus makes task n the only selected task. The
value  all or  none can also be supplied which selects all tasks or no tasks, respectively.
The value can also be a comma-separated list of task ranks which acts the same as if multiple


task terms had been specified (the plus or minus sign should be at the beginning of the list




and applies to all values of the list).



	error=*n*: When errors are pushed onto the error stack they are each given a unique (within a task)

	identification number. When this  error debugging term is specified then the debugger of choice
is invoked when error number n is pushed onto the stack.  If the equal sign and error number
are omitted then the debugger is never started for an error, but the error stack will display
the error identification numbers.  Only one error number can be specified per task–if more
flexibility is needed then the application can be run under a debugger with a breakpoing set
in ss_error.



	file=*name*: Selects the output file to use for subsequent debugging terms for the selected tasks. The

	file will be created if it doesn’t exist or truncated if it does exist. The name is actually
a printf format string and the first format specifier (if present) should be for an integer
task number.  If name is the word  none then output is disabled; if name is a positive
integer then the specified file descriptor is used without attempting to open it (this is
useful if the descriptor was opened with the shell).  If a number and name are both specified
separated by a comma then the name is opened and dup’d to the desired file descriptor. If the
name begins with a `&lt;’ character then the file is opened for read-only.



	stop: The specified MPI task(s) will print their MPI rank and process ID and then suspend themselves,

	giving an opportunity for a debugger to attach.



	pause=``N``: The specified MPI task(s) will immediately pause for N seconds. This is useful

	when a task needs to give a debugger (such as strace) to automatically attach to child
processes.





debugger=*name*: Specifies which debugger should be used. The default is `ddd’.


	debug: The specified debugger (or ddd) is started for the affected task or tasks.

	This probably only works on systems that have a /proc/self/exe link to the executable and
the DISPLAY environment variable set properly for the affected task.  If the non-default
debugger is desired then the `debugger’ keyword must appear before this `debug’ keyword.



	signal: Start the debugger when a task is about to die from certain signals (those that signify

	a program error). The task is suspended (although other signal handlers might still be
executed) and must be explicitly killed. The `debug’ keyword takes precedence over `signal’.



	stack: Turn automatic error reporting on or off for selected tasks depending on the current setting

	for the file descriptor. When off, errors are reported by return values as usual and the error
stack contains information about the error, but the stack is not automatically printed.
The default is that errors are printed to stderr.



	pid: Print the process ID for all selected tasks. This is useful when various tools (such as

	valgrind) print PIDs but have no way of knowing the MPI task number.





mpi: Do not register an MPI error handler in the ss_init call.


	banner=``STR``: Display the specified string value on stderr when ss_init is about to return. This is

	normally used in conjuction with the config file to notify users that they should recompile
their application with a newer version of sslib.



	commands: Enables the ss_debug calls that might appear in applications. The `file’ term should be used

	before this term in order to specify from where the debug commands should be read (don’t
forget to use the `&lt;’ in front of the file name in order to open it for read-only). If no file
is specified then SSlib attempts to read the commands from the stderr stream, which may cause
the commands to be read from the controlling terminal in certain situations (but it’s usually
better to be explicit by providing the `file=&lt;*dev*tty’ term). Specifying an empty file such
as *dev*null has essentially the same effect as if the `commands’ term was not given.



	warnings: For the selected MPI tasks, send all miscellaneous SSlib warning messages to the selected

	file.



	check=*what*: Turns on or off various categories of internal consistency checking, some of which incur

	considerable runtime expense.  The what is a comma-separated list of category names where
that category of checking is turned off if introduced with a minus sign and on otherwise. Only
selected tasks are affected. See the table below for a list of categories.





The following internal consistency checking categories are defined. Some categories can take a comma-separated
list of attributes separated from the category name by an equal sign. When a category is followed by an equal
sign then it must be the last category listed for that  check term, but additional categories can be specified
with additional  check terms.


	sync: When turned on, SSlib will check for many situations where a call to ss_pers_modified (or

	the macro SS_PERS_MODIFIED) was accidently omitted by computing and caching checksums. If
the  error attribute is specified then such situations will be considered errors instead of
just generating debugging information on the warning stream. If the  bcast attribute is
specified then information about which objects are transmitted will be displayed to the
warning stream.



	2pio: SSlib will display certain information about 2-phase I/O if this is turned on. For instance,

	when aggregation tasks are chosen for a blob the mapping from dataset addresses to aggregators
is displayed. The  task setting doesn’t affect this flag since it’s always task zero that
displays this collective information.





Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library communicator. We do this because environment variables are sometimes only
available at certain tasks (task zero of the library communicator must have the environment variable).

Example: Example 1: To start the DDD debugger on task 17:

	1

	 SSLIB_DEBUG='task=17;debug' ...







Example 2: To stop all tasks but task 17:

	1

	 SSLIB_DEBUG='task=-17;stop' ...







Example 3: To cause task 17 to report errors to a file named “task17.err” and no other task to report errors:

	1

	 SSLIB_DEBUG='file=none;stack;task=17;file=task17.err;stack' ...







Example 4: Cause HDF5 to emit tracing information to files like task001.trace, task002.trace, etc.
The thing to watch out for here is that HDF5 gets initialized before SSlib and if file descriptor 99 is not
open then tracing is disabled. So we rely on the shell to supply an initial file for descriptor 99 which SSlib
will swap out from under HDF5. Until the swap occurs, all tasks will emit tracing to the shell-supplied file:

	1

	 SSLIB_DEBUG="file=99,task%03d.trace" HDF5_DEBUG=99,trace 99>tasks.trace ...







Example 5: Invoke a debugger on any task that fails an assertion or receives certain other normally fatal
signals.  Use  gdb instead of the default  ddd.

	1

	 SSLIB_DEBUG='debugger=gdb;signal' ...







Example 6: To cause each task to redirect its standard error output to its own file:

	1

	 SSLIB_DEBUG='file=2,stderr.%04d' ...







Example 7: To type commands interactively to SSlib one makes a call to ss_debug in the application
and then uses SSLIB_DEBUG as follows:

	1

	 SSLIB_DEBUG='task=0;file=<commands.txt;commands' ...







Example 8: To turn off the warning/debug messages that are normally emitted from SSlib on the stderr stream
one would do the following:

	1

	 SSLIB_DEBUG='file=/dev/null;warnings' ...







See Also:


	SS_PERS_MODIFIED: 7.29:  Mark object as modified


	ss_debug: 22.1:  Enter an interactive debugging loop


	ss_error: 2.5:  Start debugger for error


	ss_init: 2.8:  Initialize the library


	ss_pers_modified: 7.19:  Mark object as modified


	Debugging: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Evaluate a debug command

ss_debug_s is a function defined in ssdebug.c.

Synopsis:


	
herr_t ss_debug_s(const char *cmd)

	



Description: This function parses a debugging command in cmd and executes it. The first word in the string is the name
of the command and the rest of the string contains the arguments for that command.


	files:





Display information about all known files.





	classes:





Show names of all object classes.





	class spec:





Display information about the specified persistent object. Class is one of the class words such as
`set’ or `field’, etc. Use the command `classes’ for a complete list.




Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	Debugging: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Overloaded Definitions

These objects have multiple definitions.


Members



	SS_MAGIC_ss

	Members
	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]















          

      

      

    

  

    
      
          
            
  
SS_MAGIC_ss

This object has overloaded definitions.




Members



	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]

	SS_MAGIC_ss [Public datatype]









          

      

      

    

  

    
      
          
            
  
Miscellaneous (class 0x5af01000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_prop_t:

SS_MAGIC_ss_table_t:

SS_MAGIC_ss_string_table_t:

SS_MAGIC_ss_gblob_t:

See Also:


	Magic Numbers: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Persistent object links (class 0x5af02000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_pers_t: just the class part

SS_MAGIC_ss_scope_t:

SS_MAGIC_ss_field_t:

SS_MAGIC_ss_role_t:

SS_MAGIC_ss_basis_t:

SS_MAGIC_ss_algebraic_t:

SS_MAGIC_ss_evaluation_t:

SS_MAGIC_ss_relrep_t:

SS_MAGIC_ss_quantity_t:

SS_MAGIC_ss_unit_t:

SS_MAGIC_ss_cat_t:

SS_MAGIC_ss_collection_t:

SS_MAGIC_ss_set_t:

SS_MAGIC_ss_rel_t:

SS_MAGIC_ss_fieldtmpl_t:

SS_MAGIC_ss_tops_t:

SS_MAGIC_ss_blob_t:

SS_MAGIC_ss_indexspec_t:

SS_MAGIC_ss_file_t:

SS_MAGIC_ss_attr_t:

Description: These are the magic numbers for persistent object links, which are the handles to persistent objects that
the client usually works with.

Issues: These magic numbers must be in the same order as the persistent object magic numbers (class 0x5af03000).

See Also:


	Magic Numbers: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Persistent objects (class 0x5af03000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_persobj_t: just the class part

SS_MAGIC_ss_scopeobj_t:

SS_MAGIC_ss_fieldobj_t:

SS_MAGIC_ss_roleobj_t:

SS_MAGIC_ss_basisobj_t:

SS_MAGIC_ss_algebraicobj_t:

SS_MAGIC_ss_evaluationobj_t:

SS_MAGIC_ss_relrepobj_t:

SS_MAGIC_ss_quantityobj_t:

SS_MAGIC_ss_unitobj_t:

SS_MAGIC_ss_catobj_t:

SS_MAGIC_ss_collectionobj_t:

SS_MAGIC_ss_setobj_t:

SS_MAGIC_ss_relobj_t:

SS_MAGIC_ss_fieldtmplobj_t:

SS_MAGIC_ss_topsobj_t:

SS_MAGIC_ss_blobobj_t:

SS_MAGIC_ss_indexspecobj_t:

SS_MAGIC_ss_fileobj_t:

SS_MAGIC_ss_attrobj_t:

Description: These are the magic numbers for the persistent objects themselves. They do not appear in the file but are
part of the transient information for an object.  The order of things here is such that when synchronizing
a scope we minimize the number of forward references. That is, if objects of type A can point to objects of
type B then we should synchronize type B before type A.

Issues: These magic numbers must be in the same order as the persistent object link magic numbers (class 0x5af02000).
Also, they are mentioned in ss_pers_init when constructing an HDF5 enumeration datatype.

If you add items here and they don’t show up as tables in the files then the SS_PERS_NCLASSES constant defined
in sspers.h is probably not large enough.

See Also:


	Magic Numbers: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Permuted Index


Table 3 Permuted Index






	Concept

	Key

	Reference





	Miscellaneous

	(class 0x5af01000)

	SS_MAGIC_ss



	
	
	


	Persistent object links

	(class 0x5af02000)

	SS_MAGIC_ss



	
	
	


	Persistent objects

	(class 0x5af03000)

	SS_MAGIC_ss



	
	
	


	Miscellaneous (class

	0x5af01000)

	SS_MAGIC_ss



	
	
	


	Persistent object links (class

	0x5af02000)

	SS_MAGIC_ss



	
	
	


	Persistent objects (class

	0x5af03000)

	SS_MAGIC_ss



	
	
	


	Initiate

	2-phase I/O

	ss_blob_synchronize



	
	
	


	Print information

	about a global file entry

	ss_gfile_debug_one



	
	
	


	Inquire

	about array file datatype

	ss_array_targeted



	
	
	


	Obtain information

	about referenced files

	ss_file_references



	
	
	


	
	Add a new attribute to an object

	ss_attr_new



	
	
	


	
	Add new property to a list

	ss_prop_add



	
	
	


	Debugging

	aid

	ss_pers_debug



	
	
	


	Synchronize

	all scopes of a file

	ss_file_synchronize



	
	
	


	Append one string to

	another

	ss_string_cat



	
	
	


	
	Append one string to another

	ss_string_cat



	
	
	


	Queries/sets property list

	appendability

	ss_prop_appendable



	
	
	


	Print an

	arbitrary datum

	ss_val_dump



	
	
	


	Change the size of a variable length

	array

	ss_array_resize



	
	
	


	Free memory associated with the

	array

	ss_array_reset



	
	
	


	Modify part of an

	array

	ss_array_put



	
	
	


	Change

	array element datatype

	ss_array_target



	
	
	


	Inquire about

	array file datatype

	ss_array_targeted



	
	
	


	Store a byte

	array in a string

	ss_string_memset



	
	
	


	Obtain

	array value

	ss_array_get



	
	
	


	
	Asserts object runtime class

	SS_ASSERT_CLASS



	
	
	


	
	Asserts object runtime type

	SS_ASSERT_TYPE



	
	
	


	
	Asserts object runtime type and existence

	SS_ASSERT_MEM



	
	
	


	Free memory

	associated with the array

	ss_array_reset



	
	
	


	Free memory

	associated with the string

	ss_string_reset



	
	
	


	HDF5

	async callback

	ss_aio_hdf5_cb



	
	
	


	Terminate the

	asynchronous I/O subsystem

	ss_aio_finalize



	
	
	


	Initialize the

	asyncronous I/O subsystem

	ss_aio_init



	
	
	


	
	Attach an object registry scope

	ss_file_registry



	
	
	


	Query

	attribute metadata

	ss_attr_describe



	
	
	


	Add a new

	attribute to an object

	ss_attr_new



	
	
	


	Modify

	attribute type and size

	ss_attr_modify



	
	
	


	Change an

	attribute value

	ss_attr_put



	
	
	


	Obtain

	attribute value

	ss_attr_get



	
	
	


	Count matching

	attributes

	ss_attr_count



	
	
	


	Find

	attributes for an object

	ss_attr_find



	
	
	


	Number of

	base quantities

	SS_MAX_BASEQS



	
	
	


	Test whether an object can

	be modified

	ss_pers_iswritable



	
	
	


	Tests whether scope can

	be modified

	ss_scope_iswritable



	
	
	


	Declare a file to

	be transient

	H5F_ACC_TRANSIENT



	
	
	


	
	Begin a functionality test

	SS_CHECKING



	
	
	


	
	Bind a blob to a dataset

	ss_blob_bind_f



	
	
	


	
	Bind a blob to a dataset

	ss_blob_bind_f1



	
	
	


	
	Bind a blob to memory

	ss_blob_bind_m



	
	
	


	
	Bind a blob to memory

	ss_blob_bind_m1



	
	
	


	Global

	bit flags

	SS



	
	
	


	Create a new

	blob

	ss_blob_new



	
	
	


	Create storage for a

	blob

	ss_blob_mkstorage



	
	
	


	Extend a

	blob

	ss_blob_extend



	
	
	


	Extend a

	blob

	ss_blob_extend1



	
	
	


	Query dataset bound to a

	blob

	ss_blob_bound_f



	
	
	


	Query dataset bound to a

	blob

	ss_blob_bound_f1



	
	
	


	Query memory bound to a

	blob

	ss_blob_bound_m



	
	
	


	Query memory bound to a

	blob

	ss_blob_bound_m1



	
	
	


	Write data to a

	blob

	ss_blob_write



	
	
	


	Write data to a

	blob

	ss_blob_write1



	
	
	


	Query

	blob extent

	ss_blob_space



	
	
	


	Bind a

	blob to a dataset

	ss_blob_bind_f



	
	
	


	Bind a

	blob to a dataset

	ss_blob_bind_f1



	
	
	


	Bind a

	blob to memory

	ss_blob_bind_m



	
	
	


	Bind a

	blob to memory

	ss_blob_bind_m1



	
	
	


	
	Block until requests complete

	ss_aio_suspend



	
	
	


	Query dataset

	bound to a blob

	ss_blob_bound_f



	
	
	


	Query dataset

	bound to a blob

	ss_blob_bound_f1



	
	
	


	Query memory

	bound to a blob

	ss_blob_bound_m



	
	
	


	Query memory

	bound to a blob

	ss_blob_bound_m1



	
	
	


	Store a

	byte array in a string

	ss_string_memset



	
	
	


	Compare persistent string with

	C string

	ss_string_cmp_s



	
	
	


	Get a

	C string from a persistent string

	ss_string_get



	
	
	


	Store a

	C string in a persistent string

	ss_string_set



	
	
	


	HDF5 async

	callback

	ss_aio_hdf5_cb



	
	
	


	Test whether an object

	can be modified

	ss_pers_iswritable



	
	
	


	Tests whether scope

	can be modified

	ss_scope_iswritable



	
	
	


	
	Change a floating-point property value

	ss_prop_set_f



	
	
	


	
	Change a property value

	ss_prop_set



	
	
	


	
	Change a signed integer property value

	ss_prop_set_i



	
	
	


	
	Change an attribute value

	ss_attr_put



	
	
	


	
	Change an unsigned integer property value

	ss_prop_set_u



	
	
	


	
	Change array element datatype

	ss_array_target



	
	
	


	
	Change link state

	ss_pers_state



	
	
	


	
	Change the size of a variable length array

	ss_array_resize



	
	
	


	
	Check if link is null

	SS_PERS_ISNULL



	
	
	


	Compute a

	checksum for a persistent object

	ss_pers_cksum



	
	
	


	Asserts object runtime

	class

	SS_ASSERT_CLASS



	
	
	


	Obtain magic number

	class

	SS_MAGIC_CLASS



	
	
	


	
	Close a file

	ss_file_close



	
	
	


	
	Closes a scope

	ss_scope_close



	
	
	


	Evaluate a debug

	command

	ss_debug_s



	
	
	


	Insert

	commas into an integer

	ss_insert_commas



	
	
	


	Query the scope

	communicator

	ss_scope_comm



	
	
	


	
	Compare persistent string with C string

	ss_string_cmp_s



	
	
	


	
	Compares two datatypes

	H5Tcmp



	
	
	


	
	Compares two persistent objects

	ss_pers_cmp



	
	
	


	
	Compares two persistent objects

	ss_pers_cmp_



	
	
	


	
	Compares two variable length strings

	ss_string_cmp



	
	
	


	Value

	comparison flags

	ss_val_cmp_t



	
	
	


	Block until requests

	complete

	ss_aio_suspend



	
	
	


	
	Compute a checksum for a persistent object

	ss_pers_cksum



	
	
	


	
	Construct a magic number

	SS_MAGIC_CONS



	
	
	


	
	Constructor

	SS_PERS_NEW



	
	
	


	Copy

	constructor

	SS_PERS_COPY



	
	
	


	Property

	constructor

	ss_prop_cons



	
	
	


	
	Copy an object

	ss_pers_copy



	
	
	


	
	Copy constructor

	SS_PERS_COPY



	
	
	


	
	Count matching attributes

	ss_attr_count



	
	
	


	Open or

	create a file

	ss_file_open



	
	
	


	
	Create a new blob

	ss_blob_new



	
	
	


	
	Create a new file

	ss_file_create



	
	
	


	
	Create a new persistent object

	ss_pers_new



	
	
	


	
	Create a new property list from an existing list

	ss_prop_dup



	
	
	


	
	Create a new property list from scratch

	ss_prop_new



	
	
	


	
	Create an object link

	ss_pers_refer



	
	
	


	
	Create storage for a blob

	ss_blob_mkstorage



	
	
	


	Returns

	current status of a request

	ss_aio_error



	
	
	


	Read

	data from a file

	ss_blob_read



	
	
	


	Read

	data from a file

	ss_blob_read1



	
	
	


	Write

	data to a blob

	ss_blob_write



	
	
	


	Write

	data to a blob

	ss_blob_write1



	
	
	


	Write pending

	data to file

	ss_scope_flush



	
	
	


	Write pending

	data to file

	ss_file_flush



	
	
	


	Flush pending

	data to HDF5

	ss_blob_flush



	
	
	


	Bind a blob to a

	dataset

	ss_blob_bind_f



	
	
	


	Bind a blob to a

	dataset

	ss_blob_bind_f1



	
	
	


	Query

	dataset bound to a blob

	ss_blob_bound_f



	
	
	


	Query

	dataset bound to a blob

	ss_blob_bound_f1



	
	
	


	Change array element

	datatype

	ss_array_target



	
	
	


	Inquire about array file

	datatype

	ss_array_targeted



	
	
	


	Query the

	datatype of a property or property list

	ss_prop_type



	
	
	


	Compares two

	datatypes

	H5Tcmp



	
	
	


	Extra native

	datatypes

	H5T_NATIVE



	
	
	


	Print an arbitrary

	datum

	ss_val_dump



	
	
	


	Evaluate a

	debug command

	ss_debug_s



	
	
	


	Parse

	debug setup statements

	ss_debug_env



	
	
	


	Start

	debugger for error

	ss_error



	
	
	


	
	Debugging aid

	ss_pers_debug



	
	
	


	Enter an interactive

	debugging loop

	ss_debug



	
	
	


	
	Declare a file to be transient

	H5F_ACC_TRANSIENT



	
	
	


	
	Decode persistent object links

	ss_pers_decode_cb



	
	
	


	
	Dereference an object link

	ss_pers_deref



	
	
	


	
	Destroy a property list

	ss_prop_dest



	
	
	


	
	Destructor

	SS_PERS_DEST



	
	
	


	
	Destructor

	ss_pers_dest



	
	
	


	
	Determine if property exists

	ss_prop_has



	
	
	


	
	Determine link equality

	SS_PERS_EQ



	
	
	


	
	Determine link equality

	ss_pers_eq



	
	
	


	
	Determine magicness

	SS_MAGIC_OK



	
	
	


	
	Determine object equality

	SS_PERS_EQUAL



	
	
	


	
	Determine object equality

	ss_pers_equal



	
	
	


	
	Determines if scope is an open top-scope

	ss_scope_isopentop



	
	
	


	Maximum IndexSpec

	dimensionality

	SS_MAX_INDEXDIMS



	
	
	


	Obtain pointer

	direct to value

	ss_prop_buffer



	
	
	


	Change array

	element datatype

	ss_array_target



	
	
	


	Query the number of

	elements

	ss_array_nelmts



	
	
	


	
	End functionality test

	SS_END_CHECKING



	
	
	


	
	End functionality test

	SS_END_CHECKING_WITH



	
	
	


	
	Enter an interactive debugging loop

	ss_debug



	
	
	


	Print information about a global file

	entry

	ss_gfile_debug_one



	
	
	


	
	Environment Variables

	SSLIB



	
	
	


	Determine link

	equality

	SS_PERS_EQ



	
	
	


	Determine link

	equality

	ss_pers_eq



	
	
	


	Determine object

	equality

	SS_PERS_EQUAL



	
	
	


	Determine object

	equality

	ss_pers_equal



	
	
	


	Start debugger for

	error

	ss_error



	
	
	


	Minor

	error numbers

	SS_MINOR



	
	
	


	
	Evaluate a debug command

	ss_debug_s



	
	
	


	Asserts object runtime type and

	existence

	SS_ASSERT_MEM



	
	
	


	Create a new property list from an

	existing list

	ss_prop_dup



	
	
	


	Determine if property

	exists

	ss_prop_has



	
	
	


	
	Extend a blob

	ss_blob_extend



	
	
	


	
	Extend a blob

	ss_blob_extend1



	
	
	


	Query blob

	extent

	ss_blob_space



	
	
	


	
	Extra native datatypes

	H5T_NATIVE



	
	
	


	Indicate functionality test

	failure

	SS_FAILED



	
	
	


	Indicate functionality test

	failure

	SS_FAILED_WHEN



	
	
	


	Close a

	file

	ss_file_close



	
	
	


	Create a new

	file

	ss_file_create



	
	
	


	Open or create a

	file

	ss_file_open



	
	
	


	Read data from a

	file

	ss_blob_read



	
	
	


	Read data from a

	file

	ss_blob_read1



	
	
	


	Synchronize all scopes of a

	file

	ss_file_synchronize



	
	
	


	Tests transient state of a

	file

	ss_file_istransient



	
	
	


	Write pending data to

	file

	ss_scope_flush



	
	
	


	Write pending data to

	file

	ss_file_flush



	
	
	


	Mark

	file as read-only

	ss_file_readonly



	
	
	


	Inquire about array

	file datatype

	ss_array_targeted



	
	
	


	Print information about a global

	file entry

	ss_gfile_debug_one



	
	
	


	Obtain

	file for an object

	ss_pers_file



	
	
	


	Test

	file open status

	ss_file_isopen



	
	
	


	Query

	file synchronization state

	ss_file_synchronized



	
	
	


	Print global

	file table

	ss_gfile_debug_all



	
	
	


	Declare a

	file to be transient

	H5F_ACC_TRANSIENT



	
	
	


	Test

	file writability

	ss_file_iswritable



	
	
	


	Obtain information about referenced

	files

	ss_file_references



	
	
	


	Open many

	files

	ss_file_openall



	
	
	


	Mark library as

	finalized

	ss_zap



	
	
	


	
	Find attributes for an object

	ss_attr_find



	
	
	


	
	Find indirect indices for an object

	ss_table_indirect



	
	
	


	
	Find objecs in a scope

	SS_PERS_FIND



	
	
	


	
	Find objects in a scope

	ss_pers_find



	
	
	


	Global bit

	flags

	SS



	
	
	


	Value comparison

	flags

	ss_val_cmp_t



	
	
	


	Query a

	floating point property

	ss_prop_get_f



	
	
	


	Change a

	floating-point property value

	ss_prop_set_f



	
	
	


	
	Flush pending data to HDF5

	ss_blob_flush



	
	
	


	
	Free memory associated with the array

	ss_array_reset



	
	
	


	
	Free memory associated with the string

	ss_string_reset



	
	
	


	Begin a

	functionality test

	SS_CHECKING



	
	
	


	End

	functionality test

	SS_END_CHECKING



	
	
	


	End

	functionality test

	SS_END_CHECKING_WITH



	
	
	


	Indicate

	functionality test failure

	SS_FAILED



	
	
	


	Indicate

	functionality test failure

	SS_FAILED_WHEN



	
	
	


	Indicate

	functionality test skipped

	SS_SKIPPED



	
	
	


	Indicate

	functionality test skipped

	SS_SKIPPED_WHEN



	
	
	


	
	Get a C string from a persistent string

	ss_string_get



	
	
	


	
	Get two-phase I/O properties

	ss_blob_get_2pio



	
	
	


	
	Global bit flags

	SS



	
	
	


	Print information about a

	global file entry

	ss_gfile_debug_one



	
	
	


	Print

	global file table

	ss_gfile_debug_all



	
	
	


	Flush pending data to

	HDF5

	ss_blob_flush



	
	
	


	
	HDF5 async callback

	ss_aio_hdf5_cb



	
	
	


	Renders

	human readable numbers

	ss_bytes



	
	
	


	Initiate 2-phase

	I/O

	ss_blob_synchronize



	
	
	


	Get two-phase

	I/O properties

	ss_blob_get_2pio



	
	
	


	Set two-phase

	I/O properties

	ss_blob_set_2pio



	
	
	


	Initialize the asyncronous

	I/O subsystem

	ss_aio_init



	
	
	


	Terminate the asynchronous

	I/O subsystem

	ss_aio_finalize



	
	
	


	Check

	if link is null

	SS_PERS_ISNULL



	
	
	


	Determine

	if property exists

	ss_prop_has



	
	
	


	Determines

	if scope is an open top-scope

	ss_scope_isopentop



	
	
	


	Make a property list

	immutable

	ss_prop_immutable



	
	
	


	Maximum

	IndexSpec dimensionality

	SS_MAX_INDEXDIMS



	
	
	


	
	Indicate functionality test failure

	SS_FAILED



	
	
	


	
	Indicate functionality test failure

	SS_FAILED_WHEN



	
	
	


	
	Indicate functionality test skipped

	SS_SKIPPED



	
	
	


	
	Indicate functionality test skipped

	SS_SKIPPED_WHEN



	
	
	


	Find indirect

	indices for an object

	ss_table_indirect



	
	
	


	Find

	indirect indices for an object

	ss_table_indirect



	
	
	


	Print

	information about a global file entry

	ss_gfile_debug_one



	
	
	


	Obtain

	information about referenced files

	ss_file_references



	
	
	


	Sets persistent object to

	initial state

	ss_pers_reset



	
	
	


	Test library

	initialization state

	ss_initialized



	
	
	


	
	Initialize the asyncronous I/O subsystem

	ss_aio_init



	
	
	


	
	Initialize the library

	ss_init_func



	
	
	


	
	Initialize the library

	ss_init



	
	
	


	
	Initiate 2-phase I/O

	ss_blob_synchronize



	
	
	


	
	Initiate a write operation

	ss_aio_write



	
	
	


	
	Inquire about array file datatype

	ss_array_targeted



	
	
	


	
	Insert commas into an integer

	ss_insert_commas



	
	
	


	Insert commas into an

	integer

	ss_insert_commas



	
	
	


	Query an

	integer property

	ss_prop_get_i



	
	
	


	Query an unsigned

	integer property

	ss_prop_get_u



	
	
	


	Change a signed

	integer property value

	ss_prop_set_i



	
	
	


	Change an unsigned

	integer property value

	ss_prop_set_u



	
	
	


	Enter an

	interactive debugging loop

	ss_debug



	
	
	


	Insert commas

	into an integer

	ss_insert_commas



	
	
	


	Obtain pointer

	into string object

	ss_string_ptr



	
	
	


	Determines if scope

	is an open top-scope

	ss_scope_isopentop



	
	
	


	Check if link

	is null

	SS_PERS_ISNULL



	
	
	


	Change the size of a variable

	length array

	ss_array_resize



	
	
	


	Query the

	length of a persistent string

	ss_string_len



	
	
	


	Query the

	length of a persistent string

	ss_string_memlen



	
	
	


	Compares two variable

	length strings

	ss_string_cmp



	
	
	


	Initialize the

	library

	ss_init_func



	
	
	


	Initialize the

	library

	ss_init



	
	
	


	Terminate the

	library

	ss_finalize



	
	
	


	Mark

	library as finalized

	ss_zap



	
	
	


	Test

	library initialization state

	ss_initialized



	
	
	


	Create an object

	link

	ss_pers_refer



	
	
	


	Dereference an object

	link

	ss_pers_deref



	
	
	


	Updates an object

	link

	ss_pers_update



	
	
	


	Determine

	link equality

	SS_PERS_EQ



	
	
	


	Determine

	link equality

	ss_pers_eq



	
	
	


	Check if

	link is null

	SS_PERS_ISNULL



	
	
	


	Change

	link state

	ss_pers_state



	
	
	


	Decode persistent object

	links

	ss_pers_decode_cb



	
	
	


	Persistent object

	links (class 0x5af02000)

	SS_MAGIC_ss



	
	
	


	Add new property to a

	list

	ss_prop_add



	
	
	


	Create a new property list from an existing

	list

	ss_prop_dup



	
	
	


	Destroy a property

	list

	ss_prop_dest



	
	
	


	Query the datatype of a property or property

	list

	ss_prop_type



	
	
	


	Queries/sets property

	list appendability

	ss_prop_appendable



	
	
	


	Create a new property

	list from an existing list

	ss_prop_dup



	
	
	


	Create a new property

	list from scratch

	ss_prop_new



	
	
	


	Make a property

	list immutable

	ss_prop_immutable



	
	
	


	Queries/sets property

	list modifiability

	ss_prop_modifiable



	
	
	


	Enter an interactive debugging

	loop

	ss_debug



	
	
	


	Construct a

	magic number

	SS_MAGIC_CONS



	
	
	


	Obtain

	magic number class

	SS_MAGIC_CLASS



	
	
	


	Obtain

	magic number for type

	SS_MAGIC



	
	
	


	Obtain

	magic number from a pointer

	SS_MAGIC_OF



	
	
	


	Obtain

	magic sequence number

	SS_MAGIC_SEQUENCE



	
	
	


	Determine

	magicness

	SS_MAGIC_OK



	
	
	


	
	Make a new object unique

	ss_pers_unique



	
	
	


	
	Make a property list immutable

	ss_prop_immutable



	
	
	


	
	Make an object unique

	SS_PERS_UNIQUE



	
	
	


	Open

	many files

	ss_file_openall



	
	
	


	
	Mark file as read-only

	ss_file_readonly



	
	
	


	
	Mark library as finalized

	ss_zap



	
	
	


	
	Mark object as modified

	SS_PERS_MODIFIED



	
	
	


	
	Mark object as modified

	ss_pers_modified



	
	
	


	Count

	matching attributes

	ss_attr_count



	
	
	


	
	Maximum IndexSpec dimensionality

	SS_MAX_INDEXDIMS



	
	
	


	Bind a blob to

	memory

	ss_blob_bind_m



	
	
	


	Bind a blob to

	memory

	ss_blob_bind_m1



	
	
	


	Free

	memory associated with the array

	ss_array_reset



	
	
	


	Free

	memory associated with the string

	ss_string_reset



	
	
	


	Query

	memory bound to a blob

	ss_blob_bound_m



	
	
	


	Query

	memory bound to a blob

	ss_blob_bound_m1



	
	
	


	Query attribute

	metadata

	ss_attr_describe



	
	
	


	
	Minor error numbers

	SS_MINOR



	
	
	


	
	Miscellaneous (class 0x5af01000)

	SS_MAGIC_ss



	
	
	


	Queries/sets property list

	modifiability

	ss_prop_modifiable



	
	
	


	Substring

	modification

	ss_string_splice



	
	
	


	Mark object as

	modified

	SS_PERS_MODIFIED



	
	
	


	Mark object as

	modified

	ss_pers_modified



	
	
	


	Test whether an object can be

	modified

	ss_pers_iswritable



	
	
	


	Tests whether scope can be

	modified

	ss_scope_iswritable



	
	
	


	
	Modify attribute type and size

	ss_attr_modify



	
	
	


	
	Modify part of an array

	ss_array_put



	
	
	


	Extra

	native datatypes

	H5T_NATIVE



	
	
	


	Add a

	new attribute to an object

	ss_attr_new



	
	
	


	Create a

	new blob

	ss_blob_new



	
	
	


	Create a

	new file

	ss_file_create



	
	
	


	Make a

	new object unique

	ss_pers_unique



	
	
	


	Create a

	new persistent object

	ss_pers_new



	
	
	


	Create a

	new property list from an existing list

	ss_prop_dup



	
	
	


	Create a

	new property list from scratch

	ss_prop_new



	
	
	


	Add

	new property to a list

	ss_prop_add



	
	
	


	Check if link is

	null

	SS_PERS_ISNULL



	
	
	


	Construct a magic

	number

	SS_MAGIC_CONS



	
	
	


	Obtain magic sequence

	number

	SS_MAGIC_SEQUENCE



	
	
	


	Obtain magic

	number class

	SS_MAGIC_CLASS



	
	
	


	Obtain magic

	number for type

	SS_MAGIC



	
	
	


	Obtain magic

	number from a pointer

	SS_MAGIC_OF



	
	
	


	
	Number of base quantities

	SS_MAX_BASEQS



	
	
	


	Query the

	number of elements

	ss_array_nelmts



	
	
	


	Minor error

	numbers

	SS_MINOR



	
	
	


	Renders human readable

	numbers

	ss_bytes



	
	
	


	Find

	objecs in a scope

	SS_PERS_FIND



	
	
	


	Add a new attribute to an

	object

	ss_attr_new



	
	
	


	Compute a checksum for a persistent

	object

	ss_pers_cksum



	
	
	


	Copy an

	object

	ss_pers_copy



	
	
	


	Create a new persistent

	object

	ss_pers_new



	
	
	


	Find attributes for an

	object

	ss_attr_find



	
	
	


	Find indirect indices for an

	object

	ss_table_indirect



	
	
	


	Obtain file for an

	object

	ss_pers_file



	
	
	


	Obtain pointer into string

	object

	ss_string_ptr



	
	
	


	Obtain scope for an

	object

	ss_pers_scope



	
	
	


	Obtain top scope for an

	object

	ss_pers_topscope



	
	
	


	Mark

	object as modified

	SS_PERS_MODIFIED



	
	
	


	Mark

	object as modified

	ss_pers_modified



	
	
	


	Test whether an

	object can be modified

	ss_pers_iswritable



	
	
	


	Determine

	object equality

	SS_PERS_EQUAL



	
	
	


	Determine

	object equality

	ss_pers_equal



	
	
	


	Create an

	object link

	ss_pers_refer



	
	
	


	Dereference an

	object link

	ss_pers_deref



	
	
	


	Updates an

	object link

	ss_pers_update



	
	
	


	Decode persistent

	object links

	ss_pers_decode_cb



	
	
	


	Persistent

	object links (class 0x5af02000)

	SS_MAGIC_ss



	
	
	


	Attach an

	object registry scope

	ss_file_registry



	
	
	


	Asserts

	object runtime class

	SS_ASSERT_CLASS



	
	
	


	Asserts

	object runtime type

	SS_ASSERT_TYPE



	
	
	


	Asserts

	object runtime type and existence

	SS_ASSERT_MEM



	
	
	


	Sets persistent

	object to initial state

	ss_pers_reset



	
	
	


	Make a new

	object unique

	ss_pers_unique



	
	
	


	Make an

	object unique

	SS_PERS_UNIQUE



	
	
	


	Compares two persistent

	objects

	ss_pers_cmp



	
	
	


	Compares two persistent

	objects

	ss_pers_cmp_



	
	
	


	Persistent

	objects (class 0x5af03000)

	SS_MAGIC_ss



	
	
	


	Find

	objects in a scope

	ss_pers_find



	
	
	


	
	Obtain array value

	ss_array_get



	
	
	


	
	Obtain attribute value

	ss_attr_get



	
	
	


	
	Obtain file for an object

	ss_pers_file



	
	
	


	
	Obtain information about referenced files

	ss_file_references



	
	
	


	
	Obtain magic number class

	SS_MAGIC_CLASS



	
	
	


	
	Obtain magic number for type

	SS_MAGIC



	
	
	


	
	Obtain magic number from a pointer

	SS_MAGIC_OF



	
	
	


	
	Obtain magic sequence number

	SS_MAGIC_SEQUENCE



	
	
	


	
	Obtain pointer direct to value

	ss_prop_buffer



	
	
	


	
	Obtain pointer into string object

	ss_string_ptr



	
	
	


	
	Obtain scope for an object

	ss_pers_scope



	
	
	


	
	Obtain top scope

	ss_file_topscope



	
	
	


	
	Obtain top scope for an object

	ss_pers_topscope



	
	
	


	Append

	one string to another

	ss_string_cat



	
	
	


	
	Open many files

	ss_file_openall



	
	
	


	
	Open or create a file

	ss_file_open



	
	
	


	Query scope

	open status

	ss_scope_isopen



	
	
	


	Test file

	open status

	ss_file_isopen



	
	
	


	Determines if scope is an

	open top-scope

	ss_scope_isopentop



	
	
	


	
	Opens a scope

	ss_scope_open



	
	
	


	Initiate a write

	operation

	ss_aio_write



	
	
	


	
	Parse debug setup statements

	ss_debug_env



	
	
	


	Modify

	part of an array

	ss_array_put



	
	
	


	Write

	pending data to file

	ss_scope_flush



	
	
	


	Write

	pending data to file

	ss_file_flush



	
	
	


	Flush

	pending data to HDF5

	ss_blob_flush



	
	
	


	Compute a checksum for a

	persistent object

	ss_pers_cksum



	
	
	


	Create a new

	persistent object

	ss_pers_new



	
	
	


	Decode

	persistent object links

	ss_pers_decode_cb



	
	
	


	
	Persistent object links (class 0x5af02000)

	SS_MAGIC_ss



	
	
	


	Sets

	persistent object to initial state

	ss_pers_reset



	
	
	


	Compares two

	persistent objects

	ss_pers_cmp



	
	
	


	Compares two

	persistent objects

	ss_pers_cmp_



	
	
	


	
	Persistent objects (class 0x5af03000)

	SS_MAGIC_ss



	
	
	


	Get a C string from a

	persistent string

	ss_string_get



	
	
	


	Query the length of a

	persistent string

	ss_string_len



	
	
	


	Query the length of a

	persistent string

	ss_string_memlen



	
	
	


	Store a C string in a

	persistent string

	ss_string_set



	
	
	


	Compare

	persistent string with C string

	ss_string_cmp_s



	
	
	


	Query a floating

	point property

	ss_prop_get_f



	
	
	


	Obtain magic number from a

	pointer

	SS_MAGIC_OF



	
	
	


	Obtain

	pointer direct to value

	ss_prop_buffer



	
	
	


	Obtain

	pointer into string object

	ss_string_ptr



	
	
	


	
	Print an arbitrary datum

	ss_val_dump



	
	
	


	
	Print global file table

	ss_gfile_debug_all



	
	
	


	
	Print information about a global file entry

	ss_gfile_debug_one



	
	
	


	Get two-phase I/O

	properties

	ss_blob_get_2pio



	
	
	


	Set two-phase I/O

	properties

	ss_blob_set_2pio



	
	
	


	Query a floating point

	property

	ss_prop_get_f



	
	
	


	Query an integer

	property

	ss_prop_get_i



	
	
	


	Query an unsigned integer

	property

	ss_prop_get_u



	
	
	


	
	Property constructor

	ss_prop_cons



	
	
	


	Determine if

	property exists

	ss_prop_has



	
	
	


	Destroy a

	property list

	ss_prop_dest



	
	
	


	Query the datatype of a property or

	property list

	ss_prop_type



	
	
	


	Queries/sets

	property list appendability

	ss_prop_appendable



	
	
	


	Create a new

	property list from an existing list

	ss_prop_dup



	
	
	


	Create a new

	property list from scratch

	ss_prop_new



	
	
	


	Make a

	property list immutable

	ss_prop_immutable



	
	
	


	Queries/sets

	property list modifiability

	ss_prop_modifiable



	
	
	


	Query the datatype of a

	property or property list

	ss_prop_type



	
	
	


	Add new

	property to a list

	ss_prop_add



	
	
	


	Change a

	property value

	ss_prop_set



	
	
	


	Change a floating-point

	property value

	ss_prop_set_f



	
	
	


	Change a signed integer

	property value

	ss_prop_set_i



	
	
	


	Change an unsigned integer

	property value

	ss_prop_set_u



	
	
	


	Query a

	property value

	ss_prop_get



	
	
	


	Number of base

	quantities

	SS_MAX_BASEQS



	
	
	


	
	Queries/sets property list appendability

	ss_prop_appendable



	
	
	


	
	Queries/sets property list modifiability

	ss_prop_modifiable



	
	
	


	
	Query a floating point property

	ss_prop_get_f



	
	
	


	
	Query a property value

	ss_prop_get



	
	
	


	
	Query an integer property

	ss_prop_get_i



	
	
	


	
	Query an unsigned integer property

	ss_prop_get_u



	
	
	


	
	Query attribute metadata

	ss_attr_describe



	
	
	


	
	Query blob extent

	ss_blob_space



	
	
	


	
	Query dataset bound to a blob

	ss_blob_bound_f



	
	
	


	
	Query dataset bound to a blob

	ss_blob_bound_f1



	
	
	


	
	Query file synchronization state

	ss_file_synchronized



	
	
	


	
	Query memory bound to a blob

	ss_blob_bound_m



	
	
	


	
	Query memory bound to a blob

	ss_blob_bound_m1



	
	
	


	
	Query scope open status

	ss_scope_isopen



	
	
	


	
	Query scope synchronization state

	ss_scope_synchronized



	
	
	


	
	Query the datatype of a property or property list

	ss_prop_type



	
	
	


	
	Query the length of a persistent string

	ss_string_len



	
	
	


	
	Query the length of a persistent string

	ss_string_memlen



	
	
	


	
	Query the number of elements

	ss_array_nelmts



	
	
	


	
	Query the scope communicator

	ss_scope_comm



	
	
	


	
	Read data from a file

	ss_blob_read



	
	
	


	
	Read data from a file

	ss_blob_read1



	
	
	


	Mark file as

	read-only

	ss_file_readonly



	
	
	


	Renders human

	readable numbers

	ss_bytes



	
	
	


	Obtain information about

	referenced files

	ss_file_references



	
	
	


	Attach an object

	registry scope

	ss_file_registry



	
	
	


	
	Renders human readable numbers

	ss_bytes



	
	
	


	Returns current status of a

	request

	ss_aio_error



	
	
	


	Block until

	requests complete

	ss_aio_suspend



	
	
	


	Weakly

	reset a string

	ss_string_realloc



	
	
	


	
	Returns current status of a request

	ss_aio_error



	
	
	


	Wildcard SIL

	role

	SAF_SROLE_ANY



	
	
	


	SIL

	roles

	ss_silrole_t



	
	
	


	Asserts object

	runtime class

	SS_ASSERT_CLASS



	
	
	


	Asserts object

	runtime type

	SS_ASSERT_TYPE



	
	
	


	Asserts object

	runtime type and existence

	SS_ASSERT_MEM



	
	
	


	Attach an object registry

	scope

	ss_file_registry



	
	
	


	Closes a

	scope

	ss_scope_close



	
	
	


	Find objecs in a

	scope

	SS_PERS_FIND



	
	
	


	Find objects in a

	scope

	ss_pers_find



	
	
	


	Obtain top

	scope

	ss_file_topscope



	
	
	


	Opens a

	scope

	ss_scope_open



	
	
	


	Synchronize a

	scope

	ss_scope_synchronize



	
	
	


	Tests transient state of a

	scope

	ss_scope_istransient



	
	
	


	Tests whether

	scope can be modified

	ss_scope_iswritable



	
	
	


	Query the

	scope communicator

	ss_scope_comm



	
	
	


	Obtain

	scope for an object

	ss_pers_scope



	
	
	


	Obtain top

	scope for an object

	ss_pers_topscope



	
	
	


	Determines if

	scope is an open top-scope

	ss_scope_isopentop



	
	
	


	Query

	scope open status

	ss_scope_isopen



	
	
	


	Query

	scope synchronization state

	ss_scope_synchronized



	
	
	


	Synchronize all

	scopes of a file

	ss_file_synchronize



	
	
	


	Create a new property list from

	scratch

	ss_prop_new



	
	
	


	Obtain magic

	sequence number

	SS_MAGIC_SEQUENCE



	
	
	


	
	Set two-phase I/O properties

	ss_blob_set_2pio



	
	
	


	
	Sets persistent object to initial state

	ss_pers_reset



	
	
	


	Parse debug

	setup statements

	ss_debug_env



	
	
	


	Change a

	signed integer property value

	ss_prop_set_i



	
	
	


	Wildcard

	SIL role

	SAF_SROLE_ANY



	
	
	


	
	SIL roles

	ss_silrole_t



	
	
	


	Modify attribute type and

	size

	ss_attr_modify



	
	
	


	Change the

	size of a variable length array

	ss_array_resize



	
	
	


	Indicate functionality test

	skipped

	SS_SKIPPED



	
	
	


	Indicate functionality test

	skipped

	SS_SKIPPED_WHEN



	
	
	


	
	Start debugger for error

	ss_error



	
	
	


	Change link

	state

	ss_pers_state



	
	
	


	Query file synchronization

	state

	ss_file_synchronized



	
	
	


	Query scope synchronization

	state

	ss_scope_synchronized



	
	
	


	Sets persistent object to initial

	state

	ss_pers_reset



	
	
	


	Test library initialization

	state

	ss_initialized



	
	
	


	Tests transient

	state of a file

	ss_file_istransient



	
	
	


	Tests transient

	state of a scope

	ss_scope_istransient



	
	
	


	Parse debug setup

	statements

	ss_debug_env



	
	
	


	Query scope open

	status

	ss_scope_isopen



	
	
	


	Test file open

	status

	ss_file_isopen



	
	
	


	Returns current

	status of a request

	ss_aio_error



	
	
	


	Create

	storage for a blob

	ss_blob_mkstorage



	
	
	


	
	Store a byte array in a string

	ss_string_memset



	
	
	


	
	Store a C string in a persistent string

	ss_string_set



	
	
	


	Compare persistent string with C

	string

	ss_string_cmp_s



	
	
	


	Free memory associated with the

	string

	ss_string_reset



	
	
	


	Get a C string from a persistent

	string

	ss_string_get



	
	
	


	Query the length of a persistent

	string

	ss_string_len



	
	
	


	Query the length of a persistent

	string

	ss_string_memlen



	
	
	


	Store a byte array in a

	string

	ss_string_memset



	
	
	


	Store a C string in a persistent

	string

	ss_string_set



	
	
	


	Weakly reset a

	string

	ss_string_realloc



	
	
	


	Get a C

	string from a persistent string

	ss_string_get



	
	
	


	Store a C

	string in a persistent string

	ss_string_set



	
	
	


	Obtain pointer into

	string object

	ss_string_ptr



	
	
	


	Append one

	string to another

	ss_string_cat



	
	
	


	Compare persistent

	string with C string

	ss_string_cmp_s



	
	
	


	Compares two variable length

	strings

	ss_string_cmp



	
	
	


	
	Substring modification

	ss_string_splice



	
	
	


	Initialize the asyncronous I/O

	subsystem

	ss_aio_init



	
	
	


	Terminate the asynchronous I/O

	subsystem

	ss_aio_finalize



	
	
	


	Query file

	synchronization state

	ss_file_synchronized



	
	
	


	Query scope

	synchronization state

	ss_scope_synchronized



	
	
	


	
	Synchronize a scope

	ss_scope_synchronize



	
	
	


	
	Synchronize all scopes of a file

	ss_file_synchronize



	
	
	


	Print global file

	table

	ss_gfile_debug_all



	
	
	


	
	Terminate the asynchronous I/O subsystem

	ss_aio_finalize



	
	
	


	
	Terminate the library

	ss_finalize



	
	
	


	Begin a functionality

	test

	SS_CHECKING



	
	
	


	End functionality

	test

	SS_END_CHECKING



	
	
	


	End functionality

	test

	SS_END_CHECKING_WITH



	
	
	


	Indicate functionality

	test failure

	SS_FAILED



	
	
	


	Indicate functionality

	test failure

	SS_FAILED_WHEN



	
	
	


	
	Test file open status

	ss_file_isopen



	
	
	


	
	Test file writability

	ss_file_iswritable



	
	
	


	
	Test library initialization state

	ss_initialized



	
	
	


	Indicate functionality

	test skipped

	SS_SKIPPED



	
	
	


	Indicate functionality

	test skipped

	SS_SKIPPED_WHEN



	
	
	


	
	Test whether an object can be modified

	ss_pers_iswritable



	
	
	


	
	Tests transient state of a file

	ss_file_istransient



	
	
	


	
	Tests transient state of a scope

	ss_scope_istransient



	
	
	


	
	Tests whether scope can be modified

	ss_scope_iswritable



	
	
	


	Obtain

	top scope

	ss_file_topscope



	
	
	


	Obtain

	top scope for an object

	ss_pers_topscope



	
	
	


	Determines if scope is an open

	top-scope

	ss_scope_isopentop



	
	
	


	Declare a file to be

	transient

	H5F_ACC_TRANSIENT



	
	
	


	Tests

	transient state of a file

	ss_file_istransient



	
	
	


	Tests

	transient state of a scope

	ss_scope_istransient



	
	
	


	Compares

	two datatypes

	H5Tcmp



	
	
	


	Compares

	two persistent objects

	ss_pers_cmp



	
	
	


	Compares

	two persistent objects

	ss_pers_cmp_



	
	
	


	Compares

	two variable length strings

	ss_string_cmp



	
	
	


	Get

	two-phase I/O properties

	ss_blob_get_2pio



	
	
	


	Set

	two-phase I/O properties

	ss_blob_set_2pio



	
	
	


	Asserts object runtime

	type

	SS_ASSERT_TYPE



	
	
	


	Obtain magic number for

	type

	SS_MAGIC



	
	
	


	Asserts object runtime

	type and existence

	SS_ASSERT_MEM



	
	
	


	Modify attribute

	type and size

	ss_attr_modify



	
	
	


	Make a new object

	unique

	ss_pers_unique



	
	
	


	Make an object

	unique

	SS_PERS_UNIQUE



	
	
	


	Query an

	unsigned integer property

	ss_prop_get_u



	
	
	


	Change an

	unsigned integer property value

	ss_prop_set_u



	
	
	


	Block

	until requests complete

	ss_aio_suspend



	
	
	


	
	Updates an object link

	ss_pers_update



	
	
	


	Change a floating-point property

	value

	ss_prop_set_f



	
	
	


	Change a property

	value

	ss_prop_set



	
	
	


	Change a signed integer property

	value

	ss_prop_set_i



	
	
	


	Change an attribute

	value

	ss_attr_put



	
	
	


	Change an unsigned integer property

	value

	ss_prop_set_u



	
	
	


	Obtain array

	value

	ss_array_get



	
	
	


	Obtain attribute

	value

	ss_attr_get



	
	
	


	Obtain pointer direct to

	value

	ss_prop_buffer



	
	
	


	Query a property

	value

	ss_prop_get



	
	
	


	
	Value comparison flags

	ss_val_cmp_t



	
	
	


	Change the size of a

	variable length array

	ss_array_resize



	
	
	


	Compares two

	variable length strings

	ss_string_cmp



	
	
	


	Environment

	Variables

	SSLIB



	
	
	


	
	Weakly reset a string

	ss_string_realloc



	
	
	


	Test

	whether an object can be modified

	ss_pers_iswritable



	
	
	


	Tests

	whether scope can be modified

	ss_scope_iswritable



	
	
	


	
	Wildcard SIL role

	SAF_SROLE_ANY



	
	
	


	Test file

	writability

	ss_file_iswritable



	
	
	


	
	Write data to a blob

	ss_blob_write



	
	
	


	
	Write data to a blob

	ss_blob_write1



	
	
	


	Initiate a

	write operation

	ss_aio_write



	
	
	


	
	Write pending data to file

	ss_scope_flush



	
	
	


	
	Write pending data to file

	ss_file_flush










          

      

      

    

  

    
      
          
            

Index



 _
 | C
 | G
 | H
 | M
 | O
 | R
 | S
 | U
 | W
 


_


  	
      	_saf_convert (C function)


      	_saf_find_parent_field (C function)


  

  	
      	_saf_gen_stdtypes (C function)


      	_saf_is_primitive_type (C function)


      	_saf_strdup (C function)


  





C


  	
      	CloseDatabase (C function)


  





G


  	
      	GetAddDelSequence (C function)


  





H


  	
      	H5F_ACC_TRANSIENT (C variable)


  

  	
      	H5Tcmp (C function)


  





M


  	
      	main (C function), [1], [2], [3], [4], [5], [6], [7], [8]


      	make_base_space (C function), [1], [2]


      	make_coord_field (C function)


      	make_coord_field_dofs (C function)


      	make_direct_coord_field (C function)


      	make_direct_temperature_field (C function)


      	make_displacement_field (C function)


      	make_distribution_factors_on_ss2_field (C function)


      	make_global_coord_field (C function)


      	make_indirect_coord_field (C function)


      	make_indirect_temperature_field (C function)


  

  	
      	make_init_suite (C function)


      	make_mesh_connectivity (C function)


      	make_pressure_on_ss1_field (C function)


      	make_scalar_field (C function)


      	make_scalar_field_dofs (C function)


      	make_stress_field (C function)


      	make_stress_field_dofs (C function)


      	make_stress_on_cell_1_field (C function)


      	make_temperature_on_cell_2_field (C function)


      	make_temperature_on_ns1_field (C function)


      	make_time_base_field (C function)


      	make_time_suite (C function)


  





O


  	
      	OpenDatabase (C function), [1], [2]


  





R


  	
      	ReadBackElementHistory (C function)


  





S


  	
      	SAF_1DC (C macro)


      	SAF_1DF (C macro)


      	SAF_2DC (C macro)


      	SAF_2DF (C macro)


      	SAF_3DC (C macro)


      	SAF_3DF (C macro)


      	saf_allgather_handles (C function)


      	SAF_ASSERT_DISABLE (C variable)


      	SAF_BARRIER (C macro)


      	SAF_BOUNDARY (C macro)


      	SAF_Cat (C macro)


      	SAF_CATCH (C variable)


      	SAF_CATCH_ALL (C variable)


      	SAF_CATCH_ERR (C macro)


      	saf_close_database (C function)


      	SAF_COMMON (C macro)


      	SAF_CONSTANT (C macro)


      	SAF_CORDER (C macro)


      	saf_createProps_database (C function)


      	saf_createProps_lib (C function)


      	saf_data_has_been_written_to_comp_field (C function)


      	saf_data_has_been_written_to_field (C function)


      	saf_declare_algebraic (C function)


      	saf_declare_alternate_indexspec (C function)


      	saf_declare_basis (C function)


      	saf_declare_category (C function)


      	saf_declare_collection (C function)


      	saf_declare_coords (C function)


      	saf_declare_default_coords (C function)


      	saf_declare_evaluation (C function)


      	saf_declare_field (C function)


      	saf_declare_field_tmpl (C function)


      	saf_declare_quantity (C function)


      	saf_declare_relrep (C function)


      	saf_declare_role (C function)


      	saf_declare_set (C function)


      	saf_declare_state_group (C function)


      	saf_declare_state_tmpl (C function)


      	saf_declare_subset_relation (C function)


      	saf_declare_suite (C function)


      	saf_declare_topo_relation (C function)


      	saf_declare_unit (C function)


      	SAF_DECOMP (C macro)


      	SAF_DEFAULT_DBPROPS (C variable)


      	SAF_DEFAULT_LIBPROPS (C variable)


      	saf_describe_algebraic (C function)


      	saf_describe_alternate_indexspec (C function)


      	saf_describe_basis (C function)


      	saf_describe_category (C function)


      	saf_describe_collection (C function)


      	saf_describe_evaluation (C function)


      	saf_describe_field (C function)


      	saf_describe_field_tmpl (C function)


      	saf_describe_quantity (C function)


      	saf_describe_relrep (C function)


      	saf_describe_role (C function)


      	saf_describe_set (C function)


      	saf_describe_state_group (C function)


      	saf_describe_state_tmpl (C function)


      	saf_describe_subset_relation (C function)


      	saf_describe_suite (C function)


      	saf_describe_topo_relation (C function)


      	saf_describe_unit (C function)


      	saf_divide_quantity (C macro)


      	saf_divide_unit (C macro)


      	SAF_EMBEDBND (C macro)


      	SAF_EQUIV (C macro)


      	SAF_ERROR_REPORTING (C variable)


      	saf_error_str (C function)


      	saf_extend_collection (C function)


      	SAF_Field (C macro)


      	SAF_FieldTmpl (C macro)


      	saf_final (C function)


      	saf_find_algebraics (C function)


      	saf_find_alternate_indexspecs (C function)


      	saf_find_bases (C function)


      	saf_find_categories (C function)


      	saf_find_collections (C function)


      	saf_find_coords (C function)


      	saf_find_default_coords (C function)


      	saf_find_evaluations (C function)


      	saf_find_field_tmpls (C function)


      	saf_find_fields (C function)


      	saf_find_matching_sets (C function)


      	saf_find_one_algebraic (C function)


      	saf_find_one_basis (C function)


      	saf_find_one_evaluation (C function)


      	saf_find_one_quantity (C function)


      	saf_find_one_relrep (C function)


      	saf_find_one_role (C function)


      	saf_find_one_unit (C function)


      	saf_find_quantities (C function)


      	saf_find_relreps (C function)


      	saf_find_roles (C function)


      	saf_find_sets (C function)


      	saf_find_state_groups (C function)


      	saf_find_state_tmpl (C function)


      	saf_find_subset_relations (C function)


      	saf_find_suites (C function)


      	saf_find_topo_relations (C function)


      	saf_find_unit_not_applicable (C function)


      	saf_find_units (C function)


      	SAF_FORDER (C macro)


      	saf_freeInfo_path (C function)


      	saf_freeProps_database (C function)


      	saf_freeProps_lib (C function)


      	SAF_GENERAL (C macro)


      	saf_get_attribute (C function)


      	saf_get_cat_att (C function)


      	saf_get_count_and_type_for_field (C function)


      	saf_get_count_and_type_for_subset_relation (C function)


      	saf_get_count_and_type_for_topo_relation (C function)


      	saf_get_field_att (C function)


      	saf_get_field_tmpl_att (C function)


      	saf_get_set_att (C function)


      	saf_get_state_grp_att (C function)


      	saf_get_state_tmpl_att (C function)


      	saf_get_suite_att (C function)


      	saf_getInfo_errmsg (C function)


      	saf_getInfo_hdfversion (C function)


      	saf_getInfo_isHDFfile (C function)


      	saf_getInfo_isSAFdatabase (C function)


      	saf_getInfo_libversion (C function)


      	saf_getInfo_mpiversion (C function)


      	saf_getInfo_permissions (C function)


      	saf_getInfo_staterror (C function)


      	saf_grab_hdf5 (C function)


      	saf_init (C macro)


      	saf_is_self_stored_field (C function)


      	saf_is_self_stored_topo_relation (C function)


      	saf_log_unit (C function)


      	saf_multiply_quantity (C function)


      	saf_multiply_unit (C function)


      	SAF_NA_INDEXSPEC (C variable)


      	SAF_NELMTS (C macro)


      	SAF_NODAL (C macro)


      	SAF_NOT_APPLICABLE_INT (C variable)


      	SAF_NOT_IMPL (C variable)


      	SAF_NOT_SET_DB (C variable)


      	SAF_NULL_FIELD (C macro)


      	SAF_NULL_FTMPL (C macro)


      	SAF_NULL_REL (C macro)


      	SAF_NULL_SET (C macro)


      	SAF_NULL_STATE_GRP (C macro)


      	SAF_NULL_STMPL (C macro)


      	SAF_NULL_SUITE (C macro)


      	saf_offset_unit (C function)


      	saf_open_database (C function)


      	SAF_PARALLEL_VAR (C variable)


      	SAF_POSTCOND_DISABLE (C variable)


      	SAF_PRECOND_DISABLE (C variable)


      	saf_put_attribute (C function)


      	saf_put_cat_att (C function)


      	saf_put_field_att (C function)


      	saf_put_field_tmpl_att (C function)


      	saf_put_set_att (C function)


      	saf_put_state_grp_att (C function)


      	saf_put_state_tmpl_att (C function)


      	saf_put_suite_att (C function)


      	SAF_QAMOUNT (C variable)


      	SAF_QCURRENT (C variable)


      	SAF_QLENGTH (C variable)


      	SAF_QLIGHT (C variable)


      	SAF_QMASS (C variable)


      	SAF_QNAME (C macro)


      	SAF_QTEMP (C variable)


      	SAF_QTIME (C variable)


      	saf_quantify_unit (C function)


      	SAF_RANK (C macro)


      	saf_read_alternate_indexspec (C function)


      	saf_read_field (C function)


      	saf_read_state (C function)


      	saf_read_subset_relation (C function)


      	saf_read_topo_relation (C function)


      	saf_readInfo_path (C function)


      	SAF_REGISTRIES (C variable)


      	SAF_REGISTRY_SAVE (C variable)


      	SAF_Rel (C macro)


      	saf_same_collections (C function)


      	SAF_SELF (C macro)


      	SAF_Set (C macro)


      	saf_setProps_Clobber (C function)


      	saf_setProps_DbComm (C function)


      	saf_setProps_DontAbort (C function)


      	saf_setProps_ErrFunc (C function)


      	saf_setProps_ErrorLogging (C function)


      	saf_setProps_ErrorMode (C function)


      	saf_setProps_LibComm (C function)


      	saf_setProps_MemoryResident (C function)


      	saf_setProps_ReadOnly (C function)


      	saf_setProps_Registry (C function)


  

  	
      	saf_setProps_StrMode (C function)


      	saf_setProps_StrPoolSize (C function)


      	SAF_SIZE (C macro)


      	SAF_SROLE_ANY (C variable)


      	SAF_StateGrp (C macro)


      	SAF_StateTmpl (C macro)


      	SAF_Suite (C macro)


      	saf_target_field (C function)


      	saf_target_subset_relation (C function)


      	saf_target_topo_relation (C function)


      	SAF_TRACING (C variable)


      	SAF_TRY_BEGIN (C variable)


      	SAF_TRY_END (C variable)


      	saf_ungrab_hdf5 (C function)


      	SAF_UNIVERSE (C macro)


      	saf_update_database (C function)


      	saf_use_written_subset_relation (C function)


      	SAF_VALID (C macro)


      	SAF_VERSION_ANNOT (C variable)


      	SAF_VERSION_MAJOR (C variable)


      	SAF_VERSION_MINOR (C variable)


      	SAF_VERSION_RELEASE (C variable)


      	saf_version_string (C function)


      	SAF_VERSION_VAR (C variable)


      	SAF_WHOLE_FIELD (C variable)


      	saf_write_alternate_indexspec (C function)


      	saf_write_field (C function)


      	saf_write_state (C function)


      	saf_write_subset_relation (C function)


      	saf_write_topo_relation (C function)


      	SAF_XOR (C macro)


      	SAF_ZONAL (C macro)


      	ss_aio_error (C function)


      	ss_aio_finalize (C function)


      	ss_aio_hdf5_cb (C function)


      	ss_aio_init (C function)


      	ss_aio_suspend (C function)


      	ss_aio_write (C function)


      	ss_array_get (C function)


      	ss_array_nelmts (C function)


      	ss_array_put (C function)


      	ss_array_reset (C function)


      	ss_array_resize (C function)


      	ss_array_target (C function)


      	ss_array_targeted (C function)


      	SS_ASSERT_CLASS (C macro)


      	SS_ASSERT_MEM (C macro)


      	SS_ASSERT_TYPE (C macro)


      	ss_attr_count (C function)


      	ss_attr_describe (C function)


      	ss_attr_find (C function)


      	ss_attr_get (C function)


      	ss_attr_modify (C function)


      	ss_attr_new (C function)


      	ss_attr_put (C function)


      	ss_blob_bind_f (C function)


      	ss_blob_bind_f1 (C function)


      	ss_blob_bind_m (C function)


      	ss_blob_bind_m1 (C function)


      	ss_blob_bound_f (C function)


      	ss_blob_bound_f1 (C function)


      	ss_blob_bound_m (C function)


      	ss_blob_bound_m1 (C function)


      	ss_blob_extend (C function)


      	ss_blob_extend1 (C function)


      	ss_blob_flush (C function)


      	ss_blob_get_2pio (C function)


      	ss_blob_mkstorage (C function)


      	ss_blob_new (C function)


      	ss_blob_read (C function)


      	ss_blob_read1 (C function)


      	ss_blob_set_2pio (C function)


      	ss_blob_space (C function)


      	ss_blob_synchronize (C function)


      	ss_blob_write (C function)


      	ss_blob_write1 (C function)


      	ss_bytes (C function)


      	SS_CHECKING (C macro)


      	ss_debug (C function)


      	ss_debug_env (C function)


      	ss_debug_s (C function)


      	SS_END_CHECKING (C variable)


      	SS_END_CHECKING_WITH (C macro)


      	ss_error (C function)


      	SS_FAILED (C variable)


      	SS_FAILED_WHEN (C macro)


      	ss_file_close (C function)


      	ss_file_create (C function)


      	ss_file_flush (C function)


      	ss_file_isopen (C function)


      	ss_file_istransient (C function)


      	ss_file_iswritable (C function)


      	ss_file_open (C function)


      	ss_file_openall (C function)


      	ss_file_readonly (C function)


      	ss_file_references (C function)


      	ss_file_registry (C function)


      	ss_file_synchronize (C function)


      	ss_file_synchronized (C function)


      	ss_file_topscope (C function)


      	ss_finalize (C function)


      	ss_gfile_debug_all (C function)


      	ss_gfile_debug_one (C function)


      	ss_init (C macro)


      	ss_init_func (C function)


      	ss_initialized (C function)


      	ss_insert_commas (C function)


      	SS_MAGIC (C macro)


      	SS_MAGIC_CLASS (C macro)


      	SS_MAGIC_CONS (C macro)


      	SS_MAGIC_OF (C macro)


      	SS_MAGIC_OK (C macro)


      	SS_MAGIC_SEQUENCE (C macro)


      	SS_MAX_BASEQS (C variable)


      	SS_MAX_INDEXDIMS (C variable)


      	ss_pers_cksum (C function)


      	ss_pers_cmp (C function)


      	ss_pers_cmp_ (C function)


      	ss_pers_copy (C function)


      	SS_PERS_COPY (C macro)


      	ss_pers_debug (C function)


      	ss_pers_decode_cb (C function)


      	ss_pers_deref (C function)


      	ss_pers_dest (C function)


      	SS_PERS_DEST (C macro)


      	ss_pers_eq (C function)


      	SS_PERS_EQ (C macro)


      	ss_pers_equal (C function)


      	SS_PERS_EQUAL (C macro)


      	ss_pers_file (C function)


      	ss_pers_find (C function)


      	SS_PERS_FIND (C macro)


      	SS_PERS_ISNULL (C macro)


      	ss_pers_iswritable (C function)


      	ss_pers_modified (C function)


      	SS_PERS_MODIFIED (C macro)


      	ss_pers_new (C function)


      	SS_PERS_NEW (C macro)


      	ss_pers_refer (C function)


      	ss_pers_reset (C function)


      	ss_pers_scope (C function)


      	ss_pers_state (C function)


      	ss_pers_topscope (C function)


      	ss_pers_unique (C function)


      	SS_PERS_UNIQUE (C macro)


      	ss_pers_update (C function)


      	ss_prop_add (C function)


      	ss_prop_appendable (C function)


      	ss_prop_buffer (C function)


      	ss_prop_cons (C function)


      	ss_prop_dest (C function)


      	ss_prop_dup (C function)


      	ss_prop_get (C function)


      	ss_prop_get_f (C function)


      	ss_prop_get_i (C function)


      	ss_prop_get_u (C function)


      	ss_prop_has (C function)


      	ss_prop_immutable (C function)


      	ss_prop_modifiable (C function)


      	ss_prop_new (C function)


      	ss_prop_set (C function)


      	ss_prop_set_f (C function)


      	ss_prop_set_i (C function)


      	ss_prop_set_u (C function)


      	ss_prop_type (C function)


      	ss_scope_close (C function)


      	ss_scope_comm (C function)


      	ss_scope_flush (C function)


      	ss_scope_isopen (C function)


      	ss_scope_isopentop (C function)


      	ss_scope_istransient (C function)


      	ss_scope_iswritable (C function)


      	ss_scope_open (C function)


      	ss_scope_synchronize (C function)


      	ss_scope_synchronized (C function)


      	SS_SKIPPED (C variable)


      	SS_SKIPPED_WHEN (C macro)


      	ss_string_cat (C function)


      	ss_string_cmp (C function)


      	ss_string_cmp_s (C function)


      	ss_string_get (C function)


      	ss_string_len (C function)


      	ss_string_memlen (C function)


      	ss_string_memset (C function)


      	ss_string_ptr (C function)


      	ss_string_realloc (C function)


      	ss_string_reset (C function)


      	ss_string_set (C function)


      	ss_string_splice (C function)


      	ss_table_indirect (C function)


      	ss_val_dump (C function)


      	ss_zap (C function)


  





U


  	
      	UpdateDatabase (C function)


  





W


  	
      	WriteCurrentMesh (C function), [1], [2]


  







          

      

      

    

  

    
      
          
            
  
C-Automatic Handle Allocation

These set of macros provide a slightly more convenient mechanism for allocating fixed arrays of
handles on the stack as C-automatics that can be used in SAF [https://github.com/markcmiller86/SAF] calls that return multiple handles.


Members



	SAF_Cat [Public macro]

	SAF_Field [Public macro]

	SAF_FieldTmpl [Public macro]

	SAF_Rel [Public macro]

	SAF_Set [Public macro]

	SAF_StateGrp [Public macro]

	SAF_StateTmpl [Public macro]

	SAF_Suite [Public macro]











          

      

      

    

  

    
      
          
            
  
Parallel Modes

In many SAF [https://github.com/markcmiller86/SAF] calls, the first argument is a SAF__ParMode_t argument for the parallel mode in which the call
is to be executed. By and large, SAF [https://github.com/markcmiller86/SAF]’s API operates like a SIMD machine. All processor always participate
to do something. The possible parallel modes are SAF__ALL, SAF__EACH, and ``SAF__ONE``(rank).

In SAF__ALL mode, all processors participate to operate on a single, globally common object

In SAF__EACH mode, all processors participate to operate on nprocs, objects each one local to that
processor.

In ``SAF__ONE``(root) mode, all processors participate to allow one processor, the root, to operate on
one object.





          

      

      

    

  

    
      
          
            
  
Raw Data I/O

No description available.


Members



	saf_grab_hdf5 [Public function]

	saf_ungrab_hdf5 [Public function]











          

      

      

    

  

    
      
          
            
  
Relation Notes

In theory, every kind of relationship we might wish to define between sets is simply a mathematical relation. In fact,
even fields are relations between sets representing the base space of the field and sets representing the set of possible
values the field can attain over its base space.

In practice, we have need to distinguish between different kinds of relations. Of course, fields are characterized
as fields. However, for relationships between sets, we define two special cases; subset relations and
topology relations. A subset relation identifies that two sets are related to each other, one the subset of the
other. Furthermore that subset is identified by enumerating those members of a collection in the superset that are
also in the subset. For example, to specify a processor subset of a whole, we might identify all those elements
on the whole that are on the processor.

The other kind of relation we define is a topology relation. Another good name might have been mesh relation.
However, we have tried to avoid words, like mesh, that might have specific and overloaded meanings across the various
application domains SAF [https://github.com/markcmiller86/SAF] is designed to support. A topology relation defines how different members of a collection
are knitted together to form some larger piece. For example, a topology relation is used to define how different
elements are knitted together (at the nodes) to form a finite element mesh.





          

      

      

    

  

    
      
          
            
  
Return Values

Most SAF [https://github.com/markcmiller86/SAF] functions return SAF__SUCCESS when successful. Upon failure, the function either returns one of the
error codes (see SAF__error_t) or throws an exception.





          

      

      

    

  

    
      
          
            
  
Returned Handles

Many API functions take a pointer to an integer indicating the size of a returned list of object handles.
For example, saf_find_files has int ``num_files`` and ``SAF__File`` **files arguments. Many of SAF_’s other find
functions have an analogous pair of args; one for the *number of returned items and the other for the list of
returned items. In the text below, we refer to these, generically, as the number and list arguments.

The memory for the returned handles can be allocated by the client or by the lib. Furthermore, the client can
determine the size of the returned list by first calling the function with a non-NULL number argument and
the list argument set to NULL. For example, to determine the number of supplemental files whose names begin
with “gorfo”…

	1
2

	 int count;
 saf_find_files(db, "gorfo*", &count, NULL);







will return in COUNT, the number of matching supplemental files.

If the client allocates the memory for the returned handles, the number argument is used both as an input and
as an output argument. On input, the number argument is expected to point to a value indicating the number
of items that can be stored in the list argument and the list argument is expected to point to the memory
for the returned handles allocated by the client. For example…

	1
2
3

	 int count = 5;
 SAF_Files files[5]; *pfiles = &files[0];
 saf_find_files(db, "gorfo*", &count, &pfiles);







Furthermore, if SAF [https://github.com/markcmiller86/SAF] attempts to return more items into this memory than the
size indicated by the client via the number argument, the function will return an error.

If the client wants the library to allocate the memory for the returned list of handles, the client is expected
to pass a value for the list argument that points to NULL. For example…

	1
2
3

	 int count = 0;
 SAF_Files *files = NULL;
 saf_find_files(db, "gorfo*", &count, &pfiles);











          

      

      

    

  

    
      
          
            
  
Returned Strings

SAF offers three ways for string valued arguments to be returned by the client; client allocates and frees,
lib allocates and client frees, or strings are allocated from a string pool and freed automatically
by the library using a least recently used policy. See saf_setProps_StrMode for more information.





          

      

      

    

  

    
      
          
            
  
Make a C-automatic array of cat handles

SAF_Cat is a macro defined in saf.h.

Synopsis:


	
SAF_Cat(name, p_name, n)

	



Description: This macro puts the memory for an array of cat object handles on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it. name is the name of the array
returning an array of object handles.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a field handle a C automatic variable

SAF_Field is a macro defined in saf.h.

Synopsis:


	
SAF_Field(name, p_name, n)

	



Description: This macro puts the memory for a field object handle on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a field template handle a C automatic variable

SAF_FieldTmpl is a macro defined in saf.h.

Synopsis:


	
SAF_FieldTmpl(name, p_name, n)

	



Description: This macro puts the memory for a field template object handle on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a relation handle a C automatic variable

SAF_Rel is a macro defined in saf.h.

Synopsis:


	
SAF_Rel(name, p_name, n)

	



Description: This macro puts the memory for a relation object handle on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a C-automatic array of set handles

SAF_Set is a macro defined in saf.h.

Synopsis:


	
SAF_Set(name, p_name, n)

	



Description: This macro puts the memory for an array of set object handles on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it. name is the name of the array
returning an array of object handles.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a state handle a C automatic variable

SAF_StateGrp is a macro defined in saf.h.

Synopsis:


	
SAF_StateGrp(name, p_name, n)

	



Description: This macro puts the memory for a state object handle on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a state template handle a C automatic variable

SAF_StateTmpl is a macro defined in saf.h.

Synopsis:


	
SAF_StateTmpl(name, p_name, n)

	



Description: This macro puts the memory for a state template object handle on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Make a suite handle a C automatic variable

SAF_Suite is a macro defined in saf.h.

Synopsis:


	
SAF_Suite(name, p_name, n)

	



Description: This macro puts the memory for a suite object handle on the stack as an automatic variable rather
than having the library or client worry about allocating or freeing it.

See Also:


	C-Automatic Handle Allocation: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 #define SAF_ANY_INT     INT_MAX
 #define SAF_ANY_DOUBLE  (-1.e-64)
 #define SAF_ANY_FLOAT   (-1.e-32)
 #define SAF_ANY_TOPODIM SAF_ANY_INT
 #define SAF_CELLTYPE_ANY ((SAF_CellType)(-1))
 #define SAF_ANY_RATIO   SAF_ANY_INT
 #define SAF_ANY_NAME    NULL
 #define SAF_ANY_CAT     NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_1DC(nx)             _saf_indexspec(1,nx,0,SAF_C_ORDER)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_1DF(nx)             _saf_indexspec(1,nx,1,SAF_F_ORDER)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_2DC(nx,ny)          _saf_indexspec(2,nx,ny,0,0,SAF_C_ORDER)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_2DF(nx,ny)          _saf_indexspec(2,nx,ny,1,1,SAF_F_ORDER)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_3DC(nx,ny,nz)       _saf_indexspec(3,nx,ny,nz,0,0,0,SAF_C_ORDER)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_3DF(nx,ny,nz)       _saf_indexspec(3,nx,ny,nz,1,1,1,SAF_F_ORDER)









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 #define SAF_ALGTYPE_SCALAR      saf_find_algebraic_scalar()     /* Used to specify fields that obey properties of scalar
                                                                  * algebra. */
 #define SAF_ALGTYPE_VECTOR      saf_find_algebraic_vector()     /* Used, generically, for fields that obey properties of vector
                                                                  * algebra. */
 #define SAF_ALGTYPE_COMPONENT   saf_find_algebraic_component()  /* Used, generically, for any component of a multi-component
                                                                  * field. In many cases, it might be just as well to treat
                                                                  * each component of a multi-component field as a scalar field.
                                                                  * However, this is not entirely mathematically correct. */
 #define SAF_ALGTYPE_TENSOR      saf_find_algebraic_tensor()     /* Used for general, non-symmetric tensor fields */
 #define SAF_ALGTYPE_SYMTENSOR   saf_find_algebraic_symmetric_tensor()   /* Used for general, symmetric tensor fields. */
 #define SAF_ALGTYPE_TUPLE       saf_find_algebraic_tuple()      /* Used to identify a field which evaluates to a /group/ of
                                                                  * otherwise unrelated fields. Typically used in a /State/
                                                                  * field. */
 #define SAF_ALGTYPE_FIELD       saf_find_algebraic_field()      /* This algebraic type is used for fields that are, in reality,
                                                                  * simply /references/ to other fields. These are called
                                                                  * /field/indirections/ or, /indirect/fields. Indirect fields are
                                                                  * used, primarily for two kinds of fields; /inhomogeneous/ fields
                                                                  * and /cross-product/ fields. An inhomogeneous field is
                                                                  * represented as references to pieces of the field over subsets
                                                                  * of its base-space over which each piece *is* homogenous.
                                                                  * Likewise, a cross-product field is used to work around the
                                                                  * fact that SAF does NOT deal with cross product sets in the
                                                                  * base-spaces of fields. Thus, we represent such fields as
                                                                  * references to fields over other base spaces. */
 #define SAF_ALGTYPE_ANY         NULL                            /* Wildcard for find operations. */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_ASSERT_DISABLE 0    /* environment variable */









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 #define SAF_ATT_NAMES           ".saf_att_names"        /* If the client passes SAF_ATT_NAMES for the NAME arg in a call to
                                                          * saf_get_attribute(), SAF will return a TYPE of string (if the TYPE
                                                          * return value is requested), a COUNT equal to the number of attributes
                                                          * (if the COUNT return value was requested), and a VALUE array
                                                          * containing the names of all attributes defined for the object. */
 #define SAF_ATT_COUNT           ".saf_att_count"        /* If the client passes SAF_ATT_COUNT for the NAME arg in a SAF call to
                                                          * saf_get_attribute(), SAF will return the count of number of
                                                          * attributes defined for the given object in the COUNT. It is an error
                                                          * to request a count with SAF_ATT_COUNT, but pass NULL for the COUNT
                                                          * argument in a call to get attributes. */
 #define SAF_ATT_FIRST           ".saf_att_first"        /* If the client passes SAF_ATT_FIRST, for the NAME argument in a SAF call
                                                          * to saf_get_attribute(), SAF will return the *first* attribute that was
                                                          * ever defined for the object. Thereafter, any call with SAF_ATT_NEXT
                                                          * will iterate through the list of attributes defined for the object. */
 #define SAF_ATT_NEXT            ".saf_att_next"         /* This reserved attribute name works in conjunction with SAF_ATT_FIRST,
                                                          * to allow the client to iterate through all attributes defined for
                                                          * a given object. It is an error to pass SAF_ATT_NEXT without at least
                                                          * one prior call with SAF_ATT_FIRST. */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_BARRIER(Db)         _saf_barrier(Db)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_BOUNDARY(P,B)       P,B,SAF_BOUNDARY_TRUE,SAF_BOUNDARY_TRUE









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 typedef SAF_Basis SAF_BasisConstants;
 #define SAF_UNITY               saf_find_basis_unity()          /* The basis set with a single basis vector; {1} */
 #define SAF_CARTESIAN           saf_find_basis_cartesian()      /* The basis set with /N/ basis vectors; {e0, e1, ..., eN} */
 #define SAF_SPHERICAL           saf_find_basis_spherical()      /* The basis set with 3 basis vectors {r, theta, phi} */
 #define SAF_CYLINDRICAL         saf_find_basis_cylindrical()    /* The basis set with 3 basis vectors {r, theta, h} */
 #define SAF_UPPERTRI            saf_find_basis_uppertri()       /* The basis set of a symmetric tensor. Why do we need this if
                                                                  * the algebraic type already captures it? */
 #define SAF_VARIYING            saf_find_basis_variable()       /* For a basis that is varying over the base space. Often needed
                                                                  * if the basis is derived from local surface behavior such as
                                                                  * surface normals. Although, shouldn't we use something like
                                                                  * SAF_SURFACE_NORMAL for that? */
 #define SAF_ANY_BASIS           NULL                            /* Wildcard for searching. */









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 typedef enum {
    SAF_BOUNDARY_FALSE = SAF_TRISTATE_FALSE,
    SAF_BOUNDARY_TRUE  = SAF_TRISTATE_TRUE,
    SAF_BOUNDARY_TORF  = SAF_TRISTATE_TORF
 } SAF_BoundMode









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_CATCH else









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_CATCH_ALL if (_saf_check_catch())









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_CATCH_ERR(err) if (_saf_except == err && _saf_check_catch())









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_COMMON(C)           C,C,SAF_BOUNDARY_FALSE,SAF_BOUNDARY_FALSE









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_CONSTANT(db)        SAF_SELF(db), 1, SAF_SELF(db), SAF_SPACE_CONSTANT









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_CORDER(N)           _saf_c_order(N)









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_Cat(name, p_name, n)                                                \
         SAF_Cat name [ n ];                                               \
         SAF_Cat * p_name = name









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_DECOMP(D)           D, 1, D, SAF_SPACE_PWCONST









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_DEFAULT_DBPROPS     NULL    /* value to pass to saf_open_database() to specify default behavior */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_DEFAULT_LIBPROPS    NULL        /* argument to pass to saf_init() to specify default behavior */









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 typedef enum {
    SAF_DECOMP_FALSE = SAF_TRISTATE_FALSE,
    SAF_DECOMP_TRUE  = SAF_TRISTATE_TRUE,
    SAF_DECOMP_TORF  = SAF_TRISTATE_TORF
 } SAF_DecompMode









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_EMBEDBND(P,B)       P,B,SAF_BOUNDARY_FALSE,SAF_BOUNDARY_TRUE









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_EQUIV(A,B)          SS_PERS_EQ(A, B)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_ERROR_REPORTING 0   /* environment variable */









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 typedef enum {
     SAF_ERRMODE_RETURN=0,       /* (The default) Library will issue return codes rather than throw exceptions */
    SAF_ERRMODE_THROW            /* Library will throw exceptions rather than issue return codes */
 } SAF_ErrMode









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 typedef SAF_Eval SAF_EvalConstants;
 #define SAF_SPACE_CONSTANT      saf_find_evaluation_constant()      /* identifies an evaluation method that is constant. This
                                                                      * is really just an alias for piecewise constant in which
                                                                      * there is only one piece. */
 #define SAF_SPACE_PWCONST       saf_find_evaluation_piecewise_constant() /* identifies an evaluation method that is piecewise
                                                                      * constant. That is it is constant over each piece in the
                                                                      * EVAL_COLL argument of saf_declare_field(). */
 #define SAF_SPACE_PWLINEAR      saf_find_evaluation_piecewise_linear() /* identifies an evaluation method that is piecewise linear. */
 #define SAF_SPACE_UNIFORM       saf_find_evaluation_uniform()       /* identifies an evaluation method that is a single piece
                                                                      * of linear evaluation such as is common for /uniform/
                                                                      * coordinate fields. */









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 typedef enum {
    SAF_EXTENDIBLE_FALSE = SAF_TRISTATE_FALSE,
    SAF_EXTENDIBLE_TRUE  = SAF_TRISTATE_TRUE,
    SAF_EXTENDIBLE_TORF  = SAF_TRISTATE_TORF
 } SAF_ExtendMode









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_FORDER(N)           _saf_fortran_order(N)









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_Field(name, p_name, n)                                              \
         SAF_Field name [ n ];                                             \
         SAF_Field * p_name = name









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_FieldTmpl(name, p_name, n)                                          \
         SAF_FieldTmpl name [ n ];                                         \
         SAF_FieldTmpl * p_name = name









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 typedef enum {
    SAF_FSETS_TOP=1,     /* find the top-level from the given set */
    SAF_FSETS_BOUNDARY,  /* find the boundary of the given set */
    SAF_FSETS_SUBS,      /* find the immediate subsets of the given set */
    SAF_FSETS_SUPS,      /* find the immediate supersets of the given set */
    SAF_FSETS_LEAVES     /* find all the bottom most sets in the tree rooted at the given set */
 } SAF_FindSetMode









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_GENERAL(BND)        NULL,NULL,BND,SAF_BOUNDARY_FALSE









          

      

      

    

  

    
      
          
            
  	1
2
3

	 typedef int SAF_IndexSchema;
 #define SAF_F_ORDER             -1
 #define SAF_C_ORDER             -2









          

      

      

    

  

    
      
          
            
  	1
2
3

	 typedef ss_interleave_t            SAF_Interleave;
 #define SAF_BLOCKED                SAF_INTERLEAVE_COMPONENT     /* An alias for SAF_INTERLEAVE_COMPONENT. */
 #define SAF_INTERLEAVED            SAF_INTERLEAVE_VECTOR        /* An alias for SAF_INTERLEAVE_VECTOR. */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NA_INDEXSPEC         _saf_indexspec_not_applicable()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NELMTS(X)       (sizeof(X)/sizeof(*(X)))









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NODAL(N, Z)         N, 1, Z, SAF_SPACE_PWLINEAR









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NOT_APPLICABLE_INT  (-1)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NOT_IMPL            NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NOT_SET_DB  NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_FIELD(Db)      NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_FTMPL(Db)      NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_REL(Db)        NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_SET(Db)        NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_STATE_GRP(Db)   NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_STMPL(Db)      NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_NULL_SUITE(Db)   NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_PARALLEL_VAR        SAF_parallel_mode









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_POSTCOND_DISABLE 0  /* environment variable */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_PRECOND_DISABLE 0   /* environment variable */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QAMOUNT         saf_find_quantity_amount_of_a_substance()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QCURRENT        saf_find_quantity_electric_current()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QLENGTH         saf_find_quantity_length()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QLIGHT          saf_find_quantity_luminous_intensity()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QMASS           saf_find_quantity_mass()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QNAME(DB, NAME)     saf_find_one_quantity((DB),(NAME), NULL)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QTEMP           saf_find_quantity_thermodynamic_temperature()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_QTIME           saf_find_quantity_time()









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_RANK(Db)            _saf_rank(Db)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_REGISTRIES 0        /* environment variable */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_REGISTRY_SAVE       /* environment variable */









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_Rel(name, p_name, n)                                                \
         SAF_Rel name [ n ];                                               \
         SAF_Rel * p_name = name









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 typedef SAF_Role SAF_RoleConstants;
 #define SAF_TOPOLOGY            saf_find_role_topology()     /* This role is associated with collection categories whose purpose is
                                                          * to knit the fine grained /topology/ of the mesh together. */
 #define SAF_PROCESSOR           saf_find_role_processor()       /* This role is associated with collection categories whose purpose is
                                                          * to represent different processor's pieces */
 #define SAF_BLOCK               saf_find_role_block()   /* This role is associated with collection categories whose purpose is
                                                          * to represent different /blocks/ (regions of homogenous cell type) */
 #define SAF_DOMAIN              saf_find_role_domain()  /* This role is associated with collection categories whose purpose is
                                                          * to represent different domains; fundamental quanta of a mesh that can
                                                          * be assigned to or, perhaps, migrate between, different processors. */
 #define SAF_ASSEMBLY            saf_find_role_assembly()        /* This role is associated with collection categories whose purpose is
                                                          * to represent parts in an assembly of parts. */
 #define SAF_MATERIAL            saf_find_role_material()        /* This role is associated with collection categories whose purpose is
                                                          * to represent materials. */
 #define SAF_SPACE_SLICE         saf_find_role_space_slice()
 #define SAF_PARAM_SLICE         saf_find_role_param_slice()
 #define SAF_ANY_ROLE            NULL                    /* Wildcard role for searching */









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_SELF(Db)            (&SAF_SELF_CAT_g)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_SIZE(Db)            _saf_size(Db)









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_Set(name, p_name, n)                                                \
         SAF_Set name [ n ];                                               \
         SAF_Set * p_name = name









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 typedef ss_silrole_t SAF_SilRole;
 #define SAF_TIME                SAF_SROLE_TIME          /* For sets specifying pieces of time */
 #define SAF_SPACE               SAF_SROLE_SPACE         /* For sets specifying pieces of space */
 #define SAF_PARAM               SAF_SROLE_PARAM         /* For sets specifying pieces of some arbitrary, user defined parameter
                                                          * space */
 #define SAF_SUITE               SAF_SROLE_SUITE         /* for sets specifying whole suites */
 #define SAF_ANY_SILROLE         SAF_SROLE_ANY           /* Wildcard role for searching */









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_StateGrp(name, p_name, n)                                              \
         SAF_StateGrp name [ n ];                                             \
         SAF_StateGrp * p_name = name









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_StateTmpl(name, p_name, n)                                          \
         SAF_StateTmpl name [ n ];                                         \
         SAF_StateTmpl * p_name = name









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 typedef enum {
    SAF_STRMODE_LIB=0,   /* library allocates *but* client frees (zero is the default) */
    SAF_STRMODE_CLIENT,  /* client allocates *and* client frees */
    SAF_STRMODE_POOL     /* library allocates *and* library frees using a least recently used strategy involving a pool
                          * of many strings */
 } SAF_StrMode









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 typedef SAF_RelRep SAF_SubsetRelRep;
 #define SAF_HSLAB       saf_find_relrep_hslab()                 /* Indicates a hyperslab which is stored as 3 N-tuples; N
                                                                  * indices for the start value in each of the N dimensions,
                                                                  * followed by N indices for the count in each of the N
                                                                  * dimensions followed by N indices for stride in each of the
                                                                  * N dimensions. Use a stride of 1 for each of the N
                                                                  * dimensions if you do *not* have a hypersample. */
 #define SAF_TUPLES      saf_find_relrep_tuples()                /* Indicates a list of N-tuples. Each N-tuple identifies one
                                                                  * member of an N dimensionally indexed collection. */
 #define SAF_TOTALITY    saf_find_relrep_totality()              /* Indicates that all members of the collection are
                                                                  * involved--which probably also means the subset is equal to
                                                                  * the superset. Perhaps a better name for this value would be
                                                                  * SAF_IDENTITY. However, that is being used elsewhere.
                                                                  * Typically, this value is only ever used during a
                                                                  * saf_write_field() call. */









          

      

      

    

  

    
      
          
            
  	1
2
3

	 #define SAF_Suite(name, p_name, n)                                                \
         SAF_Suite name [ n ];                                               \
         SAF_Suite * p_name = name









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_TRACING     0       /* environment variable */









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 #define SAF_TRY_BEGIN                                                                 \
   _saf_place_cur++;                                                                   \
   if (_saf_place_max==_saf_place_cur)                                                 \
   {                                                                                   \
     if (_saf_place_max==0)                                                            \
       _saf_place=(jmp_buf *) calloc(10,sizeof(jmp_buf));                              \
     else                                                                              \
       _saf_place=(jmp_buf *) realloc(_saf_place,(_saf_place_max+10)*sizeof(jmp_buf)); \
     _saf_place_max+=10;                                                               \
   }                                                                                   \
   _saf_except=setjmp(_saf_place[_saf_place_cur]);                                     \
   if (_saf_except==0)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_TRY_END _saf_place_cur--;









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 typedef enum {
    SAF_TOP_FALSE = SAF_TRISTATE_FALSE,
    SAF_TOP_TRUE  = SAF_TRISTATE_TRUE,
    SAF_TOP_TORF  = SAF_TRISTATE_TORF
 } SAF_TopMode









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 typedef enum {
    SAF_TOPODIM_0D = 0,  /* a zero dimensional topological dimension (e.g. a point) */
    SAF_TOPODIM_1D = 1,  /* a one dimensional topological dimension (e.g. a curve) */
    SAF_TOPODIM_2D = 2,  /* a two dimensional topological dimension (e.g. a surface) */
    SAF_TOPODIM_3D = 3   /* a three dimensional topological dimension (e.g. a volume) */
 } SAF_TopoDim









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 typedef SAF_RelRep SAF_TopoRelRep;
 #define SAF_STRUCTURED          saf_find_relrep_structured()    /* N-dimensional rectangular topology */
 #define SAF_UNSTRUCTURED        saf_find_relrep_unstructured()  /* unstructured, finite element zoo topology */
 #define SAF_ARBITRARY           saf_find_relrep_arbitrary()     /* arbitrary topology */









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 typedef htri_t SAF_TriState;
 #define SAF_TRISTATE_FALSE      0
 #define SAF_TRISTATE_TRUE       1
 #define SAF_TRISTATE_TORF       (-1)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_UNIVERSE(Db)        (&SAF_UNIVERSE_SET_g)









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_VALID(A)            (SS_MAGIC(ss_pers_t)==SS_MAGIC_OF(A))









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_VERSION_ANNOT     ""









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_VERSION_MAJOR       2









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_VERSION_MINOR       0









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_VERSION_RELEASE     3









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_VERSION_VAR         SAF_version_2_0_3









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 typedef void *SAF_VoidPtr;
 #define SAF_IDENTITY            NULL
 #define SAF_NO_COMPONENTS       NULL
 #define SAF_NO_DATA             NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_WHOLE_FIELD         -1, SAF_TOTALITY, NULL









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_XOR(A,B)    (((A) && !(B)) || (!(A) && (B)))









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_ZONAL(Z)            Z, 1, Z, SAF_SPACE_PWCONST









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 typedef int SAF_error_t;
 #define SAF_FATAL_ERROR           0x00000001    /* Any fatal error.                                                             */
 #define SAF_MEMORY_ERROR          0x00000002    /* A memory-related error.                                                      */
 #define SAF_FILE_ERROR            0x00000004    /* File-related errors.                                                         */
 #define SAF_CONTEXT_ERROR         0x00000008    /* Context errors.                                                              */
 #define SAF_LOOKUP_ERROR          0x00000010    /* Name lookup errors.                                                          */
 #define SAF_MAPPING_ERROR         0x00000020    /* Mapping errors.                                                              */
 #define SAF_WRITE_ERROR           0x00000040    /* File write errors.                                                           */
 #define SAF_DEBUG_ERROR           0x00000080    /* Debugging messages.                                                          */
 #define SAF_CONSTRAINT_ERROR      0x00000100    /* Failed constraints.                                                          */
 #define SAF_PARAMETER_ERROR       0x00000200    /* Function parameter errors.                                                   */
 #define SAF_COMMUNICATION_ERROR   0x00000400    /* MPI-related errors.                                                          */
 #define SAF_READ_ERROR            0x00000800    /* File read errors.                                                            */
 #define SAF_NOTIMPL_ERROR         0x00001000    /* Functionality has not been implemented.                                      */
 #define SAF_BADHNDL_ERROR         0x00002000    /* Object handle errors.                                                        */
 #define SAF_MISC_ERROR            0x00004000    /* Miscellaneous errors.                                                        */
 #define SAF_SIZE_ERROR            0x00008000    /* Size-related errors.                                                         */
 #define SAF_PMODE_ERROR           0x00010000    /* Errors in the parallel mode argument to a function.                          */
 #define SAF_ASSERTION_ERROR       0x00020000    /* Failed assertions.                                                           */
 #define SAF_PRECONDITION_ERROR    0x00040000    /* Failed preconditions.                                                        */
 #define SAF_POSTCONDITION_ERROR   0x00080000    /* Failed postconditions.                                                       */
 #define SAF_GENERIC_ERROR         0x00100000    /* Generic errors.                                                              */
 #define SAF_SSLIB_ERROR           0x00200000    /* SSlib related errors                                                         */









          

      

      

    

  

    
      
          
            
  	1
2
3

	 typedef int SAF_return_t;
 #define SAF_FAILURE      (-1)
 #define SAF_SUCCESS      0









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 typedef int SAF_type_t;
 #define SAF_CHAR        H5T_NATIVE_CHAR         /* Character datatype. */
 #define SAF_INT         H5T_NATIVE_INT          /* Integer datatype. */
 #define SAF_LONG        H5T_NATIVE_LONG         /* Long integer datatype. */
 #define SAF_FLOAT       H5T_NATIVE_FLOAT        /* Single-precision floating-point datatype. */
 #define SAF_DOUBLE      H5T_NATIVE_DOUBLE       /* Double-precision floating-point datatype. */
 #define SAF_HANDLE      ss_pers_tm              /* Object handle datatype. */









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 void *
 _saf_convert(hid_t srctype,                     /* Source datatype; type of SRCBUF value. */
              const void *srcbuf,                /* Source datum to be converted to a new type. */
              hid_t dsttype,                     /* Destination datatype; type of DSTBUF value. */
              void *dstbuf                       /* Optional destination buffer. If not supplied then a buffer is allocated. */
              )
 {
     SAF_ENTER(_saf_convert, NULL);
     static char tmp[128];
     size_t srcsize = H5Tget_size(srctype);
     size_t dstsize = H5Tget_size(dsttype);

     if (!srcsize || !dstsize)
         SAF_ERROR(NULL, _saf_errmsg("unable to get size of source or destination datatype"));
     assert(srcsize<=sizeof(tmp) && dstsize<=sizeof(tmp));
     memcpy(tmp, srcbuf, srcsize);
     if (H5Tconvert(srctype, dsttype, 1, tmp, NULL, H5P_DEFAULT)<0)
         SAF_ERROR(NULL, _saf_errmsg("datatype conversion failed"));
     if (!dstbuf && NULL==(dstbuf=malloc(dstsize)))
         SAF_ERROR(NULL, _saf_errmsg("unable to allocate return value"));
     memcpy(dstbuf, tmp, dstsize);
     SAF_LEAVE(dstbuf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	 SAF_Field *
 _saf_find_parent_field(SAF_ParMode pmode,
                        SAF_Field *component_field,      /* Field for which we are searching for a parent. */
                        SAF_Field *retval                /* [OUT] Optional buffer in which to store the result. If this is NULL
                                                          * then a buffer will be allocated for the return value. */
                        )
 {
     SAF_ENTER(_saf_find_parent_field, SAF_ERROR_FIELD);
     int         nfound=0;
     SAF_Field   *fields=NULL, *component_fields;
     int         i, j, num_comps;
     SAF_Db      db;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);

     /* Get the file to which the component_field belongs */
     ss_pers_file((ss_pers_t*)component_field, &db);


     if (SS_PERS_ISNULL(SS_FIELD_P(component_field,m.parent))) {
         saf_find_fields(pmode, &db, NULL, NULL, NULL, NULL, NULL, NULL, NULL, SAF_ANY_RATIO, NULL, NULL, &nfound, &fields);
         for(i=0; i<nfound; i++) {
             component_fields=NULL;
             num_comps=0;

             {
                 /* JSJ - Check if this field is a STATE, and if so, skip the saf_describe_field.  Calling saf_describe_field
                  * for a STATE field causes an error. This section should be removed when either saf_describe_field is fixed
                  * (if this is indeed an error) or when you can use saf_find_fields to find all-alg-types-except-fields, or ? */
                 SAF_FieldTmpl l_ftmpl;
                 SAF_Algebraic l_alg_type;
                 saf_describe_field(pmode, fields+i, &l_ftmpl, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                                    NULL, NULL, NULL, NULL);
                 saf_describe_field_tmpl(pmode, &l_ftmpl, NULL, &l_alg_type, NULL, NULL, NULL, NULL);
                 if (SAF_EQUIV(&l_alg_type,SAF_ALGTYPE_FIELD)) continue;
             }

             saf_describe_field(pmode, fields+i, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                                &num_comps, &component_fields, NULL, NULL);
             if (num_comps>1) {
                 SS_FIELD(fields+i)->m.parent = fields[i];
                 for (j=0; j<num_comps; j++) {
                     SS_FIELD(component_fields+j)->m.parent = fields[i];
                 }
             }
             component_fields = SS_FREE(component_fields);
         }
     }

     if (!retval && NULL==(retval=malloc(sizeof *retval)))
         SAF_ERROR(NULL, _saf_errmsg("unable to allocate return value"));
     *retval = SS_FIELD(component_field)->m.parent;
     SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	 static herr_t
 _saf_gen_stdtypes(ss_file_t *stdtypes)
 {
     SAF_ENTER(_saf_gen_stdtypes, -1);
     ss_scope_t  stdscope;
     int         i;

     /* WARNING: SEE COMMENTS IN PROLOGUE. DO NOT CHANGE THE ORDER OF, OR DELETE OBJECTS DEFINED HERE BECAUSE EXISTING FILES
      *          MAY BE POINTING INTO THE BUILT-IN REGISTRY AND DO NOT EXPECT IT TO CHANGE OVER TIME. ONLY ADD NEW OBJECTS. */

     if (NULL==ss_file_topscope(stdtypes, &stdscope))
         SAF_ERROR(-1, _saf_errmsg("cannot find top scope for built-in registry file"));

     /* Create "not applicable" objects and cache them in global variables. By convention, a "not applicable" object is simply
      * what gets created by SS_PERS_NEW() by default. */
     ss_pers_new(&stdscope, SS_MAGIC(ss_field_t),      NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_FIELD_g,      NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_role_t),       NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_ROLE_g,       NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_basis_t),      NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_BASIS_g,      NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_algebraic_t),  NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_ALGEBRAIC_g,  NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_evaluation_t), NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_EVALUATION_g, NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_relrep_t),     NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_RELREP_g,     NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_quantity_t),   NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_QUANTITY_g,   NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_unit_t),       NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_UNIT_g,       NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_cat_t),        NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_CAT_g,        NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_set_t),        NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_SET_g,        NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_collection_t), NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_COLLECTION_g, NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_rel_t),        NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_REL_g,        NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_tops_t),       NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_TOPS_g,       NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_blob_t),       NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_BLOB_g,       NULL);
     ss_pers_new(&stdscope, SS_MAGIC(ss_indexspec_t),  NULL, SS_ALLSAME, (ss_pers_t*)&SAF_NOT_APPLICABLE_INDEXSPEC_g,  NULL);

     /* The seven basic quantities */
     _SAF_GLOBALS.quant[SAF_BASEQ_TIME]    = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "time",                      NULL,          "builtin", NULL);
     _SAF_GLOBALS.quant[SAF_BASEQ_MASS]    = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "mass",                      NULL,          "builtin", NULL);
     _SAF_GLOBALS.quant[SAF_BASEQ_CURRENT] = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "electric current",          "current",     "builtin", NULL);
     _SAF_GLOBALS.quant[SAF_BASEQ_LENGTH]  = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "length",                    NULL,          "builtin", NULL);
     _SAF_GLOBALS.quant[SAF_BASEQ_LIGHT]   = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "luminous intensity",        "light",       "builtin", NULL);
     _SAF_GLOBALS.quant[SAF_BASEQ_TEMP]    = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "thermodynamic temperature", "temperature", "builtin", NULL);
     _SAF_GLOBALS.quant[SAF_BASEQ_AMOUNT]  = saf_declare_quantity(SAF_ALL, stdtypes,
                                                                  "amount of a substance",     "amount",      "builtin", NULL);
     for (i=0; i<SS_MAX_BASEQS; i++) {
         SAF_DIRTY(_SAF_GLOBALS.quant[i], SAF_ALL);
         SS_QUANTITY(_SAF_GLOBALS.quant[i])->power[i] = 1;
     }

     /* Additional things */
     ss_pers_new(&stdscope, SS_MAGIC(ss_set_t), NULL, SS_ALLSAME, (ss_pers_t*)&SAF_UNIVERSE_SET_g, NULL);
     ss_string_set(SS_SET_P(&SAF_UNIVERSE_SET_g,name), "universe");

     ss_pers_new(&stdscope, SS_MAGIC(ss_cat_t), NULL, SS_ALLSAME, (ss_pers_t*)&SAF_SELF_CAT_g,     NULL);
     ss_string_set(SS_CAT_P(&SAF_SELF_CAT_g,name), "self");

     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 hbool_t
 _saf_is_primitive_type(hid_t type)
 {
     SAF_ENTER(_saf_is_primitive_type, FALSE);
     hbool_t     retval=FALSE;

     /* Opaque types are specificaly excluded from this list because they're sometimes used for much more complex SSlib
      * datatypes. */
     retval = (H5T_INTEGER==H5Tget_class(type) ||
               H5T_FLOAT==H5Tget_class(type) ||
               H5T_TIME==H5Tget_class(type) ||
               H5T_BITFIELD==H5Tget_class(type) ||
               H5T_ENUM==H5Tget_class(type));

     SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 char *
 _saf_strdup(const char *s)
 {
     SAF_ENTER(_saf_strdup, NULL);
     char *retval = malloc(s?strlen(s)+1:1);
     if (retval) strcpy(retval, s?s:"");
     SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	 ss_pers_t *
 saf_allgather_handles(ss_pers_t *_pers, /* A Pointer to the handle to be exchanged.  Every participant must supply a valid
                                          * handle of the same type and in the same scope as every other participant. */
                       int *commsize,    /* [OUT] A pointer to optional caller supplied memory which is to receive the integer
                                          * number of handles returned by this function.  This is the number of participants or
                                          * the size of the communicator associated with the given database. */
                       ss_pers_t *result /* [OUT] An optional pointer to an array that will will be initialized with a handle
                                          * from each MPI task in task rank order. If this buffer is supplied then it should be
                                          * at least as large as the communicator associated with the DB argument. If not
                                          * supplied (i.e., null) then a buffer will be allocated for the return value. */
                       )
 {
     SAF_ENTER(saf_allgather_handles, NULL);
     ss_scope_t          scope=SS_SCOPE_NULL;
     ss_file_t           file=SS_FILE_NULL;
     int                 self, ntasks=0;
     size_t              encoded_nused=0, encoded_nalloc=0, consumed;
     char                *encoded=NULL, *all_encoded=NULL;
     MPI_Comm            comm=SS_COMM_NULL;

     /* It might be possible that the ss_pers_t pointer _PERS is a pointer into some object. If that object is a new object
      * then the ss_file_synchronize() call below may clobber that memory. Therefore we copy the link onto the stack first. */
     ss_pers_t           pers=*_pers;

     SAF_REQUIRE(ss_pers_deref(&pers), SAF_LOW_CHK_COST, NULL, _saf_errmsg("_PERS must be a valid object link"));

     /* Obtain communicator info. */
     ss_pers_scope(&pers, &scope);
     ss_scope_comm(&scope, &comm, &self, &ntasks);
     if (commsize) *commsize = ntasks;

     /* Synchronize the table, thus turning the _PERS arguments into global objects. */
     ss_pers_file(&pers, &file);
     if (ss_file_synchronize(&file, NULL)<0)
         SAF_ERROR(NULL, _saf_errmsg("file synchronization failed"));

     /* Each task encodes its _PERS argument. They should all be the same size when encoded. */
     encoded = ss_pers_encode_cb(&pers, NULL, &encoded_nused, &encoded_nalloc, sizeof(pers), 1);

     /* Gather all the encoded object links */
     all_encoded = malloc(ntasks*encoded_nused);
     memcpy(all_encoded+self*encoded_nused, encoded, encoded_nused);
     ss_mpi_allgather(all_encoded, encoded_nused, MPI_BYTE, comm);

     /* Decode the object links into the result buffer. */
     if (!result) result = malloc(ntasks*sizeof(*result));
     consumed = ss_pers_decode_cb(result, all_encoded, sizeof(*result), (size_t)ntasks);
     assert(consumed==ntasks*encoded_nused);

     /* Free temporary resources */
     encoded = SS_FREE(encoded);
     all_encoded = SS_FREE(all_encoded);

     SAF_LEAVE(result);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 int
 saf_close_database(SAF_Db *database/*The open database to be closed.*/)
 {
     SAF_ENTER(saf_close_database, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(SS_MAGIC(ss_file_t)==SS_MAGIC_OF(database), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DATABASE must be a database handle"));
     SAF_REQUIRE(ss_file_isopen(database, NULL), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DATABASE must currently be open"));

     if (ss_file_close(database)<0)
         SAF_ERROR(-1, _saf_errmsg("ss_file_close() failed"));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 SAF_DbProps *
 saf_createProps_database(void)
 {
     SAF_ENTER(saf_createProps_database, NULL);

     SAF_DbProps *p = calloc(1, sizeof *p);

     /* Allocate properties */
     if (!p)
         SAF_ERROR(NULL, _saf_errmsg("out of memory--unable to allocate properties object"));

     /* parallel mpi communicator */
     p->DbComm = _SAF_GLOBALS.p.LibComm;

     SAF_LEAVE(p);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 SAF_LibProps *
 saf_createProps_lib(void)
 {
    SAF_ENTER_NOINIT(saf_createProps_lib, NULL);

    SAF_LibProps *p = NULL;

 #ifdef HAVE_PARALLEL
    {  int result;
       /* confirm MPI is initialized */
       if ((MPI_Initialized(&result) != MPI_SUCCESS) || !result)
       {
          _SAF_GLOBALS.p.DoAbort = false; /* we have to turn off call to abort here */
          SAF_ERROR(NULL, _saf_errmsg("MPI is not running"));
       }
    }
 #endif

    /* allocate a property packet */
    p = calloc(1, sizeof *p);
    if (p == NULL)
       SAF_ERROR(NULL, _saf_errmsg("out of memory--unable to allocate properties object"));

    {  char *s=0;
       SAF_GETENV_WORLD(s,"SAF_ERROR_REPORTING");
       _saf_set_error_logging(s, p);
       if(s) free(s);/*cannot use _saf_free until lib is initialized*/
    }

    /* set api tracing (this call MUST COME AFTER call to setup error logging) */
    _saf_set_tracing("SAF_TRACING", p);

    /* some properties used primarily in testing and installation */
    p->DoAbort           = true; /* always do the abort by default */

    /* parallel mpi communicator */
    p->LibComm = SS_COMM_WORLD;

    /* string pool size */
    p->StrPoolSize = 4096;

    SAF_LEAVE(p);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 int
 saf_data_has_been_written_to_comp_field(SAF_ParMode pmode,      /* The parallel mode. */
                                         SAF_Field *field,       /* The field handle. */
                                         hbool_t *Presult        /* [OUT] A pointer to caller supplied memory which is to receive the
                                                                  * answer to the question.  A value of true is saved at this
                                                                  * location if the field has had data written to it, false if
                                                                  * not. */
                                         )
 {
     SAF_ENTER(saf_data_has_been_written_to_comp_field, SAF_PRECONDITION_ERROR);
     hbool_t l_succeeded = FALSE;
     SAF_Field *l_componentFields=NULL, parentField;
     int l_numComponents=0;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle for all participating processes"));


     saf_describe_field(pmode, field, NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
                        &l_numComponents, &l_componentFields, NULL, NULL);

     _saf_find_parent_field(pmode, field, &parentField);

     if (l_componentFields && l_numComponents) {
         int i;
         for (i=0; i<l_numComponents; i++) {
             /* There wont be an endless loop as long as saf_data_has_been_written_to_field doesnt call
              * saf_data_has_been_written_to_comp_field */
             saf_data_has_been_written_to_field(pmode, l_componentFields+i, &l_succeeded);
             if (!l_succeeded) break;
         }
     } else if (!SAF_EQUIV(field,&parentField)) {
         saf_data_has_been_written_to_field( pmode, &parentField, &l_succeeded);
     }

     if (Presult) *Presult = l_succeeded;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 int
 saf_data_has_been_written_to_field(SAF_ParMode pmode,   /* The parallel mode. */
                                    SAF_Field *field,    /* The field handle. */
                                    hbool_t *Presult     /* [OUT] A pointer to caller supplied memory which is to receive the answer
                                                          * to the question.  A value of true is saved at this location if the
                                                          * field has had data written to it, false if not. */
                                    )
 {
     SAF_ENTER(saf_data_has_been_written_to_field, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle for all participating processes"));

     if (SS_PERS_ISNULL(SS_FIELD_P(field,dof_blob)) && 0==ss_array_nelmts(SS_FIELD_P(field,indirect_fields))) {
         if (Presult) *Presult = FALSE;
     } else {
         if (Presult) *Presult = TRUE;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 SAF_Algebraic *
 saf_declare_algebraic(SAF_ParMode pmode,
                       SAF_Db *db,                       /* The database in which to create the new algebraic type */
                       const char *name,                 /* Name of the algebraic type */
                       const char *url,                  /* An optional URL to the algebraic documentation */
                       hbool_t indirect,                 /* If true then field is indirection to another field */
                       SAF_Algebraic *alg                /* [OUT] Optional handle to initialize (and return) */
                       )
 {
     SAF_ENTER(saf_declare_algebraic, NULL);
     ss_scope_t          topscope;

     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &topscope);
     alg = (ss_algebraic_t*)ss_pers_new(&topscope, SS_MAGIC(ss_algebraic_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U,
                                        (ss_pers_t*)alg, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(alg);
     ss_string_set(SS_ALGEBRAIC_P(alg,name), name);
     ss_string_set(SS_ALGEBRAIC_P(alg,url), url);
     SS_ALGEBRAIC(alg)->indirect = indirect;

     SAF_LEAVE(alg);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

	 SAF_AltIndexSpec *
 saf_declare_alternate_indexspec(SAF_ParMode pmode,              /*The parallel mode*/
                                 SAF_Db *db,                     /* Database to contain the new index spec. */
                                 SAF_Set *containing_set,        /* The containing set of the collection.*/
                                 SAF_Cat *cat,                   /* The collection category. */
                                 const char *name,               /* The name you wish to assign to this alt index spec*/
                                 hid_t data_type,                /* The data type used to identify members of the collection*/
                                 hbool_t is_explicit,            /* Whether the indexing specification is explicit or implicit*/
                                 SAF_IndexSpec implicit_ispec,   /* The alternate indexing scheme of the collection. Ignored
                                                                  * for explicit specs. Pass SAF_NA_INDEXSPEC for explicit
                                                                  * alternative index specs. */
                                 hbool_t is_compact,             /* Whether the indexing specification is compact or not.
                                                                  * Ignored for implicit specs. */
                                 hbool_t is_sorted,              /* Whether the indexing specification is sorted or not.
                                                                  * Ignored for implicit specs. */
                                 SAF_AltIndexSpec *aspec         /* [OUT] The optional returned alternate index spec handle. If
                                                                  * the null pointer is passed for this argument then new
                                                                  * memory is allocated and returned, otherwise this argument
                                                                  * serves as the successful return value. */
                                 )
 {
     SAF_ENTER(saf_declare_alternate_indexspec, NULL);
     ss_collection_t             coll;
     ss_indexspec_t              defaultidx;
     ss_indexspecobj_t           *init=NULL;
     ss_scope_t                  scope=SS_SCOPE_NULL;    /* Scope in which to create new index spec. */
     size_t                      i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);

     SAF_REQUIRE(SS_SET(containing_set),SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CONTAINING_SET must be a valid set handle"));
     SAF_REQUIRE(SS_CAT(cat), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CAT must be a valid cat handle"));

     /* The scope in which to declare the new indexspec */
     ss_file_topscope(db, &scope);

     if (SS_CAT(cat)) {
         /* Confirm the containing set has the category defined on it. */
         if (NULL==_saf_getCollection_set(containing_set, cat, &coll))
             SAF_ERROR(NULL, _saf_errmsg("set \"%s\" does not have a collection of category \"%s\"",
                                         ss_string_ptr(SS_SET_P(containing_set,name)),
                                         ss_string_ptr(SS_CAT_P(cat,name))));

         /* Obtain the default indexing scheme. */
         if (NULL==ss_array_get(SS_COLLECTION_P(&coll,indexing), ss_pers_tm, (size_t)0, (size_t)1, &defaultidx) ||
             !SS_INDEXSPEC(&defaultidx))
             SAF_ERROR(NULL, _saf_errmsg("unable to obtain default indexing specification for set \"%s\"",
                                         ss_string_ptr(SS_SET_P(containing_set,name))));
     }

     /* Fill in an index spec record */
     init = is_explicit ? SS_INDEXSPEC(&defaultidx) : NULL;
     aspec = (ss_indexspec_t*)ss_pers_new(&scope, SS_MAGIC(ss_indexspec_t), (ss_persobj_t*)init, SAF_ALL==pmode?SS_ALLSAME:0U,
                                          (ss_pers_t*)aspec, NULL);
     if (!aspec)
         SAF_ERROR(NULL, _saf_errmsg("unable to initialize index spec record"));
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(aspec);
     if (!is_explicit){
         /* It is an implicit alt indexing scheme; use the IMPLICIT_ISPEC */
         SS_INDEXSPEC(aspec)->ndims = implicit_ispec.ndims;
         for (i=0; i<SAF_MAX_NDIMS; i++){
             SS_INDEXSPEC(aspec)->sizes[i] = implicit_ispec.sizes[i];
             SS_INDEXSPEC(aspec)->origins[i] = implicit_ispec.origins[i];
             SS_INDEXSPEC(aspec)->order[i]   = implicit_ispec.order[i];
         }
         SS_INDEXSPEC(aspec)->index_type  = SS_INDEXSPEC(&defaultidx)->index_type; /*implicit_ispec.index_type; does not exist*/
     }
     ss_string_set(SS_INDEXSPEC_P(aspec,name), name);
     SS_INDEXSPEC(aspec)->coll = coll;
     SS_INDEXSPEC(aspec)->is_explicit = is_explicit;
     SS_INDEXSPEC(aspec)->is_sorted = is_sorted;
     SS_INDEXSPEC(aspec)->is_compact = is_compact;

     /* This new index spec should be added to the end of the array of index specs. */
     i = ss_array_nelmts(SS_COLLECTION_P(&coll,indexing));
     ss_array_resize(SS_COLLECTION_P(&coll,indexing), i+1);
     ss_array_put(SS_COLLECTION_P(&coll,indexing), ss_pers_tm, i, (size_t)1, aspec);

     /* Save the datatype */
     SS_INDEXSPEC(aspec)->m.data_type = data_type;
     SAF_LEAVE(aspec);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 SAF_Basis *
 saf_declare_basis(SAF_ParMode pmode,
                   SAF_Db *db,
                   const char *name,                     /* Name of the basis type */
                   const char *url,                      /* An optional URL to the basis documentation */
                   SAF_Basis *basis                      /* [OUT] Optional basis handle to initialize (and return). */
                   )
 {
     SAF_ENTER(saf_declare_basis, NULL);
     ss_scope_t          topscope;

     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &topscope);
     basis = (ss_basis_t*)ss_pers_new(&topscope, SS_MAGIC(ss_basis_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)basis, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(basis);
     ss_string_set(SS_BASIS_P(basis,name), name);
     ss_string_set(SS_BASIS_P(basis,url), url);

     SAF_LEAVE(basis);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 SAF_Cat *
 saf_declare_category(SAF_ParMode pmode,
                      SAF_Db *db,        /* The database handle. */
                      const char *name,  /* The collection category name. */
                      SAF_Role *role,    /* Role of collections of this category (see Collection Roles). */
                      int tdim,          /* The maximum topological dimension of the members of collections of this category. */
                      SAF_Cat *cat       /* [OUT] The returned collection category handle. */
                      )
 {
    SAF_ENTER(saf_declare_category, NULL);
    ss_scope_t           scope;

    SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("PMODE must be valid"));
    if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
    SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("DB must be a valid database"));
    SAF_REQUIRE(ss_file_iswritable(db)>0, SAF_NO_CHK_COST, NULL,
                _saf_errmsg("the database must not be open for read-only access"));
    SAF_REQUIRE(name != NULL, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("a NAME must be supplied for the category"));
    SAF_REQUIRE(SS_ROLE(role), SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("ROLE must be a valid collection role"));
    SAF_REQUIRE(tdim >= 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("topological dimension, TDIM, must be positive"));

    ss_file_topscope(db, &scope);
    cat = (ss_cat_t*)ss_pers_new(&scope, SS_MAGIC(ss_cat_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)cat, NULL);

    if (SAF_EACH==pmode) SS_PERS_UNIQUE(cat);
    ss_string_set(SS_CAT_P(cat,name), name);
    SS_CAT(cat)->role = *role;
    SS_CAT(cat)->tdim = tdim;

    SAF_LEAVE(cat);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

	 int
 saf_declare_collection(SAF_ParMode pmode,       /* The parallel mode. */
                        SAF_Set *containing_set, /* The containing set of the collection. In SAF_ONE() parallel mode, all
                                                  * processes except the process identified by the rank argument of the SAF_ONE()
                                                  * macro are free to pass SAF_NULL_SET with the set's database handle. */
                        SAF_Cat *cat,            /* The collection category. */
                        SAF_CellType ctype,      /* The cell type of the members of the collection.  If this is a non-primitive
                                                  * collection, pass SAF_CELLTYPE_SET. If this is a primitive collection of
                                                  * mixed cell type, pass SAF_CELLTYPE_MIXED. If this is a primitive collection
                                                  * of arbitrarily connected cells, pass SAF_CELLTYPE_ARB. Otherwise, it must
                                                  * be a primitive collection of homogeneous type and the caller should pass
                                                  * one of the cell types specified by SAF_CellType. */
                        int count,               /* The number of members of the collection. If the containing set is an
                                                  * extendible set, the count can be changed by a call to
                                                  * saf_extend_collection(). */
                        SAF_IndexSpec ispec,     /* The indexing scheme of the collection (e.g., how are members of the collection
                                                  * identified within the collection). We have predefined some macros for common
                                                  * cases: SAF_1DC(), SAF_2DC(), and SAF_3DC() for C-ordered and indexed arrays and
                                                  *        likewise for Fortran-ordered and indexed arrays (replace the "C" with
                                                  * an "F" in the macro name). */
                        SAF_DecompMode is_decomp /* Indicates if the specified collection is a decomposition of its containing set.
                                                  * That is, if we take the union of all the members of the collection do we form
                                                  * a set that is equal to the containing set? */
                        )
 {

     SAF_ENTER(saf_declare_collection, SAF_PRECONDITION_ERROR);
     ss_scope_t          scope=SS_SCOPE_NULL;            /* Scope to own the new collection */
     ss_indexspec_t      idx=SS_INDEXSPEC_NULL;          /* The default index spec */
     ss_collection_t     coll=SS_COLLECTION_NULL;        /* The new collection */
     int                 i, n;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(containing_set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CONTAINING_SET must be a valid set handle for participating processes"));
     SAF_REQUIRE(SS_CAT(cat), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CAT must be a valid category handle for participating processes"));
     SAF_REQUIRE(is_decomp != SAF_DECOMP_TORF, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("IS_DECOMP must be either SAF_DECOMP_TRUE or SAF_DECOMP_FALSE for participating processes"));
     SAF_REQUIRE(_saf_valid_indexspec(ispec, count), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ISPEC rank and sizes must be valid for participating processes"));

     /* The scope that owns CONTAINING_SET will also be the owner of the new collection. */
     if (NULL==ss_pers_scope((ss_pers_t*)containing_set, &scope))
         SAF_RETURN(SAF_SSLIB_ERROR);

     /* Initialize an index record */
     if (NULL==ss_pers_new(&scope, SS_MAGIC(ss_indexspec_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)&idx, NULL))
         SAF_RETURN(SAF_SSLIB_ERROR);
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(&idx);
     SS_INDEXSPEC(&idx)->ndims = ispec.ndims;
     for (i=0, n=1; i<ispec.ndims; i++) {
         n *= ispec.sizes[i];
         SS_INDEXSPEC(&idx)->sizes[i] = ispec.sizes[i];
         SS_INDEXSPEC(&idx)->origins[i] = ispec.origins[i];
         SS_INDEXSPEC(&idx)->order[i] = ispec.order[i];
     }

     /* Initialize the collection record */
     if (NULL==ss_pers_new(&scope, SS_MAGIC(ss_collection_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)&coll, NULL))
         SAF_RETURN(SAF_SSLIB_ERROR);

     /* Fill in the record */
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(&coll);
     SS_COLLECTION(&coll)->containing_set = *containing_set;
     SS_COLLECTION(&coll)->cat = *cat;
     SS_COLLECTION(&coll)->cell_type = ctype;
     SS_COLLECTION(&coll)->count = n;
     ss_array_resize(SS_COLLECTION_P(&coll,indexing), 1);
     ss_array_put(SS_COLLECTION_P(&coll,indexing), ss_pers_tm, (size_t)0, (size_t)1, &idx);
     SS_COLLECTION(&coll)->is_decomp = is_decomp?TRUE:FALSE;

     /* If this is a non-primitive collection then extend the variable length array of Set links. We extend the array here
      * because we don't actually store the COUNT value anywhere in the collection. The initial values of the array are all
      * null Set pointers. */
     if (SAF_CELLTYPE_SET==ctype) {
         if (ss_array_resize(SS_COLLECTION_P(&coll,members), (size_t)count)<0)
             SAF_RETURN(SAF_SSLIB_ERROR);
     }

     /* update the set record */
     _saf_putCollection_set(pmode, containing_set, cat, &coll);
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 int
 saf_declare_coords(SAF_ParMode pmode,   /* The parallel mode. */
                    SAF_Field *field     /* The field to be characterized as a coordinate field. */
                    )
 {
     SAF_ENTER(saf_declare_coords, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     /* Set the is coord field for this field record to true */
     SAF_DIRTY(field, pmode);
     SS_FIELD(field)->is_coord_field = TRUE;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	 int
 saf_declare_default_coords(SAF_ParMode pmode,   /* the parallel mode */
                            SAF_Set *base,       /* the base space set whose default coordinates are being declared */
                            SAF_Field *field     /* the field to serve as the default coordinates */
                            )
 {
     SAF_ENTER(saf_declare_default_coords, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(base), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BASE must be a valid set handle"));
     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle"));

     SAF_ASSERT(SS_FIELD(field)->is_coord_field, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                _saf_errmsg("the specified field must be a coordinate field"));

     /* The field's base space must be `base' */
     SAF_ASSERT(SS_PERS_EQ(SS_FIELD_P(field,base_space), base), SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                _saf_errmsg("the field to be used as default coord must be defined on BASE"));

     /* Set the default coordinate field on the set */
     SAF_DIRTY(base, pmode);
     SS_SET(base)->dflt_coordfld = *field;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 SAF_Eval *
 saf_declare_evaluation(SAF_ParMode pmode,
                        SAF_Db *db,
                        const char *name,                /* Name of the evaluation type */
                        const char *url,                 /* An optional URL to the evaluation documentation */
                        SAF_Eval *buf                    /* [OUT] Optional buffer to fill in and return */
                        )
 {
     SAF_ENTER(saf_declare_evaluation, NULL);
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &scope);
     buf = (ss_evaluation_t*)ss_pers_new(&scope, SS_MAGIC(ss_evaluation_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U,
                                         (ss_pers_t*)buf, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(buf);
     ss_string_set(SS_EVALUATION_P(buf,name), name);
     ss_string_set(SS_EVALUATION_P(buf,url), url);

     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

	 SAF_Field *
 saf_declare_field(SAF_ParMode pmode,            /* The parallel mode. */
                   SAF_Db *db,                   /* The database where the new field will be created. */
                   SAF_FieldTmpl *ftmpl,         /* The field template handle for this field. Recall that the field template
                                                  * describes the abstract features of the field, including the quantity the
                                                  * field represents, and the algebraic type. The field being created in this
                                                  * saf_declare_field() call is simply an instance of the abstract field
                                                  * characterized by the field template passed as this argument. */
                   const char *name,             /* The name of this field. If a writer client declares different fields with
                                                  * the same name, a reader client that searches for fields by name will find
                                                  * multiple matches. However, it is ok to declare different fields with the
                                                  * same name. */
                   SAF_Set *base_space,          /* The base_space of this field */
                   SAF_Unit *unit,               /* The specific units of measure. If in the field template, the quantity was
                                                  * not specified, then the only valid value that can be passed for units is
                                                  * SAF_NOT_APPLICABLE_UNIT. Otherwise, pass SAF_NOT_SET_UNIT if you do not want
                                                  * to specify units for the field or pass one of the valid units of
                                                  * measure. */
                   SAF_Cat *homog_decomp,        /* If the field is homogeneous, enter SAF_SELF() here. Otherwise, the field is
                                                  * inhomogenous and this argument must indicate a decomposing collection of the
                                                  * field's base-space upon which it is /presumably/ homogeneous. We say
                                                  * /presumably/ because it is not a *requirement* that the field be
                                                  * homogeneous on each of the members of the collection indentified here. The
                                                  * field pieces defined on any one or all of those members can, in turn, also
                                                  * be inhomogeneous. The only requirement is that the collection identified
                                                  * here be a decomposition of the associated set and that, ultimately, the
                                                  * recursion of defining inhomogeneous fields in terms of other inhomogeneous
                                                  * fields terminates on a bunch of homogeneous pieces. A common use of this
                                                  * argument is to indicate that the field is broken into independent chunks of
                                                  * storage (either within a single processor or distributed across other
                                                  * processors). In fact, prior to SAF-1.2.1, that was all this argument was
                                                  * used for and documented as supporting. Any collections contained in the
                                                  * base space set for which the IS_DECOMP argument in the
                                                  * saf_declare_collection() call was SAF_DECOMP_TRUE, can be passed
                                                  * here. See the chapter introduction for fields for further information (see
                                                  * Fields). */
                   SAF_Cat *coeff_assoc,         /* This argument identifies the category of a collection in the base space set
                                                  * which the field's coefficients are n:1 associated with.  For example, for a
                                                  * field whose coefficients are 1:1 with a collection of a category
                                                  * representing the nodes, you would identify that collection category with
                                                  * this argument. Likewise, for a field whose coefficients are 4:1 with a
                                                  * collection of a category representing the elements in the problem, you
                                                  * would identify that collection with this argument. Note, if the
                                                  * coefficients are associated with the base space itself, and not the members
                                                  * of a collection in the base-space set, you would pass SAF_SELF() for
                                                  * this argument. */
                   int assoc_ratio,              /* This argument specifies the /n/ in the n:1 association described above. For
                                                  * example, if for every member of the collection representing the elements,
                                                  * you have 1 coefficient, then this value would be 1. This value is always
                                                  * non-negative. */
                   SAF_Cat *eval_cat,            /* This argument specifies the collection whose members represent the pieces in
                                                  * the piecewise evaluation of the field.  If there is only a single piece
                                                  * (e.g. the whole base space), then pass SAF_SELF().  For example, a
                                                  * collection category identifying the nodes for the COEFF_ASSOC argument and
                                                  * an ASSOC_RATIO of 1 indicates only that we have 1 coefficient for each
                                                  * member of the collection of nodes. It does not indicate which collection
                                                  * in the base space (for example the elements), the field is actually
                                                  * piecewise evaluated on. */
                   SAF_Eval *eval_func,          /* This argument identifies one of several evaluation functions currently known
                                                  * to SAF. Again, SAF does not yet actually evaluate a field. It only stores
                                                  * the descriptive information to support its evaluation. See definition of
                                                  * SAF_EvalFunc enum for the possible values. Also, we have provided some
                                                  * convenience macros for this and COEFF_ASSOC, ASSOC_RATIO, and EVAL_CAT
                                                  * arguments for common cases; /node/ /centered/ and /zone/ /centered/
                                                  * fields. Pass SAF_NODAL() for a node centered field, SAF_ZONAL() for a zone
                                                  * centered field, SAF_DECOMP for a field that is piecewise constant over
                                                  * some /decomposing/ collection (e.g. domains) or SAF_CONSTANT() for a
                                                  * constant field. */
                   hid_t data_type,              /* The type of data in BUFS if BUFS are provided. */
                   SAF_Field *comp_flds,         /* Array of component field handles.  Pass null only if there are no
                                                  * components to this field (the field is a scalar field). */
                   SAF_Interleave comp_intlv,    /* The particular fashion in which components are interleaved.  Currently there
                                                  * are really only two: SAF_INTERLEAVE_VECTOR and SAF_INTERLEAVE_COMPONENT.
                                                  * These represent the XYZXYZ...XYZ and the XXX...XYYY...YZZZ...Z cases.  Note
                                                  * that interleave really only deals within a single blob of storage.  In the
                                                  * case of a composite field whose coefficients are stored independently on
                                                  * the component fields, interleave really has no meaning (use
                                                  * SAF_INTERLEAVE_INDEPENDENT).  Interleave only has meaning on fields with
                                                  * storage.  In the case of a scalar field interleave is also meaningless,
                                                  * both cases degenerate to the same layout: XXX...X (use
                                                  * SAF_INTERLEAVE_NONE). */
                   int *comp_order,              /* Only relevant for fields with component fields.  This value indicates the
                                                  * order of the fields in the COMP_FLDS relative to the registered
                                                  * order. Pass NULL if the permutation is the identity. */
                   void **bufs,                  /* The field data buffers. Pass NULL if you would rather provide this on the
                                                  * write call.  Note that the number and size of buffers (if any) is specified
                                                  * by the interleave and number of components.  If the field has vector
                                                  * interleave then there may only be 1 buffer, if the field has component
                                                  * interleave then there must be num_components buffers.  The number of
                                                  * components is defined in the field template specified by FTMPL. */
                   SAF_Field *fld                /* [OUT] The optional returned field handle. If NULL is passed here then this
                                                  * function allocates the field handle before returning it. */
                   )
 {
     SAF_ENTER(saf_declare_field, NULL);
     ss_scope_t          scope=SS_SCOPE_NULL;
     SAF_Algebraic       algebraic=SS_ALGEBRAIC_NULL;
     int                 i, count, nbufs, buf_size=0;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);

     SAF_REQUIRE(SS_SET(base_space), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("BASE_SPACE must be a valid set handle"));
     SAF_REQUIRE(name, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("NAME must be non-null"));
     SAF_REQUIRE(SS_FIELDTMPL(ftmpl), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("FTMPL must be a valid field template"));
     SAF_REQUIRE(_saf_is_self_decomp(homog_decomp) || SS_CAT(homog_decomp), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("STORAGE_DECOMP must be either SELF_DECOMP or a valid cat handle"));
     SAF_REQUIRE(_saf_is_self_decomp(coeff_assoc) || SS_CAT(coeff_assoc), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("COEFF_ASSOC must be a valid cat handle"));
     SAF_REQUIRE(_saf_is_self_decomp(eval_cat) || SS_CAT(eval_cat), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("EVAL_CAT must be a valid cat handle"));
     SAF_REQUIRE(!unit || SS_UNIT(unit), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("UNIT must be a valid unit handle if supplied"));
     SAF_REQUIRE(_saf_is_valid_units(unit, ftmpl), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("UNIT must agree with quantity defined on field template"));
     SAF_REQUIRE(assoc_ratio >= 0, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("ASSOC_RATIO must be non-negative"));
     SAF_REQUIRE(!eval_func || SS_EVALUATION(eval_func), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("EVAL_FUNC must be a valid evaluation type handle if supplied"));
     SAF_REQUIRE(true, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("units of component fields must match units of composite field"));

     /* Get the algebraic type for the SAF_ASSERT() below */
     algebraic = SS_FIELDTMPL(ftmpl)->algebraic;

     /* Error checking */
     SAF_ASSERT(data_type<=0 ||
                (SS_ALGEBRAIC(&algebraic)->indirect && H5Tequal(data_type,SAF_HANDLE)) ||
                SAF_XOR(_saf_is_self_decomp(homog_decomp), H5Tequal(data_type,SAF_HANDLE)),
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("STORAGE_DECOMP=(SAF_SELF,!SAF_SELF) ==> DATA_TYPE=(!SAF_HANDLE,SAF_HANDLE) or "
                            "ALG_TYPE is SAF_ALGTYPE_FIELD"));
     SAF_ASSERT(_saf_is_self_decomp(homog_decomp) || SS_ALGEBRAIC(&algebraic)->indirect,
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("algebraic type must be SAF_ALGTYPE_FIELD if field is inhomogeneous"));
     SAF_ASSERT((!(SS_ALGEBRAIC(&algebraic)->indirect) || !comp_flds), SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("component fields cannot be supplied if algebraic type is SAF_ALGTYPE_FIELD"));
     SAF_ASSERT((SS_FIELDTMPL(ftmpl)->num_comps == 1 && comp_intlv == SAF_INTERLEAVE_NONE) ||
                (1 < SS_FIELDTMPL(ftmpl)->num_comps && (comp_intlv == SAF_INTERLEAVE_VECTOR ||
                                                         comp_intlv == SAF_INTERLEAVE_COMPONENT ||
                                                         comp_intlv == SAF_INTERLEAVE_INDEPENDENT)) ||
                SS_FIELDTMPL(ftmpl)->num_comps == SAF_NOT_APPLICABLE_INT,
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("component interleave must be appropriate for number of component fields"));
     SAF_ASSERT(SS_ALGEBRAIC(&algebraic)->indirect ||
                (SS_FIELDTMPL(ftmpl)->num_comps==1 && !comp_flds) ||
                (SS_FIELDTMPL(ftmpl)->num_comps>1  &&  comp_flds),
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("must supply component fields when there are 2 or more component expected"));
     SAF_ASSERT(comp_order==NULL || SS_FIELDTMPL(ftmpl)->num_comps>1,
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("COMP_ORDER is relevent only when there is more than 1 component"));
     SAF_ASSERT(comp_order==SAF_IDENTITY || _saf_is_permutation(SS_FIELDTMPL(ftmpl)->num_comps,comp_order),
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("if specified, COMP_ORDER must a valid permutation vector"));

     /* check buffer pointers */
     SAF_ASSERT_BEGIN(SAF_LOW_CHK_COST) {
         ok = TRUE;
         if (bufs && comp_intlv == SAF_INTERLEAVE_INDEPENDENT) {
             for (i=0; i<SS_FIELDTMPL(ftmpl)->num_comps && ok; i++) {
                 if (!bufs[i]) ok = FALSE;
             }
         }
     } SAF_ASSERT_END(NULL, _saf_errmsg("BUFS must point to NCOMPS valid (i.e., non-null) pointers"));

     /* Verify that comp_intlv==SAF_INTERLEAVE_VECTOR if the field is not a state field with more than one component on an
      * extendible base space. */
     SAF_ASSERT(!SS_SET(base_space)->is_extendible || SS_ALGEBRAIC(&algebraic)->indirect ||
                SS_FIELDTMPL(ftmpl)->num_comps==1 || comp_intlv==SAF_INTERLEAVE_VECTOR,
                SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("only VECTOR interleaving is allowed for fields (not state fields) "
                            "with more than one component defined on extendible base spaces"));

     /* Create the new field object */
     ss_file_topscope(db, &scope);
     fld = (ss_field_t*)ss_pers_new(&scope, SS_MAGIC(ss_field_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)fld, NULL);
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(fld);

     /* if the eval collection category (eval_cat) is not SAF_SELF and non-primitive, then make sure eval_func is PWCONSTANT */
     /* This looks like a library limitation to me, so I'm coding it to look for an evaluation function whose name is
      * "piecewise constant". If this is some fundamental limitation of the model then we should really add some property to
      * the Evaluation table to describe this. --rpm 2001-04-26 */
     /* If we allow SAF_SPACE_PWCONST then we must certainly allow SAF_SPACE_CONSTANT.  I think we should remove
      * this restriction alltogether.  mjo 2002-04-03 */
     if (!_saf_is_self_decomp(eval_cat)) {
         ss_collection_t eval_coll;
         SAF_Eval *pwconst = SAF_SPACE_PWCONST;
         SAF_Eval *constant = SAF_SPACE_CONSTANT;

         if (NULL==_saf_getCollection_set(base_space, eval_cat, &eval_coll))
             SAF_ERROR(NULL, _saf_errmsg("unable to obtain collection for category\n"));
         SAF_ASSERT(SS_COLLECTION(&eval_coll)->cell_type!=SAF_CELLTYPE_SET ||
                    (SS_COLLECTION(&eval_coll)->cell_type==SAF_CELLTYPE_SET &&
                     (SAF_EQUIV(eval_func, pwconst) ||  SAF_EQUIV(eval_func, constant))),
                    SAF_LOW_CHK_COST, NULL,
                    _saf_errmsg("only SAF_SPACE_PWCONST is valid on non-primitive collections for a participating process"));
     }

     /*  If this is a multi-component (non-scalar) field, but NOT a field of fields (i.e., ALG_TYPE!=SAF_ALGTYPE_FIELD),
      *  then we must set-up the association from this field to the components and then deal with any ordering... */
     if (SS_FIELDTMPL(ftmpl)->num_comps>1 && !SS_ALGEBRAIC(&algebraic)->indirect) {
         /* Save the supplied field links */
         ss_array_resize(SS_FIELD_P(fld,comp_fields), (size_t)SS_FIELDTMPL_M(ftmpl,num_comps));
         ss_array_put(SS_FIELD_P(fld,comp_fields), ss_pers_tm, 0, SS_NOSIZE, comp_flds);

         /* Now if the caller supplied an ordering permutation vector the we'll save it. */
         if (comp_order) {
             ss_array_target(SS_FIELD_P(fld,comp_order), H5T_NATIVE_INT);
             ss_array_resize(SS_FIELD_P(fld,comp_order), (size_t)SS_FIELDTMPL_M(ftmpl,num_comps));
             ss_array_put(SS_FIELD_P(fld,comp_order), H5T_NATIVE_INT, 0, SS_NOSIZE, comp_order);
         }
     }

     /* Additional initialization of the new field object */
     ss_string_set(SS_FIELD_P(fld,name), name);
     SS_FIELD(fld)->base_space = *base_space;
     SS_FIELD(fld)->ftmpl = *ftmpl;
     if (unit) SS_FIELD(fld)->units = *unit;
     SS_FIELD(fld)->storage_decomp_cat = *homog_decomp;
     SS_FIELD(fld)->comp_intlv = comp_intlv;
     SS_FIELD(fld)->dof_assoc_cat = *coeff_assoc;
     SS_FIELD(fld)->assoc_ratio = assoc_ratio;
     SS_FIELD(fld)->eval_decomp_cat = *eval_cat;
     if (eval_func) SS_FIELD(fld)->evaluation = *eval_func;
     SS_FIELD(fld)->is_homogeneous = _saf_is_self_decomp(homog_decomp);

     /* Compute the number of and size of each buffer (if any).
      *
      * Note that the buffer size depends on the number of size of the collection category and the association ratio which gives
      * the number of coefficients.  Multiplying this by the number of components gives the number of "numbers" of the given
      * datatype (float, double, ... ) Fields with interleave NONE have no components (are scalar) and fields with interleave
      * INDEPENDENT often have components but often have no buffers since the storage is on the components, we'll treat this as
      * vector. */
     if (_saf_is_self_decomp(homog_decomp)) {
         /* if coeff_assoc is SAF_SELF, then we have only 1 member of the collection. That is the set itself.
             Otherwise, we need to get the collection to get its count */
         if (!_saf_is_self_decomp(coeff_assoc)) {
             ss_collection_t assoc_coll;
             _saf_getCollection_set(base_space, coeff_assoc, &assoc_coll);
             count = SS_COLLECTION(&assoc_coll)->count;
         } else {
             count = 1;
         }
         switch (comp_intlv) {
         case SAF_INTERLEAVE_NONE:
             nbufs    = 1;
             buf_size = count * assoc_ratio;
             break;
         case SAF_INTERLEAVE_VECTOR:
             nbufs    = 1;
             assert(SS_FIELDTMPL(ftmpl)->num_comps>=0);
             buf_size = count * assoc_ratio * SS_FIELDTMPL(ftmpl)->num_comps;
             break;
         case SAF_INTERLEAVE_COMPONENT:
             assert(SS_FIELDTMPL(ftmpl)->num_comps>=0);
             nbufs    = SS_FIELDTMPL(ftmpl)->num_comps;
             buf_size = count * assoc_ratio;
             break;
         case SAF_INTERLEAVE_INDEPENDENT:
             nbufs    = 1;
             buf_size = count * assoc_ratio;
             break;
         default:
             /* VBT_INTERLEAVE_ANY, VBT_INTERLEAVE_INVALID, VBT_INTERLEAVE_NA, VBT_INTERLEAVE_UNKNOWN are handled here: by doing
              * nothing. */
             nbufs = 1;
             buf_size = count * assoc_ratio;
             break;
         }
     } else {
         ss_collection_t storage_coll;
         _saf_getCollection_set(base_space, homog_decomp, &storage_coll);
         nbufs = 1;
         buf_size = SS_COLLECTION(&storage_coll)->count;
     }

     /* stick buf, buf size and type onto field handle */
     SS_FIELD(fld)->m.nbufs     = nbufs;
     SS_FIELD(fld)->m.bufs      = bufs;
     SS_FIELD(fld)->m.buf_size  = buf_size;
     SS_FIELD(fld)->m.data_type = data_type;

     SAF_LEAVE(fld);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

	 SAF_FieldTmpl *
 saf_declare_field_tmpl(SAF_ParMode pmode,       /* The parallel mode. */
                        SAF_Db *db,              /* The database handle in which to create the template. */
                        const char *name,        /* The name of the field template. */
                        SAF_Algebraic *atype,    /* The algebraic type: SAF_ALGTYPE_SCALAR, SAF_ALGTYPE_VECTOR,
                                                  * SAF_ALGTYPE_TENSOR, SAF_ALGTYPE_SYMTENSOR, SAF_ALGTYPE_FIELD.  If
                                                  * the algebraic type is SAF_ALGTYPE_FIELD, then all we know about the
                                                  * field is that it references other fields (i.e., an indirect field).
                                                  * Therefore, the next four arguments are not applicable.  More
                                                  * generalized user defined type definitions will be available in later
                                                  * implementations. */
                        SAF_Basis *basis,        /* The basis. Not implemented yet. Pass null */
                        SAF_Quantity *quantity,  /* The quantity. See saf_declare_quantity() for quantity definitions and how
                                                  * to define new quantities. */
                        int num_comp,            /* Number of components. Although this may often be inferred from ATYPE,
                                                  * SAF currently does no work to infer it. Pass SAF_NOT_APPLICABLE_INT if
                                                  * this template will be used in the declaration of an inhomogeneous field.
                                                  * Otherwise, pass the number of components. For a simple scalar field, the
                                                  * number of components is 1. See Fields for further discussion of
                                                  * inhomogeneous fields. */
                        SAF_FieldTmpl *ctmpl,    /* This is an array of NUM_COMPS field template handles that comprise the
                                                  * composite field template or NULL if there are no component field
                                                  * templates. Pass NULL if this field template will be used in the
                                                  * declaration of an INhomogeneous field. */
                        SAF_FieldTmpl *ftmpl     /* Returned field template handle for composite fields. If the algebraic
                                                  * type (ATYPE) is SAF_ALGTYPE_FIELD, then the returned field template
                                                  * may be used as a state template (see State Templates). */
                        )
 {
     SAF_ENTER(saf_declare_field_tmpl, NULL);
     ss_scope_t          scope=SS_SCOPE_NULL;    /* The scope in which to declare the new field template. */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);

     SAF_REQUIRE(ftmpl, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("FTMPL must be non-null"));
     SAF_REQUIRE(name, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("NAME must be non-null"));
     SAF_REQUIRE(num_comp==SAF_NOT_APPLICABLE_INT || num_comp>=1, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("NUM_COMP >= 1"));
     SAF_REQUIRE(num_comp==SAF_NOT_APPLICABLE_INT || (num_comp>1 && ctmpl) || num_comp==1, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CTMPL must be non-NULL if NUM_COMP > 1"));
     SAF_REQUIRE(SS_ALGEBRAIC(atype), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("ATYPE must be a valid algebraic type handle"));
     SAF_REQUIRE(ctmpl || num_comp==SAF_NOT_APPLICABLE_INT || (!ctmpl && num_comp==1 && !SS_ALGEBRAIC(atype)->indirect),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CTMPL may be NULL only if NUM_COMP == 1 and ATYPE must be direct"));
     SAF_REQUIRE(!ctmpl || (ctmpl && num_comp!=SAF_NOT_APPLICABLE_INT), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CTMPL must be NULL if components are not appropriate"));
     SAF_REQUIRE(!basis || SS_BASIS(basis), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("BASIS must be a valid basis handle or NULL"));
     SAF_REQUIRE(!quantity || SS_QUANTITY(quantity), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("QUANTITY must be a valid quantity handle if supplied"));

     /* The scope in which to declare the field template. */
     ss_file_topscope(db, &scope);

     /* Allocate and/or initialize the new field template object. */
     ftmpl = (ss_fieldtmpl_t*)ss_pers_new(&scope, SS_MAGIC(ss_fieldtmpl_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U,
                                          (ss_pers_t*)ftmpl, NULL);
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(ftmpl);

     /* Save the component field templates */
     if (ctmpl) {
         if (ss_array_resize(SS_FIELDTMPL_P(ftmpl,ftmpls), (size_t)num_comp)<0 ||
             ss_array_put(SS_FIELDTMPL_P(ftmpl,ftmpls), ss_pers_tm, (size_t)0, (size_t)num_comp, ctmpl)<0)
             SAF_ERROR(NULL, _saf_errmsg("unable to link to component field templates"));
     }

     /* Initialize the other non-zero parts of the field template */
     ss_string_set(SS_FIELDTMPL_P(ftmpl,name), name);
     SS_FIELDTMPL(ftmpl)->algebraic = *atype;
     if (basis) SS_FIELDTMPL(ftmpl)->basis = *basis;
     if (quantity) SS_FIELDTMPL(ftmpl)->quantity = *quantity;
     SS_FIELDTMPL(ftmpl)->num_comps = num_comp;

     /* return stuff */
     SAF_LEAVE(ftmpl);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 SAF_Quantity *
 saf_declare_quantity(SAF_ParMode pmode,
                      SAF_Db *db,
                      const char *description,   /* A short description of the new quantity (e.g., "volume per time"). */
                      const char *abbreviation,  /* An optional abbreviation or symbol name for the quantity. */
                      const char *url,           /* An optional URL to the quantity documentation. */
                      SAF_Quantity *quant        /* [OUT] Optional quantity handle to initialize (and return). */
                      )
 {
     SAF_ENTER(saf_declare_quantity, NULL);
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &scope);
     quant = (ss_quantity_t*)ss_pers_new(&scope, SS_MAGIC(ss_quantity_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U,
                                         (ss_pers_t*)quant, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(quant);
     ss_string_set(SS_QUANTITY_P(quant,name), description);
     ss_string_set(SS_QUANTITY_P(quant,abbr), abbreviation);
     ss_string_set(SS_QUANTITY_P(quant,url), url);

 #ifdef HASH_QUANTITIES /*RPM DEBUGGING 2004-09-26*/
     /* Store the new quantity in the hash table by both description and abbreviation */
     if (!QHash) QHash = _saf_htab_new();
     _saf_htab_insert(QHash, _saf_hkey_str(description), (ss_pers_t*)quant);
     _saf_htab_insert(QHash, _saf_hkey_str(abbreviation), (ss_pers_t*)quant);
 #endif

     SAF_LEAVE(quant);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 SAF_RelRep *
 saf_declare_relrep(SAF_ParMode pmode,
                    SAF_Db *db,                  /* Database in which to declare the new relation representation */
                    const char *name,            /* Name of the object */
                    const char *url,             /* An optional URL to the documentation */
                    int id,                      /* A unique non-negative identification number */
                    SAF_RelRep *buf              /* [OUT] Optional handle to fill in and return */
                    )
 {
     SAF_ENTER(saf_declare_relrep, NULL);
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &scope);
     buf = (ss_relrep_t*)ss_pers_new(&scope, SS_MAGIC(ss_relrep_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)buf, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(buf);
     ss_string_set(SS_RELREP_P(buf,name), name);
     ss_string_set(SS_RELREP_P(buf,url), url);
     SS_RELREP(buf)->id = id;

     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 SAF_Role *
 saf_declare_role(SAF_ParMode pmode,                     /* The parallel mode */
                  SAF_Db *db,                            /* The database in which to create the new role */
                  const char *name,                      /* Name of the role */
                  const char *url,                       /* An optional URL to the role documentation */
                  SAF_Role *role                         /* [OUT] Optional role handle to initialize (and return) */
                  )
 {
     SAF_ENTER(saf_declare_role, NULL);
     ss_scope_t          topscope;

     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &topscope);
     role = (ss_role_t*)ss_pers_new(&topscope, SS_MAGIC(ss_role_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)role, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(role);
     ss_string_set(SS_ROLE_P(role,name), name);
     ss_string_set(SS_ROLE_P(role,url), url);

     SAF_LEAVE(role);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	 SAF_Set *
 saf_declare_set(SAF_ParMode pmode,      /* The parallel mode. */
                 SAF_Db *db,             /* The database handle in which to create the set. */
                 const char *name,       /* The name of the set being declared. */
                 int max_topo_dim,       /* The topological dimension of the set. If the set will contain sets of different
                                          * topological dimensions then this must be the maximum topological dimension of any
                                          * set in the subset inclusion lattice rooted below SET. */
                 SAF_SilRole role,       /* The role of the set. Possible values are SAF_SPACE for a spatial set, SAF_TIME for
                                          * a time-base set, SAF_PARAM for a parameter space set, or SAF_USERD for a user-defined
                                          * role. */
                 SAF_ExtendMode extmode, /* Indicates whether or not the base-space represented by the set is extendible. Possible
                                          * values are SAF_EXTENDIBLE_TRUE or SAF_EXTENDIBLE_FALSE */
                 SAF_Set *set            /* [OUT] Optional memory for link to the newly declared set. */
                 )
 {
     SAF_ENTER(saf_declare_set, NULL);
     ss_scope_t  scope=SS_SCOPE_NULL;    /* Scope where the new set will be created. */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);

     SAF_REQUIRE(SS_FILE(db), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("DATABASE must be a valid handle"));
     SAF_REQUIRE(name, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("NAME cannot be NULL"));
     SAF_REQUIRE(name[0] != '@', SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("NAME must not begin with a leading '@'"));
     SAF_REQUIRE(max_topo_dim >= 0, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("MAX_TOPO_DIM must be positive"));
     SAF_REQUIRE(role == SAF_TIME || role == SAF_SPACE || role == SAF_PARAM || role == SAF_SUITE,
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("ROLE must be SAF_TIME, SAF_SPACE, or SAF_PARAM"));
 #ifdef SSLIB_SUPPORT_PENDING
     /* So which is it: MAX_TOPO_DIM==1 or 0<=MAX_TOPO_DIM<=1? */
 #endif
     SAF_REQUIRE(role != SAF_TIME || (0 <= max_topo_dim && max_topo_dim <= 1),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("if ROLE is SAF_TIME then MAX_TOPO_DIM must be 1"));
     SAF_REQUIRE(extmode != SAF_EXTENDIBLE_TORF, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("EXTMODE must be either SAF_EXTENDIBLE_TRUE or SAF_EXTENDIBLE_FALSE"));


     /* Build a set record. */
     ss_file_topscope(db, &scope);
     set = (ss_set_t*)ss_pers_new(&scope, SS_MAGIC(ss_set_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)set, NULL);
     if (!set)
         SAF_ERROR(NULL,_saf_errmsg("unable to init set record"));

     /* Fill in the set's modeling data. */
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(set);
     ss_string_set(SS_SET_P(set,name), name);
     SS_SET(set)->user_id = 0;
     SS_SET(set)->tdim = max_topo_dim;
     SS_SET(set)->srole = role;
     SS_SET(set)->is_top = TRUE; /* a set is "always" considered a top at first */
     SS_SET(set)->is_extendible = (hbool_t) extmode;

     SAF_LEAVE(set);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

	 SAF_StateGrp *
 saf_declare_state_group(SAF_ParMode   pmode,            /* The parallel mode. */
                         SAF_Db        *db,              /* The database in which to declare the new state group. */
                         const char    *name,            /* The name of this state group. */
                         SAF_Suite     *suite,           /* The suite that these states are associated with. */
                         SAF_Set       *mesh_space,      /* The set representing the computational mesh */
                         SAF_StateTmpl *stmpl,           /* A state template that defines the pattern (via a list of field
                                                          * templates) of fields that can be stored in each state. */
                         SAF_Quantity  *quantity,        /* The quantity associated with the axis of the parametric space.
                                                          * For example, SAF_TIME_QUANTITY. */
                         SAF_Unit      *unit,            /* The units associated with the axis of the parametric space. */
                         hid_t         coord_data_type,  /* The data type of the coordinates of the parametric space. */
                         SAF_StateGrp  *state_grp        /* The returned handle for a state group. */
                         )

 {
     SAF_ENTER(saf_declare_state_group,0);

     SAF_Cat stategrp_cat;
     int num_space_cats=0, num_param_cats=0, num_ftmpls=0;
     char tmp_name[1024];
     int index[1];
     SAF_FieldTmpl comp_ftmpl[2];
     SAF_Cat *space_cats = NULL;
     SAF_Cat *param_cats = NULL;
     SAF_FieldTmpl *coords_ftmpl;
     SAF_Field     *coord_fields;
     SAF_Field     *coords, *dep_var_fld;

     SAF_Field     mesh_defcoord_field;
     SAF_FieldTmpl mesh_defcoord_tmpl;

     SAF_FieldTmpl stategrp_comp_tmpls[2];
     SAF_FieldTmpl stategrp_tmpl;
     SAF_Field     *stategrp_contents;
     SAF_Db        suite_db=SS_FILE_NULL;

     int l_numFound = 0;
     SAF_Cat *l_catsFound = NULL;

     ss_pers_file((ss_pers_t*)suite, &suite_db);

     /* create a coordinate field for the suite, consisting of two components, a coordinate field of the parametric space, and
      * an indirect field containing IDs of the coordinate fields of the computational mesh; these component fields must also
      * be created */

     /* saf_find_categories (suite, "space_slice_cat", SAF_ANY_ROLE, SAF_ANY_TOPODIM, &num_space_cats, &space_cats); */
     saf_find_collections(pmode, suite, SAF_SPACE_SLICE, SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM,
                          SAF_DECOMP_TORF, &num_space_cats, &space_cats);
     /* saf_find_categories (suite, "param_slice_cat", SAF_ANY_ROLE, SAF_ANY_TOPODIM, &num_param_cats, &param_cats); */
     saf_find_collections(pmode, suite, SAF_PARAM_SLICE, SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM,
                          SAF_DECOMP_TORF, &num_param_cats, &param_cats);

     if( param_cats == NULL || space_cats == NULL ) {
         SAF_ERROR(NULL, _saf_errmsg("param_cats or space_cats collections returned NULL on suite"));
     }

     saf_find_collections(pmode, suite, SAF_TOPOLOGY,
                          SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM,
                          SAF_DECOMP_TORF, &l_numFound, &l_catsFound);

     if( l_numFound <= 0 ) {
         saf_declare_category(SAF_ALL, db, "stategroups",
                              SAF_TOPOLOGY, 0, &stategrp_cat);
         saf_declare_collection(pmode, suite, &stategrp_cat,
                                SAF_CELLTYPE_POINT, 1, SAF_1DC(1),
                                SAF_DECOMP_FALSE);
     } else if( l_numFound >= 1 ) {
         stategrp_cat = l_catsFound[0];
         /* free(l_catsFound); */
     }

     coord_fields = (SAF_Field *)malloc( 2 * sizeof(SAF_Field));

     /* create the coordinate field associated with the parametric space; */
     sprintf (tmp_name, "%s_PARAM_COORDS_TMPL", name);
     saf_declare_field_tmpl (pmode, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_UNITY, quantity, 1, NULL, &(comp_ftmpl[0]));
     sprintf (tmp_name, "%s_PARAM_COORDS", name);
     saf_declare_field (pmode, db, comp_ftmpl+0, tmp_name, suite, unit, SAF_SELF(XXX), SAF_NODAL(param_cats+0, param_cats+0),
                        coord_data_type, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &(coord_fields[0]));
     saf_declare_coords (pmode, coord_fields+0);

     /* create the indirect field that will contain the coord fields of each of the sets in the state group */
     saf_find_default_coords(pmode, mesh_space, &mesh_defcoord_field);
     if (SS_PERS_ISNULL(&mesh_defcoord_field))
         SAF_ERROR(NULL, _saf_errmsg("default coords are not defined on the mesh set"));

     saf_describe_field(pmode, &mesh_defcoord_field, &mesh_defcoord_tmpl,
                        NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, NULL, NULL);

     sprintf (tmp_name, "%s_SPACE_COORDS_TMPL", name);
     saf_declare_field_tmpl (pmode, db, tmp_name, SAF_ALGTYPE_FIELD, SAF_ANY_BASIS, SAF_NOT_APPLICABLE_QUANTITY, 1,
                             &mesh_defcoord_tmpl, &(comp_ftmpl[1]));
     sprintf (tmp_name, "%s_SPACE_COORDS", name);

     saf_declare_field (pmode, db, comp_ftmpl+1, tmp_name, suite, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(XXX),
                        SAF_NODAL(space_cats+0, space_cats+0), SAF_HANDLE, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                        &(coord_fields[1]));

     saf_declare_coords (pmode, coord_fields+1);

     /* create the coord field made up of the param coord field and the space coord field */
     /* make this an indirect field until we can determine the status of composite fields containing components with different
      * algebraic types */
     coords = (SAF_Field *)malloc(sizeof(SAF_Field));
     sprintf( tmp_name, "%s_SUITE_COORDS_TMPL",name);

     coords_ftmpl = &(stategrp_comp_tmpls[0]);

     saf_declare_field_tmpl (pmode, db, tmp_name, SAF_ALGTYPE_FIELD, SAF_ANY_BASIS, SAF_NOT_APPLICABLE_QUANTITY, 2, comp_ftmpl,
                             coords_ftmpl);

     sprintf( tmp_name, "%s_SUITE_COORDS", name);

     saf_declare_field (pmode, db, coords_ftmpl, tmp_name, suite, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(XXX),
                        SAF_NODAL(space_cats+0, space_cats+0), SAF_HANDLE, NULL, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, coords);

     index[0] = 0;

     saf_write_field (pmode, coords, 1, SAF_TUPLES, index, 1, SAF_HANDLE, (void **)&coord_fields, &suite_db);
     _saf_free(coord_fields);

     /* create the composite coord field made up of the param coord field and the space coord field */
 #if 0
     /* this is commented out in favor of using the indirect field above */
     sprintf (tmp_name, "%s_SUITE_COORDS_TMPL", name);
     saf_declare_field_tmpl(pmode, tmp_name, database, SAF_ALGTYPE_TUPLE, SAF_CARTESIAN, SAF_QLENGTH, 2,
                            comp_ftmpl, &coords_ftmpl);
     sprintf (tmp_name, "%s_SUITE_COORDS", name);
     saf_declare_field(pmode, coords_ftmpl, tmp_name, suite, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(db),
                       SAF_NODAL(space_cats[0], space_cats[0]),
                       NULL, coord_fields, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, &coords);
 #endif

     /* create an indirect field to contain IDs of the fields for dependent variables; this is the current "state field"; use
      * the state template for this */

     /* find how many fields are in each state; this is the number of field templates in the state template */
     stategrp_comp_tmpls[1] = *stmpl;
     saf_describe_state_tmpl (pmode, stmpl, NULL,  &num_ftmpls, NULL);

     sprintf (tmp_name, "%s_DEP_VAR_FIELD", name);

     dep_var_fld = (SAF_Field *)malloc(sizeof(SAF_Field));
     if (num_ftmpls > 1) {   /* interleave isn't applicable if there's only 1 field per state */
         saf_declare_field (pmode, db, stmpl, tmp_name, suite, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(XXX),
                            SAF_NODAL(space_cats+0, space_cats+0), SAF_HANDLE, NULL, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL,
                            dep_var_fld);
     } else {
         saf_declare_field (pmode, db, stmpl, tmp_name, suite, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(XXX),
                            SAF_NODAL(space_cats+0, space_cats+0), SAF_HANDLE, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                            dep_var_fld);
     }

     /* create the StateGrp indirect field that will contain the "composite" coords and dependent variable indirect fields */
     /* associate this stategrp field with the stategrp_cat category on suite */
     sprintf(tmp_name, "%s_TMPL", name);

     saf_declare_field_tmpl(pmode, db, tmp_name, SAF_ALGTYPE_FIELD, SAF_ANY_BASIS, SAF_NOT_APPLICABLE_QUANTITY,
                            2, stategrp_comp_tmpls, &stategrp_tmpl);
     saf_declare_field( pmode, db, &stategrp_tmpl, name, suite, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(db),
                        SAF_NODAL(&stategrp_cat, &stategrp_cat), SAF_HANDLE, NULL, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL,
                        state_grp);

     stategrp_contents = (SAF_Field *)malloc( 2 * sizeof(SAF_Field));
     stategrp_contents[0] = *coords;
     stategrp_contents[1] = *dep_var_fld;

     index[0] = 0;
     saf_write_field (pmode, state_grp, 1, SAF_TUPLES, index, 1, SAF_HANDLE, (void **)&stategrp_contents, &suite_db);

     _saf_free(coords);
     _saf_free(dep_var_fld);
     _saf_free(param_cats);
     _saf_free(space_cats);
     _saf_free(stategrp_contents);
     _saf_free(l_catsFound);
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 SAF_StateTmpl *
 saf_declare_state_tmpl(SAF_ParMode   pmode,     /* The parallel mode. */
                        SAF_Db        *database,
                        const char    *name,     /* The name of the state template. */
                        int           num_ftmpls,/* Number of field templates that will comprise this state template. */
                        SAF_FieldTmpl *ftmpls,   /* Array of field template handles. */
                        SAF_StateTmpl *stmpl     /* The returned state template handle. */
                        )
 {
   SAF_ENTER(saf_declare_state_tmpl, NULL);

   stmpl = saf_declare_field_tmpl(pmode, database, name, SAF_ALGTYPE_FIELD, SAF_ANY_BASIS, SAF_NOT_APPLICABLE_QUANTITY, num_ftmpls,
                                  ftmpls, stmpl);

   SAF_LEAVE(stmpl);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

	 SAF_Rel *
 saf_declare_subset_relation(SAF_ParMode pmode,          /* The parallel mode. */
                             SAF_Db *db,                 /* The database in which to place the new relation. */
                             SAF_Set *sup,               /* The superset. In SAF_ONE parallel mode, all processors except the
                                                          * one identified by the SAF_ONE argument should pass the null set of
                                                          * the database by using the SAF_NULL macro. */
                             SAF_Set *sub,               /* The subset. In SAF_ONE parallel mode, all processors except the one
                                                          * identified by the SAF_ONE argument should pass the null set of the
                                                          * database by using the SAF_NULL macro. */
                             SAF_Cat *sup_cat,           /* The collection category on the SUP set upon which
                                                          * the subset relation is being defined. Note that collections of this
                                                          * category must have already been defined on SUP. Otherwise, an
                                                          * error is generated. Note, the four args, SUP_CAT, SUB_CAT, SBMODE,
                                                          * CBMODE, are typically passed using one of the macros described above,
                                                          * SAF_COMMON(C), SAF_BOUNDARY(P,B), SAF_EMBEDBND(P,B) or
                                                          * SAF_GENERAL(BND) */
                             SAF_Cat *sub_cat,           /* The collection category on the SUB set upon which the subset relation
                                                          * is being defined. Note that collections of this category must have
                                                          * already been defined on SUB. Otherwise an error is generated. */
                             SAF_BoundMode sbmode,       /* Indicates whether SUB is the boundary of SUP. Pass either
                                                          * SAF_BOUNDARY_TRUE or SAF_BOUNDARY_FALSE */
                             SAF_BoundMode cbmode,       /* Indicates whether *members* of collection on SUB are *on* the
                                                          * boundary of members of the collection on SUP. Pass either
                                                          * SAF_BOUNDARY_TRUE or SAF_BOUNDARY_FALSE */
                             SAF_RelRep *srtype,         /* Subset relation types. This argument describes how the data in ABUF
                                                          * represents the subset. Valid values are SAF_HSLAB meaning that ABUF
                                                          * points to a hyperslab specification and SAF_TUPLES meaning that ABUF
                                                          * points to a list of N-tuples. */
                             hid_t A_type,               /* The type of the data in A_BUF */
                             void *A_buf,                /* This buffer contains references, one for each member of the domain
                                                          * collection (on SUB), to members of the range collection (on SUP).
                                                          * The client may pass NULL here meaning that the raw data will be bound
                                                          * to the object during write, rather than declaration. */
                             hid_t B_type,               /* The type of the data in B_BUF */
                             void *B_buf,                /* This buffer is valid *only* when the members of the domain collection
                                                          * (on SUB) are on the boundaries of the members of the range collection
                                                          * (on SUP). In this case, the data contained in this buffer identifies
                                                          * "which piece" of the boundary each member of the domain collection is.
                                                          * Otherwise, the client should pass NULL here.
                                                          * As with ABUF, the client may pass also NULL here meaning the raw data
                                                          * will be bound to the object during write, rather than declaration. */
                             SAF_Rel *rel                /* [OUT] Optional returned relation handle. */
                             )
 {
     SAF_ENTER(saf_declare_subset_relation, NULL);
     ss_scope_t          scope;                          /* The scope where the new relation will be created. */
     ss_collection_t     sub_coll=SS_COLLECTION_NULL, sup_coll=SS_COLLECTION_NULL;
     int                 sub_count, sup_ndims;
     ss_indexspec_t      idx;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &scope);

     SAF_REQUIRE(SS_SET(sup), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("SUP must be a valid set handle"));
     SAF_REQUIRE(SS_SET(sub), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("SUB must be a valid set handle"));
     SAF_REQUIRE(sbmode==SAF_BOUNDARY_TRUE || sbmode==SAF_BOUNDARY_FALSE, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("SBMODE must be either SAF_BOUNDARY_TRUE or SAF_BOUNDARY_FALSE"));
     SAF_REQUIRE(cbmode==SAF_BOUNDARY_TRUE || cbmode==SAF_BOUNDARY_FALSE, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CBMODE must be either SAF_BOUNDARY_TRUE or SAF_BOUNDARY_FALSE"));
     SAF_REQUIRE((sbmode==SAF_BOUNDARY_TRUE && cbmode==SAF_BOUNDARY_TRUE) || sbmode==SAF_BOUNDARY_FALSE,
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("CBMODE must be SAF_BOUNDARY_TRUE if SBMODE is SAF_BOUNDARY_TRUE for all participating processes"));
     SAF_REQUIRE((!SS_CAT(sup_cat) && !SS_CAT(sub_cat) && !A_buf) || (SS_CAT(sup_cat) && SS_CAT(sub_cat)),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("Either A_BUF is null and both SUP_CAT and SUB_CAT are not valid cat handles or"
                             "SUP_CAT and SUB_CAT are both valid cat handles"));
     SAF_REQUIRE((B_buf && cbmode==SAF_BOUNDARY_TRUE) || !B_buf, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("B_BUF can be non-NULL only when CBMODE is SAF_BOUNDARY_TRUE"));
     SAF_REQUIRE((_saf_is_self_decomp(sup_cat) && _saf_is_self_decomp(sub_cat) &&
                  cbmode!=SAF_BOUNDARY_TRUE && sbmode!=SAF_BOUNDARY_TRUE) ||
                 (!_saf_is_self_decomp(sup_cat) && !_saf_is_self_decomp(sub_cat)),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("on the reserved, \"self\" collection, CBMODE and SBMODE must be SAF_BOUNDARY_FALSE"));
     SAF_REQUIRE(SS_RELREP(srtype), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("SRTYPE must be a valid relation representation handle"));
     SAF_REQUIRE(SAF_HSLAB_ID==SS_RELREP(srtype)->id || SAF_TUPLES_ID==SS_RELREP(srtype)->id,
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("SRTYPE must be either SAF_HSLAB or SAF_TUPLES"));
     SAF_REQUIRE(rel, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("REL must be non-NULL"));
     SAF_REQUIRE(A_type<=0 || H5T_INTEGER==H5Tget_class(A_type), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("A_TYPE must be an integer type if supplied"));
     SAF_REQUIRE(B_type<=0 || H5T_INTEGER==H5Tget_class(B_type), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("B_TYPE must be an integer type if supplied"));

     if (SS_CAT(sup_cat) && SS_CAT(sub_cat)) {
         _saf_getCollection_set(sub, sub_cat, &sub_coll);
         _saf_getCollection_set(sup, sup_cat, &sup_coll);

         /* confirm sup collecton has its respective category defined on it */
         if (SS_PERS_ISNULL(&sup_coll)) {
             /* instantiate the self collection on the sup set, if necessary */
             if (_saf_is_self_decomp(sup_cat)) {
                 if (saf_declare_collection(pmode, sup, sup_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE) != SAF_SUCCESS) {
                     SAF_ERROR(NULL, _saf_errmsg("unable to instantiate self collection on set \"%s\"",
                                                 ss_string_ptr(SS_CAT_P(sup_cat,name))));
                 }
             } else {
                 SAF_ERROR(NULL,_saf_errmsg("set \"%s\" does not have a collection of category \"%s\"",
                                            ss_string_ptr(SS_SET_P(sup,name)), ss_string_ptr(SS_CAT_P(sup_cat,name))));
             }
         }

         /* confirm sub collecton has its respective category defined on it */
         if (SS_PERS_ISNULL(&sub_coll)) {
             /* instantiate the self collection on the sub set, if necessary */
             if (_saf_is_self_decomp(sub_cat)) {
                 if (saf_declare_collection(pmode, sub, sub_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE)!=SAF_SUCCESS) {
                     SAF_ERROR(NULL, _saf_errmsg("unable to instantiate self collection on set \"%s\"",
                                                 ss_string_ptr(SS_CAT_P(sub_cat,name))));
                 }
                 sub_count = 1;
                 sup_ndims = 1;
             } else {
                 SAF_ERROR(NULL, _saf_errmsg("set \"%s\" does not have a collection of category \"%s\"",
                                             ss_string_ptr(SS_SET_P(sub,name)), ss_string_ptr(SS_CAT_P(sub_cat,name))));
             }
         } else {
             /* obtain the count of the domain */
             sub_count = SS_COLLECTION(&sub_coll)->count;

             /* obtain the default indexing scheme of the range */
             ss_array_get(SS_COLLECTION_P(&sup_coll,indexing), ss_pers_tm, (size_t)0, (size_t)1, &idx);
             sup_ndims = SS_INDEXSPEC(&idx)->ndims;
         }
     } else {
         /* if both sup_cat and sub_cat are NULL, it is the general case */
         sub_count = 0;
         sup_ndims = 0;
     }

     /* Initialize the relation record */
     rel = (ss_rel_t*)ss_pers_new(&scope, SS_MAGIC(ss_rel_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)rel, NULL);
     if (!rel) SAF_ERROR(NULL, _saf_errmsg("unable to create or initialize the new relation object and/or handle"));
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(rel);
     SS_REL(rel)->sub = *sub;
     if (sub_cat) SS_REL(rel)->sub_cat = *sub_cat;
     SS_REL(rel)->sup = *sup;
     if (sup_cat) SS_REL(rel)->sup_cat = *sup_cat;
     SS_REL(rel)->kind = cbmode==SAF_BOUNDARY_TRUE ? SAF_RELKIND_BOUND : SAF_RELKIND_EQUAL;
     SS_REL(rel)->rep_type = *srtype;

     /* If the subset is the boundary of the superset, then set the bnd_set_id member of superset */
     if (sbmode == SAF_BOUNDARY_TRUE) {
         SAF_DIRTY(sup, pmode);
         SS_SET(sup)->bnd_set = *sub;
     }

     /* Issue: If we could guarantee all processors' is_top member were identical, we could wrap this call so that we don't try
      *        to put the set record if its already NOT a top set. */

     /* Set the "is_top" member of the subset to false */

     /* The test whether parent and child sroles are the same has been added as a result of the new 'cross-product base space'.
      * The 'mesh space' topset now becomes a subset of the new Suite set, but we want the conceptual topset of the mesh space
      * to still be flagged as a topset.  The srole of the suite is SAF_SUITE and the srole of the mesh space topset is
      * SAF_SPACE.  By checking to make sure the sroles are equal before changing is_top to false, we can ensure that the mesh
      * space stays flagged with is_top true.
      *
      * The is_top in should probably be changed from hbool_t to another type that allows for us to have multiple topsets for
      * different sroles.  SPACE topsets, SUITE topsets, TIME topsets, etc. */
     if (SS_SET(sup)->srole == SS_SET(sub)->srole) {
         SAF_DIRTY(sub, pmode);
         SS_SET(sub)->is_top = FALSE;
     }

     /* Fill in the handle and return it. */
     SS_REL(rel)->m.abuf = A_buf;
     SS_REL(rel)->m.abuf_type = A_type;
     SS_REL(rel)->m.bbuf = B_buf;
     SS_REL(rel)->m.bbuf_type = B_type;

     /* Calculate size stuff. In general case, the bufs are zero-sized. */
     if (!SS_CAT(sup_cat) && !SS_CAT(sub_cat)) {
         SS_REL(rel)->m.abuf_size = 0;
         SS_REL(rel)->m.bbuf_size = 0;
     } else {
         if (SAF_HSLAB_ID==SS_RELREP(srtype)->id)
             SS_REL(rel)->m.abuf_size = 3 * sup_ndims;           /* start, length and stride for each dim of sup */
         if (SAF_TUPLES_ID==SS_RELREP(srtype)->id)
             SS_REL(rel)->m.abuf_size = sub_count * sup_ndims;   /* one ndim-tuple for each member of sub */
         SS_REL(rel)->m.bbuf_size = sub_count;
     }

     SAF_LEAVE(rel);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

	 SAF_Suite *
 saf_declare_suite(SAF_ParMode  pmode,           /* The parallel mode. */
                   SAF_Db       *database,       /* The SAF database handle. */
                   const char   *name,           /* The name of the suite. */
                   SAF_Set      *mesh_space,     /* The set representing the computational mesh.
                                                  * this is currently only a single set, so assume that the
                                                  * user cannot supply a list of mesh_space sets when declaring a suite */
                   SAF_Set      *param_space,    /* The set representing the parametric space, such as time.  If this is NULL,
                                                  * a set will be created with a SIL role of type TYPE. */
                   SAF_Suite    *suite           /* [OUT] Optional memory for the returned handle. If null then a new handle is
                                                  * allocated by this function. */
                   )
 {

     SAF_ENTER(saf_declare_suite,0);

     int l_numFound = 0;
     int l_spacecatsFound = 0;
     int l_paramcatsFound = 0;

     SAF_Cat *space_cat=NULL, *param_cat=NULL;
     SAF_Set param_set=SS_SET_NULL;

     SAF_Rel suite_param_rel=SS_REL_NULL, suite_mesh_rel=SS_REL_NULL;

     /* create a set with SIL role "SAF_SUITE" to uniquely identify this as a cross-product base space */
     suite = saf_declare_set(pmode, database, name, 1, SAF_SUITE, SAF_EXTENDIBLE_TRUE, suite);


     /* find the SAF_SPACE_SLICE collection/category, else create it */
     saf_find_collections(pmode, suite, SAF_SPACE_SLICE,
                          SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM, SAF_DECOMP_TORF,
                          &l_numFound, &space_cat);


     if( l_numFound <= 0 ) {
         _saf_free(space_cat);
         space_cat = NULL;
         saf_find_categories (pmode, database, SAF_UNIVERSE(XXX), SAF_ANY_NAME, SAF_SPACE_SLICE,
                              SAF_ANY_TOPODIM, &l_spacecatsFound, &space_cat);
         if( l_spacecatsFound <= 0 ) {
             /* space_cat = (SAF_Cat *)malloc(sizeof(SAF_Cat)); */
             saf_declare_category(SAF_ALL, database, "space_slice_cat",
                                  SAF_SPACE_SLICE, 1, space_cat);
         }
         if( space_cat == NULL ) {
             SAF_ERROR(0, _saf_errmsg("SAF_SPACE_SLICE category could not be created"));
         }
         saf_declare_collection (pmode, suite, space_cat,
                                 SAF_CELLTYPE_POINT, 1, SAF_1DC(1),
                                 SAF_DECOMP_FALSE);
     }
     if( space_cat == NULL ) {
         SAF_ERROR(0, _saf_errmsg("SAF_SPACE_SLICE category could not be created"));
     }

     /* find the SAF_PARAM_SLICE collection/category, else create it */
     l_numFound = 0;
     saf_find_collections(pmode, suite, SAF_PARAM_SLICE,
                          SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM, SAF_DECOMP_TORF,
                          &l_numFound, &param_cat);

     if( l_numFound <= 0 ) {
         _saf_free(param_cat);
         param_cat = NULL;
         saf_find_categories (pmode, database, SAF_UNIVERSE(XXX), SAF_ANY_NAME, SAF_PARAM_SLICE,
                              SAF_ANY_TOPODIM, &l_paramcatsFound, &param_cat);
         if( l_paramcatsFound <= 0 ) {
             /* param_cat = (SAF_Cat *)malloc(sizeof(SAF_Cat)); */
             saf_declare_category(SAF_ALL, database, "param_slice_cat",
                                  SAF_PARAM_SLICE, 1, param_cat);
         }
         if( param_cat == NULL ) {
             SAF_ERROR(0, _saf_errmsg("SAF_PARAM_SLICE category could not be created"));
         }
         saf_declare_collection (pmode, suite, param_cat,
                                 SAF_CELLTYPE_POINT, 1, SAF_1DC(1),
                                 SAF_DECOMP_FALSE);
     }
     if( param_cat == NULL ) {
         SAF_ERROR(0, _saf_errmsg("SAF_PARAM_SLICE category could not be created"));
     }


     /* if param_space is NULL, create a set for the parametric space */
     if ( param_space == NULL ) {
         saf_declare_set(pmode, database, "suite_param_set", 1, SAF_TIME, SAF_EXTENDIBLE_TRUE, &param_set);
     } else {
         param_set = *param_space;
     }


     /* check whether this "param_slice_cat" collection already exists on the param_set ??? */

     /* declare the collection on param_set for "slices" */
     saf_declare_collection(pmode, &param_set, param_cat, SAF_CELLTYPE_POINT, 1, SAF_1DC(1), SAF_DECOMP_FALSE);

     saf_declare_subset_relation(pmode, database, suite, &param_set, SAF_COMMON(param_cat), SAF_TUPLES, H5T_NATIVE_INT,
                                 NULL, H5I_INVALID_HID, NULL, &suite_param_rel);




     /* find or declare the "slice" cat/collection on mesh_space and create subset_relation */
     saf_declare_collection(pmode, mesh_space, space_cat, SAF_CELLTYPE_POINT, 1, SAF_1DC(1),SAF_DECOMP_FALSE);

     saf_declare_subset_relation(SAF_ALL, database, suite, mesh_space, SAF_COMMON(space_cat), SAF_TUPLES, SAF_INT, NULL,
                                 H5I_INVALID_HID, NULL, &suite_mesh_rel);

     free(space_cat);
     free(param_cat);

     SAF_LEAVE(suite);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

	 SAF_Rel *
 saf_declare_topo_relation(SAF_ParMode pmode,            /* The parallel mode. */
                           SAF_Db *db,                   /* The dataset where the new relation will be created. */
                           SAF_Set *set,                 /* The containing set of the collection whose members are being sewn
                                                          * together by the relation. */
                           SAF_Cat *pieces,              /* The collection of members that are being sewn together. */
                           SAF_Set *range_set,
                           SAF_Cat *range_cat,           /* Together, RANGE_SET and RANGE_CAT identify the range of the relation
                                                          * (e.g., collection used to glue the pieces together). There are
                                                          * really only two valid values for RANGES_S: the set SET or the set
                                                          * MY_PIECE. */
                           SAF_Cat *storage_decomp,      /* The decomposition of SET upon which the relation is stored. */
                           SAF_Set *my_piece,            /* The piece of the decomposition being declared here. */
                           SAF_RelRep *trtype,           /* The relation types. One of SAF_STRUCTURED, SAF_UNSTRUCTURED, or
                                                          * SAF_ARBITRARY. */
                           hid_t A_type,                 /* The type of the data in A_BUF. */
                           void *A_buf,                  /* The buffer. Pass NULL if you would rather provide this in
                                                          * the write call. */
                           hid_t B_type,                 /* The type of the data in B_BUF. */
                           void *B_buf,                  /* The buffer. Pass NULL if you would rather provide this in
                                                          * the write call. */
                           SAF_Rel *rel                  /* [OUT] Optional memory that will be initialized (and returned) to
                                                          * point to the new relation. */
                           )
 {
     SAF_ENTER(saf_declare_topo_relation, NULL);
     ss_scope_t          scope;                  /* The scope where the new relation will be created. */
     int                 i, sum=0, tmp;
     ss_collection_t     pieces_coll;            /* Collection for PIECES category on SET */
     ss_collection_t     range_coll;             /* Collection for RANGE_CAT on RANGE_SET */
     ss_collection_t     storage_decomp_coll;    /* Collection for STORAGE_DECOMP on SET */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &scope);

     SAF_REQUIRE(SS_SET(set), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("SET must be a valid set handle"));
     SAF_REQUIRE(SS_CAT(pieces), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PIECES must be a valid category"));
     SAF_REQUIRE(SS_SET(range_set), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("RANGE_SET must be a valid set"));
     SAF_REQUIRE(SS_CAT(range_cat), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("RANGE_CAT must be a valid category"));
     SAF_REQUIRE(SS_SET(my_piece), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("MY_PIECES must be a valid handle"));
     SAF_REQUIRE(SS_CAT(storage_decomp), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("STORAGE_DECOMP must be either the self decomposition or a valid cat handle"));
     SAF_REQUIRE(SS_RELREP(trtype), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("TRTYPE must be a consistent relation representation handle"));
     SAF_REQUIRE(SAF_STRUCTURED_ID==SS_RELREP(trtype)->id || SAF_UNSTRUCTURED_ID==SS_RELREP(trtype)->id ||
                 SAF_ARBITRARY_ID==SS_RELREP(trtype)->id,
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("TRTYPE must be a valid topology representation"));
     SAF_REQUIRE(A_type<=0 || H5T_INTEGER==H5Tget_class(A_type) ||
                 (H5Tequal(A_type,ss_pers_tm) && _saf_is_self_decomp(storage_decomp)),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("If supplied, A_TYPE must be an integer type (or SAF_HANDLE if decomposed)"));
     SAF_REQUIRE(A_type>0 || !A_buf, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("A_TYPE must be supplied if A_BUF is supplied"));
     SAF_REQUIRE(B_type<=0 || H5T_INTEGER==H5Tget_class(B_type) || H5Tequal(B_type, ss_pers_tm),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("B_TYPE must be an integer type or handle type"));
     SAF_REQUIRE(B_type || !B_buf, SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("B_TYPE must be supplied if B_BUF if supplied"));

     /* The my_piece parameter */
     SAF_REQUIRE(A_type<=0 || SAF_XOR(_saf_is_self_decomp(storage_decomp), H5Tequal(A_type, ss_pers_tm)),
                 SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("A_TYPE must be handle if storage decomposition is not self "
                             "but must not be handle if storage decomposition is self"));

     /* confirm pieces cat exists on set */
     if (NULL==_saf_getCollection_set(set, pieces, &pieces_coll))
         SAF_ERROR(NULL, _saf_errmsg("collection \"%s\" not found on set \"%s\"",
                                     ss_string_ptr(SS_CAT_P(pieces,name)), ss_string_ptr(SS_SET_P(set,name))));

     /* Confirm pieces is a primitive collection */
     if (SS_COLLECTION(&pieces_coll)->cell_type == SAF_CELLTYPE_SET)
         SAF_ERROR(NULL, _saf_errmsg("SAF currently only supports topology relations on primitive collections"));

     switch(SS_SET(set)->tdim) {
     case 0:
         if (SS_COLLECTION(&pieces_coll)->cell_type != SAF_CELLTYPE_POINT)
             SAF_ERROR(NULL, _saf_errmsg("domain set dimension not compatible with collection cell"));
         break;
     case 1:
         if (SS_COLLECTION(&pieces_coll)->cell_type != SAF_CELLTYPE_LINE)
             SAF_ERROR(NULL, _saf_errmsg("domain set dimension not compatible with collection cell"));
         break;
     case 2:
         if (SAF_STRUCTURED_ID==SS_RELREP(trtype)->id && SS_COLLECTION(&pieces_coll)->cell_type != SAF_CELLTYPE_QUAD)
             SAF_ERROR(NULL, _saf_errmsg("structured meshes declared on domain sets of dimension "
                                         "2 may only use SAF_CELLTYPE_QUAD collection cells"));
         break;
     case 3:
         if (SAF_STRUCTURED_ID==SS_RELREP(trtype)->id && SS_COLLECTION(&pieces_coll)->cell_type != SAF_CELLTYPE_HEX)
             SAF_ERROR(NULL, _saf_errmsg("structured meshes declared on domain sets of dimension "
                                         "3 may only use SAF_CELLTYPE_HEX collection cells"));
         break;
     default:
         SAF_ERROR(NULL, _saf_errmsg("domain sets of dimension > 3 not currently supported"));
     }

     /* Confirm range_cat exists on range_set set */
     if (NULL==_saf_getCollection_set(range_set, range_cat, &range_coll))
         SAF_ERROR(NULL, _saf_errmsg("collection \"%s\" not found on set \"%s\"",
                                     ss_string_ptr(SS_CAT_P(range_cat,name)), ss_string_ptr(SS_SET_P(range_set,name))));

     /* Build a relation record */
     rel = (ss_rel_t*)ss_pers_new(&scope, SS_MAGIC(ss_rel_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)rel, NULL);
     if (!rel) SAF_ERROR(NULL, _saf_errmsg("unable to create or initialize the new relation object and/or handle."));
     if (SAF_EACH==pmode) SS_PERS_UNIQUE(rel);
     SS_REL(rel)->sub = *set;
     SS_REL(rel)->sub_cat = *pieces;
     SS_REL(rel)->sub_decomp_cat = *storage_decomp;
     SS_REL(rel)->sup = *range_set;
     SS_REL(rel)->sup_cat = *range_cat;
     SS_REL(rel)->sup_decomp_cat = *storage_decomp;
     SS_REL(rel)->kind = SAF_RELKIND_SUBSET;
     SS_REL(rel)->rep_type = *trtype;

     /* Compute the size of each buffer (if any). */
     SS_REL(rel)->m.abuf_type = A_type;
     SS_REL(rel)->m.bbuf_type = B_type;
     if (_saf_is_self_decomp(storage_decomp)) {
         /* A topological relation which is stored on self has buffers whose sizes are based on the size of the collection being
          * sewn together (given "set" and "pieces" category).
          *
          * Note that the buffer size depends on the number of size of the collection category and the nature of the relation
          * (structured, unstructured, ...). */
         switch (SS_RELREP(trtype)->id) {
         case SAF_STRUCTURED_ID:
             SS_REL(rel)->m.abuf = NULL;
             SS_REL(rel)->m.bbuf = NULL;
             SS_REL(rel)->m.abuf_size = 0;
             SS_REL(rel)->m.bbuf_size = 0;
             break;
         case SAF_UNSTRUCTURED_ID:
             /* If the user gives a value for A_buf and A_type, it is the number of range refs per member of the pieces,
              * otherwise, we assume its 1 and catch it on the write call */
             SS_REL(rel)->m.abuf = A_buf;
             SS_REL(rel)->m.bbuf = B_buf;
             SS_REL(rel)->m.abuf_size = 1;
             SS_REL(rel)->m.bbuf_size = SS_COLLECTION(&pieces_coll)->count;
             if (A_type>0 && A_buf) {
                 _saf_convert(A_type, A_buf, H5T_NATIVE_INT, &tmp);
                 SS_REL(rel)->m.bbuf_size *= tmp;
             }
             break;
         case SAF_ARBITRARY_ID:
             /* If the user gives a value for A_buf, it is an array of length equal to size of pieces from which can can
              * calculate the size of B_buf. Otherwise, we set bbuf_size to -1 and catch it on the write call */
             SS_REL(rel)->m.abuf = A_buf;
             SS_REL(rel)->m.bbuf = B_buf;
             SS_REL(rel)->m.abuf_size = SS_COLLECTION(&pieces_coll)->count;
             if (A_type>0 && A_buf) {
                 for (i=0, sum=0; i<SS_COLLECTION(&pieces_coll)->count; i++) {
                     _saf_convert(A_type, A_buf, H5T_NATIVE_INT, &tmp);
                     sum += tmp;
                 }
                 SS_REL(rel)->m.bbuf_size = sum;
             } else {
                 SS_REL(rel)->m.bbuf_size = SS_NOSIZE;
             }
             break;
         default:
             SAF_ERROR(NULL,_saf_errmsg("invalide topology relation type"));
         }
     } else {
         /* A topological relation which is stored on a decomposition has only a single buffer of type SAF_HANDLE whose size is
          * based on the size of the storage collection.  At this point the issue of structured vs. unstructured vs. arbitrary
          * is not important, the buffer is simply a vector of handles. */
         if (NULL==_saf_getCollection_set(set, storage_decomp, &storage_decomp_coll))
             SAF_ERROR(NULL, _saf_errmsg("collection \"%s\" not found on set \"%s\"",
                                         ss_string_ptr(SS_CAT_P(storage_decomp,name)), ss_string_ptr(SS_SET_P(set,name))));
     }

     SAF_LEAVE(rel);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 SAF_Unit *
 saf_declare_unit(SAF_ParMode pmode,
                  SAF_Db *db,                    /* The database in which to create the new unit. */
                  const char *name,              /* Optional singular unit name. */
                  const char *abbr,              /* Optional singular abbreviation */
                  const char *url,               /* Optional documentation URL. */
                  SAF_Unit *unit                 /* [OUT] Optional unit handle to initialize and return. */
                  )
 {
     SAF_ENTER(saf_declare_unit, NULL);
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);
     ss_file_topscope(db, &scope);
     unit = (ss_unit_t*)ss_pers_new(&scope, SS_MAGIC(ss_unit_t), NULL, SAF_ALL==pmode?SS_ALLSAME:0U, (ss_pers_t*)unit, NULL);

     if (SAF_EACH==pmode) SS_PERS_UNIQUE(unit);
     ss_string_set(SS_UNIT_P(unit,name), name);
     ss_string_set(SS_UNIT_P(unit,abbr), abbr);
     ss_string_set(SS_UNIT_P(unit,url), url);
     SS_UNIT(unit)->scale = 1.0;

 #ifdef HASH_UNITS /*RPM DEBUGGING 2004-09-26*/
     /* Store the new unit in the hash table by both description and abbreviation */
     if (!UHash) UHash = _saf_htab_new();
     _saf_htab_insert(UHash, _saf_hkey_str(name), (ss_pers_t*)unit);
     _saf_htab_insert(UHash, _saf_hkey_str(abbr), (ss_pers_t*)unit);
 #endif

     SAF_LEAVE(unit);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 int
 saf_describe_algebraic(SAF_ParMode pmode,
                        SAF_Algebraic *alg,      /* Algebraic to describe */
                        char **name,             /* If non-null, on return points to malloc'd algebraic name if any */
                        char **url,              /* If non-null, on return points to malloc'd URL if any */
                        hbool_t *indirect        /* If non-null, on return points to non-zero if type is indirect */
                        )
 {
     SAF_ENTER(saf_describe_algebraic, SAF_PRECONDITION_ERROR);

     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_ALGEBRAIC(alg), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ALG must be a valid algebraic handle"));

     _saf_setupReturned_string(name, ss_string_ptr(SS_ALGEBRAIC_P(alg,name)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_ALGEBRAIC_P(alg,url)));
     if (indirect) *indirect = SS_ALGEBRAIC(alg)->indirect;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

	 int
 saf_describe_alternate_indexspec(SAF_ParMode pmode,             /* The parallel mode*/
                                  SAF_AltIndexSpec *aspec,       /* The alternate index spec you want the description of. */
                                  SAF_Set *containing_set,       /* [OUT] The containing set of the collection.  Pass NULL if you do
                                                                  * not want this returned. */
                                  SAF_Cat *cat,                  /* [OUT] The collection category. Pass NULL if you do not want this
                                                                  * returned. */
                                  char **name,                   /* [OUT] The name of this alt index spec. */
                                  hid_t *data_type,              /* [OUT] The data type used to identify members of the collection.
                                                                  * Pass NULL if you do not want this returned. */
                                  hbool_t *is_explicit,          /* [OUT] Whether the indexing specification is explicit or
                                                                  * implicit. */
                                  SAF_IndexSpec *implicit_ispec, /* [OUT] The alternate indexing scheme of the collection. If the
                                                                  * index spec is explicit, then SAF_NA_INDEXSPEC will be
                                                                  * returned.  If the index spec is implicit, the implicit
                                                                  * index spec will be returned here. */
                                  hbool_t *is_compact,           /* [OUT] Whether the indexing specification is compact or not.
                                                                  * Ignored for implicit specs. */
                                  hbool_t *is_sorted             /* [OUT] Whether the indexing specification is sorted or not.
                                                                  * Ignored for implicit specs. */
                                  )
 {
     SAF_ENTER(saf_describe_alternate_indexspec, SAF_PRECONDITION_ERROR);
     ss_collection_t     coll=SS_COLLECTION_NULL;
     size_t              i;
     hid_t               ftype;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_INDEXSPEC(aspec), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("the ASPEC argument must be a valid handle"));


     /* Get the collection associated with the alt indexing spec. */
     coll = SS_INDEXSPEC(aspec)->coll;

     /* Now the we have the collection record, get the containing set. */
     if (containing_set)
         *containing_set = SS_COLLECTION(&coll)->containing_set;

     /* Also get the cat. */
     if (cat)
         *cat = SS_COLLECTION(&coll)->cat;

     /* Populate the data_type */
     if (data_type) {
         if (!SS_PERS_ISNULL(SS_INDEXSPEC_P(aspec,blob))) {
             ss_blob_bound_f1(SS_INDEXSPEC_P(aspec,blob), NULL, NULL, NULL, &ftype);
             *data_type = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
             H5Tclose(ftype);
         } else {
             *data_type = H5I_INVALID_HID;
         }
     }

     if (is_explicit)
         *is_explicit = SS_INDEXSPEC(aspec)->is_explicit;
     if (is_sorted)
         *is_sorted = SS_INDEXSPEC(aspec)->is_sorted;
     if (is_compact)
         *is_compact = SS_INDEXSPEC(aspec)->is_compact;

     if (implicit_ispec) {
         if (SS_INDEXSPEC(aspec)->is_explicit) {
             *implicit_ispec = SAF_NA_INDEXSPEC;
         } else {
             /* It is implicit, so return the regular implicit_ispec. */
             implicit_ispec->ndims = SS_INDEXSPEC(aspec)->ndims;
             for (i=0; i<SAF_MAX_NDIMS; i++) {
                 implicit_ispec->sizes[i]   = SS_INDEXSPEC(aspec)->sizes[i];
                 implicit_ispec->origins[i] = SS_INDEXSPEC(aspec)->origins[i];
                 implicit_ispec->order[i]   = SS_INDEXSPEC(aspec)->order[i];
             }
         }
     }

     /* return the name of the alt index spec */
     if (_saf_setupReturned_string(name, ss_string_ptr(SS_INDEXSPEC_P(aspec,name))) != SAF_SUCCESS)
         SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to return alt index spec name for alt index spec %s\n",
                                                 ss_string_ptr(SS_INDEXSPEC_P(aspec,name))));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 int
 saf_describe_basis(SAF_ParMode pmode,
                    SAF_Basis *basis,             /* Basis to describe */
                    char **name,                  /* [OUT] If non-null, on return points to malloc'd basis name if any */
                    char **url                    /* [OUT] If non-null, on return points to malloc'd URL if any */
                    )
 {
     SAF_ENTER(saf_describe_basis, SAF_PRECONDITION_ERROR);

     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_BASIS(basis), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BASIS must be a valid basis handle"));

     _saf_setupReturned_string(name, ss_string_ptr(SS_BASIS_P(basis,name)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_BASIS_P(basis,url)));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 int
 saf_describe_category(SAF_ParMode pmode,
                       SAF_Cat *cat,     /* A collection category handle. */
                       char **name,      /* If non-NULL, the returned name of the collection category (see Returned Strings). */
                       SAF_Role *role,   /* If non-NULL, the returned role of the collection category (see Collection Roles). */
                       int *tdim         /* If non-NULL, the returned maximum topological dimension of members of collections
                                          * of this category. */
                       )
 {
   SAF_ENTER(saf_describe_category, SAF_PRECONDITION_ERROR);

   SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("PMODE must be valid"));
   if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
   SAF_REQUIRE(SS_CAT(cat), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("CAT must be a valid category handle"));

   /* return the desired values */
   if (_saf_setupReturned_string(name, ss_string_ptr(SS_CAT_P(cat,name))) != SAF_SUCCESS)
     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to process returned string"));
   if (role) {
       *role = SS_CAT(cat)->role;
   }
   if (tdim != NULL)
       *tdim = SS_CAT(cat)->tdim;

   SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

	 int
 saf_describe_collection(SAF_ParMode  pmode,             /* The parallel mode. */
                         SAF_Set *containing_set,        /* The containing set of the desired collection. In SAF_ONE() parallel
                                                          * mode, all processes except the process identified by the rank
                                                          * argument of the SAF_ONE() macro are free to pass SAF_NULL with the
                                                          * set's database handle. */
                         SAF_Cat *cat,                   /* The collection category of the desired collection. */
                         SAF_CellType *t,                /* [OUT] The cell-type of the members of the collection. Pass NULL if
                                                          * this return value is not desired. */
                         int *count,                     /* [OUT] The returned count of the collection.  Pass NULL if this
                                                          * return value is not desired. */
                         SAF_IndexSpec *ispec,           /* [OUT] The returned indexing specification for the collection. Pass
                                                          * NULL if this return value is not desired. */
                         SAF_DecompMode *is_decomp,      /* [OUT] Whether the collection is a decomposition of the containing
                                                          * set. Pass NULL if this return value is not desired. */
                         SAF_Set **member_sets           /* If the collection is non-primitive, this argument is used to return
                                                          * the specific set handles for the sets that are in the collection.
                                                          * Pass NULL if this return value is not desired. Otherwise, if
                                                          * MEMBER_SETS points to NULL, the library will allocate space for the
                                                          * returned set handles. Otherwise the caller allocates the space and
                                                          * the input value of COUNT indicates the size of the space in
                                                          * number of set handles. */
                         )
 {
     SAF_ENTER(saf_describe_collection, SAF_PRECONDITION_ERROR);
     SAF_Collection      coll = SS_COLLECTION_NULL;
     ss_indexspec_t      idx  = SS_INDEXSPEC_NULL;
     int                 i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(containing_set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("the CONTAINING_SET must be valid for all participating processes"));
     SAF_REQUIRE(SS_CAT(cat), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CAT must be a valid category handle for participating processes"));

     /* Issue: having both arguments NULL will cause _saf_valid_memhints to return false, but in this particular case, having both
     *        arguments NULL is ok, so we dont call _saf_valid_memhints if both are 0. */
     SAF_REQUIRE((!count && !member_sets) || _saf_valid_memhints(count, (void**)member_sets),
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM_SETS and MEMBER_SETS must be compatible for return value allocation"));

     /* Special case for the "self" collection, which isn't always instantiated as a first-class collection. */
     if (_saf_is_self_decomp(cat)) {
         if (t) *t = SAF_CELLTYPE_SET;
         if (is_decomp) *is_decomp = SAF_DECOMP_TRUE;
         if (ispec) {
             memset(ispec, 0, sizeof *ispec);
             ispec->ndims = 1;
             ispec->sizes[0] = 1;
         }
         if (member_sets) {
             if (!*member_sets) *member_sets = malloc(sizeof(**member_sets));
             (*member_sets)[0] = *containing_set;
         }
         if (count) *count = 1;
         goto done;
     }

     /* Obtain the collection given the containing set and collection category. If a collection is not defined on the
      * containing set for the specified category then fill in return values appropriately. */
     if (NULL==_saf_getCollection_set(containing_set, cat, &coll)) {
         if (t) *t = SAF_CELLTYPE_SET;
         if (is_decomp) *is_decomp = SAF_DECOMP_FALSE;
         if (ispec) memset(ispec, 0, sizeof *ispec);
         if (count) *count = 0;
         goto done;
     }

     /* The default index spec */
     ss_array_get(SS_COLLECTION_P(&coll,indexing), ss_pers_tm, (size_t)0, (size_t)1, &idx);

     SAF_ASSERT(SS_COLLECTION(&coll)->cell_type==SAF_CELLTYPE_SET || !member_sets, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                _saf_errmsg("MEMBER_SETS must be NULL for a primitive collection for participating processes"));

     /* fill in return info as requested by the client */
     if (t) *t = SS_COLLECTION(&coll)->cell_type;
     if (is_decomp) *is_decomp = SS_COLLECTION(&coll)->is_decomp ? SAF_DECOMP_TRUE : SAF_DECOMP_FALSE;
     if (ispec) {
         memset(ispec, 0, sizeof *ispec);
         if (!SS_PERS_ISNULL(&idx)) {
             ispec->ndims = SS_INDEXSPEC(&idx)->ndims;
             for (i=0; i<SS_INDEXSPEC(&idx)->ndims; i++) {
                 ispec->sizes[i] = SS_INDEXSPEC(&idx)->sizes[i];
                 ispec->origins[i] = SS_INDEXSPEC(&idx)->origins[i];
                 ispec->order[i] = SS_INDEXSPEC(&idx)->order[i];
             }
         }
     }

     /* fill in the member sets, if requested */
     if (member_sets) {
         if (ss_array_nelmts(SS_COLLECTION_P(&coll,members))<(size_t)(SS_COLLECTION(&coll)->count))
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("attempt to read member list before it's been completely filled"));
         if (!*member_sets) {
             /* Library allocates results and returns all member sets */
             *member_sets = malloc(SS_COLLECTION(&coll)->count * sizeof(**member_sets));
         } else {
             /* Client allocated result buffer and COUNT incoming value is the array size */
             SAF_ASSERT(count && *count>=SS_COLLECTION(&coll)->count, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                        _saf_errmsg("client allocated mem is too small %i", count));
         }
         ss_array_get(SS_COLLECTION_P(&coll,members), 0, 0, SS_NOSIZE, *member_sets);
     }

     /* finally, the count */
     if (count) *count = SS_COLLECTION(&coll)->count;

 done:
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 int
 saf_describe_evaluation(SAF_ParMode pmode,
                         SAF_Eval *evaluation,   /* Evaluation to describe */
                         char **name,            /* If non-null, on return points to malloc'd evaluation name if any */
                         char **url              /* If non-null, on return points to malloc'd URL if any */
                         )
 {
     SAF_ENTER(saf_describe_evaluation, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_EVALUATION(evaluation), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("EVALUATION must be a valid evaluation handle"));

     _saf_setupReturned_string(name, ss_string_ptr(SS_EVALUATION_P(evaluation,name)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_EVALUATION_P(evaluation,url)));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

	 int
 saf_describe_field(SAF_ParMode pmode,           /* The parallel mode. */
                    SAF_Field *field,            /* The field handle. */
                    SAF_FieldTmpl *ftmpl,        /* [OUT] The returned field template handle. Pass NULL if you do not want this
                                                  * value returned. */
                    char **name,                 /* [OUT] The returned name of the field. Pass NULL if you do not want this
                                                  * value returned. (see Returned Strings). */
                    SAF_Set *base_space,         /* [OUT] The returned base space of the field. Pass NULL if you do not want
                                                  * this value returned. */
                    SAF_Unit *unit,              /* [OUT] The returned unit of measure. */
                    hbool_t *is_coord,           /* [OUT] A returned boolean indicating if the field is a coordinate field. Pass
                                                  * NULL if you do not want this value returned. */
                    SAF_Cat *homog_decomp,       /* NULL: If the field is homogeneous, the value returned here, if requested,
                                                  * is always SAF_SELF(). That is, SAF_EQUIV(SAF_SELF(db), homog_decomp) will
                                                  * return true. Otherwise, it will return false, the field is inhomogeneous
                                                  * and this argument is the decomposition on which the field is presumably
                                                  * piecewise homogeneous. Pass NULL if you do not want this value returned. */
                    SAF_Cat *coeff_assoc,        /* [OUT] The collection with which the field coefficients are associated in an
                                                  * n:1 relationship. Pass NULL if you do not want this value returned. */
                    int *assoc_ratio,            /* [OUT] The `n' in the n:1 relationship described for the COEFF_ASSOC
                                                  * argument. Pass NULL if you do not want this value returned. */
                    SAF_Cat *eval_coll,          /* [OUT] The collection whose sets decompose the base space set and over which
                                                  * the field is actually evaluated. Pass NULL if you do not want this value
                                                  * returned. */
                    SAF_Eval *eval_func,         /* [OUT] The evaluation function. Pass NULL if you do not want this value
                                                  * returned. */
                    hid_t *data_type,            /* [OUT] The file datatype of the field. Pass NULL if you do not want this value
                                                  * returned. The caller is responsible for invoking H5Tclose() when the
                                                  * datatype is no longer needed. A negative returned value indicates no
                                                  * known file datatype. */
                    int *num_comps,              /* [OUT] The number of components in the field. Pass NULL if you do not want
                                                  * this value returned. */
                    SAF_Field **comp_flds,       /* [OUT] The component fields. Pass NULL if you do not want this value returned. */
                    SAF_Interleave *comp_intlv,  /* [OUT] The particular fashion in which components are interleaved.  Currently
                                                  * there are really only two: SAF_INTERLEAVE_VECTOR and SAF_INTERLEAVE_COMPONENT.
                                                  * These represent the XYZXYZ...XYZ and the XXX...XYYY...YZZZ...Z cases.  Note that
                                                  * interleave really only deals within a single blob of storage.  In the case of a
                                                  * composite field whose coefficients are stored independently on the component
                                                  * fields then interleave really has no meaning (use SAF_INTERLEAVE_INDEPENDENT).
                                                  * Interleave only has meaning on fields with storage.  In the case of a scalar
                                                  * field interleave is also meaningless, both cases degenerate to the same layout:
                                                  * XXX...X (use SAF_INTERLEAVE_NONE). */
                    int **comp_order             /* [OUT] The component ordering in the field. Pass NULL if you do not want this
                                                  * value returned. */
                    )
 {
     SAF_ENTER(saf_describe_field, SAF_PRECONDITION_ERROR);
     ss_blob_t           blob=SS_BLOB_NULL;
     ss_fieldtmpl_t      ftmpl_storage=SS_FIELDTMPL_NULL;
     int                 i, ncomps;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle for all participating processes"));

     /* fill in all the stuff we get from the field record itself */
     if (base_space) *base_space = SS_FIELD(field)->base_space;
     if (!ftmpl) ftmpl = &ftmpl_storage; /*because we need it below*/
     *ftmpl = SS_FIELD(field)->ftmpl;
     if (_saf_setupReturned_string(name, ss_string_ptr(SS_FIELD_P(field,name))))
         SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to return NAME for field"));
     if (unit) *unit = SS_FIELD(field)->units;
     if (is_coord) *is_coord = SS_FIELD(field)->is_coord_field;
     if (homog_decomp) *homog_decomp = SS_FIELD(field)->storage_decomp_cat;
     if (coeff_assoc) *coeff_assoc = SS_FIELD(field)->dof_assoc_cat;
     if (assoc_ratio) *assoc_ratio = SS_FIELD(field)->assoc_ratio;
     if (eval_coll) *eval_coll = SS_FIELD(field)->eval_decomp_cat;
     if (eval_func) *eval_func = SS_FIELD(field)->evaluation;
     ncomps = SS_FIELDTMPL(ftmpl)->num_comps;
     if (num_comps) *num_comps = ncomps;
     if (data_type) {
         blob = SS_FIELD(field)->dof_blob;
         if (SS_PERS_ISNULL(&blob)) {
             *data_type = H5I_INVALID_HID;
         } else if (ss_array_nelmts(SS_FIELD_P(field,indirect_fields))>0) {
             *data_type = H5Tcopy(ss_pers_tm);
         } else {
             if (ss_blob_bound_f(&blob, NULL, NULL, NULL, NULL, data_type)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to obtain file datatype for field DOFs"));
         }
     }
     if (comp_intlv) *comp_intlv = SS_FIELD(field)->comp_intlv;
     if (ncomps > 1) {
         /*  Ah, we have component fields, did the caller request any component fields? */
         if (comp_flds) {
             /*  Yes, then the caller must pass a pointer to a variable which either already holds or will hold the
              *  number of components. */
             if (num_comps == NULL)
                 SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("you must provide NUM_COMPS if you ask for the"
                                                         " component fields"));
             /*  Is there already a buffer to hold the component field handles? */
             if (*comp_flds != NULL) {
                 /* If the client has allocated storage for the component fields, make sure that there is enough. */
                 if (*num_comps < (int)ncomps)
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("NUM_COMPS is too small for component field handles %i %i",
                                                             *num_comps, ncomps));
             } else {
                 /*  The caller passed a pointer to a nil pointer so we'll allocate the buffer... */
                 *comp_flds = calloc((size_t)ncomps, sizeof(**comp_flds));
                 if (*comp_flds == NULL)
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate space for component field handles COMP_FLDS"));
             }

             if (NULL==ss_array_get(SS_FIELD_P(field,comp_fields), ss_pers_tm, 0, (size_t)ncomps, *comp_flds)) {
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to read component field array"));
             }
         }

         /*  If the client wants the component ordering then return it. */
         if (comp_order) {
             if (num_comps == NULL)
                 SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("you must provide NUM_COMPS if you ask for"
                                                         " the component order"));
             if (*comp_order != NULL) {
                 /* If the client has allocated storage for the component order, make sure that there is enough. */
                 if (*num_comps < (int)ncomps)
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("NUM_COMPS is too small for component order %i %i",
                                                             *num_comps, ncomps));
             } else {
                 /* Attempt to allocate storage if the client hasn't already. */
                 if (NULL==(*comp_order=malloc(ncomps*sizeof(**comp_order))))
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate comp_order array"));
             }

             /* If the component order was stored in a metablob then read it into the comp_order array */
             if (0==ss_array_nelmts(SS_FIELD_P(field,comp_order))) {
                 for (i=0; i<ncomps; i++) (*comp_order)[i] = i;
             } else {
                 if (NULL==ss_array_get(SS_FIELD_P(field,comp_order), H5T_NATIVE_INT, 0, (size_t)ncomps, *comp_order))
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to read component field order"));
             }
         }
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	 int
 saf_describe_field_tmpl(SAF_ParMode pmode,      /* The parallel mode. */
                         SAF_FieldTmpl *ftmpl,   /* The field template to be described. */
                         char **name,            /* [OUT] The returned name. Pass NULL if you do not want the name returned.
                                                  * (see Returned Strings). */
                         SAF_Algebraic *alg_type,/* [OUT] The returned algebraic type. Pass NULL if you do not want the type
                                                  * returned. */
                         SAF_Basis *basis,       /* [OUT] The returned basis. Pass null if you do not want the basis returned. */
                         SAF_Quantity *quantity, /* [OUT] The returned quantity. Pass null if you do not want the name returned. */
                         int *num_comp,          /* [OUT] The returned number of components. Pass NULL if you do not want the name
                                                  * returned. Note that if the field template is assocaited with an INhomogeneous
                                                  * field, the returned value will always be SAF_NOT_APPLICABLE_INT. */
                         SAF_FieldTmpl **ctmpl   /* [OUT] The returned array of component field template handles.  Pass NULL if you
                                                  * do not want the array returned. If the field template is associated with
                                                  * an INhomogeneous field, the returned value, if requested, will always be
                                                  * NULL. (If the field template does not point to other field templates then
                                                  * this argument will be untouched by this function.) */
                         )
 {
     SAF_ENTER(saf_describe_field_tmpl, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FIELDTMPL(ftmpl), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FTMPL must be a valid field template handle"));

     /* Fill in the returned values */
     if (_saf_setupReturned_string(name, ss_string_ptr(SS_FIELDTMPL_P(ftmpl,name))) != SAF_SUCCESS)
         SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to return name for field template %s\n",
                                                 ss_string_ptr(SS_FIELDTMPL_P(ftmpl,name))));
     if (alg_type)
         *alg_type = SS_FIELDTMPL(ftmpl)->algebraic;
     if (basis)
         *basis = SS_FIELDTMPL(ftmpl)->basis;
     if (quantity)
         *quantity = SS_FIELDTMPL(ftmpl)->quantity;
     if (num_comp)
         *num_comp = SS_FIELDTMPL(ftmpl)->num_comps;
     if (ctmpl && ss_array_nelmts(SS_FIELDTMPL_P(ftmpl,ftmpls))>0) {
         /* Only initialize CTMPL if there are stored field template links in this field template. */
         if (NULL==(*ctmpl=ss_array_get(SS_FIELDTMPL_P(ftmpl,ftmpls), ss_pers_tm, (size_t)0, SS_NOSIZE, *ctmpl)))
             SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("cannot read field template's ftmpls array"));
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 int
 saf_describe_quantity(SAF_ParMode pmode,
                       SAF_Quantity *quantity,   /* Quantity about which to retrieve information. */
                       char **description,       /* If non-null then upon return this will point to an allocated copy of the
                                                  * quantity description. */
                       char **abbreviation,      /* If non-null then upon return this will point to an allocated copy of the
                                                  * quantity abbreviation if one is defined. */
                       char **url,               /* If non-null then upon return this will point to an allocated copy of the
                                                  * quantity documentation URL if one is defined. */
                       unsigned *flags,          /* If non-null then the special quantity flags are written into the location
                                                  * indicated by this pointer. */
                       unsigned *power           /* If non-null then upon return this seven-element array will be filled in
                                                  * with the powers of the seven basic quantities. */
                       )
 {
     SAF_ENTER(saf_describe_quantity, SAF_PRECONDITION_ERROR);
     int                 i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_QUANTITY(quantity), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("QUANTITY must be a valid quantity handle"));

     _saf_setupReturned_string(description, ss_string_ptr(SS_QUANTITY_P(quantity,name)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_QUANTITY_P(quantity,url)));
     _saf_setupReturned_string(abbreviation,ss_string_ptr(SS_QUANTITY_P(quantity,abbr)));

     if (flags) *flags = SS_QUANTITY(quantity)->flags;
     if (power)
         for (i=0; i<SS_MAX_BASEQS; i++) power[i] = SS_QUANTITY(quantity)->power[i];
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 int
 saf_describe_relrep(SAF_ParMode pmode,
                     SAF_RelRep *obj,            /* object to describe */
                     char **name,                /* If non-null, on return points to malloc'd name if any */
                     char **url,                 /* If non-null, on return points to malloc'd URL if any */
                     int *id                     /* If non-null, on return points to unique ID */
                     )
 {
     SAF_ENTER(saf_describe_relrep, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_RELREP(obj), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("OBJ must be a valid relation representation handle"));

     _saf_setupReturned_string(name, ss_string_ptr(SS_RELREP_P(obj,name)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_RELREP_P(obj,url)));
     if (id)   *id   = SS_RELREP(obj)->id;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 int
 saf_describe_role(SAF_ParMode pmode,
                   SAF_Role *role,               /* Role to describe */
                   char **name,                  /* If non-null, on return points to malloc'd role name if any */
                   char **url                    /* If non-null, on return points to malloc'd URL if any */
                   )
 {
     SAF_ENTER(saf_describe_role, SAF_PRECONDITION_ERROR);

     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_ROLE(role), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ROLE must be a valid role handle"));

     _saf_setupReturned_string(name, ss_string_ptr(SS_ROLE_P(role,name)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_ROLE_P(role,url)));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	 int
 saf_describe_set(SAF_ParMode pmode,     /* The parallel mode. */
                  SAF_Set *set,          /* The set to be described. */
                  char **name,           /* [OUT] The returned name of the set. Pass NULL if you do not want this
                                          * information returned (see Returned Strings). */
                  int *max_topo_dim,     /* [OUT] The topological dimension of the set. A NULL pointer can be passed if the caller is
                                          * not interested in obtaining this information. */
                  SAF_SilRole *role,     /* [OUT] The subset inclusion lattice role of the set. A NULL pointer can be passed if the
                                          * caller is not interested in obtaining this information. */
                  SAF_ExtendMode *extmode,/* [OUT] Whether the set is extendible or not. A NULL pointer can be passed if the
                                          * caller is not interested in obtaining this information. */
                  SAF_TopMode *topmode,  /* [OUT] Whether the set is a top-level set in the SIL or not */
                  int *num_colls,        /* [OUT] The number of collections currently defined on the set. A NULL pointer can be
                                          * passed if the caller is not interested in obtaining this information. */
                  SAF_Cat **cats         /* [OUT] The list of collection categories of the collections defined on the set. A NULL
                                          * pointer can be passed if the caller is not interested in obtaining this
                                          * information. CATS should point to the NULL pointer if the client wants the library
                                          * to allocate space, otherwise CATS should point to something allocated by the
                                          * caller. In the latter case, the input value of NUM_COLLS indicates the number of
                                          * handles the CATS argument can hold. */
                  )
 {
     SAF_ENTER(saf_describe_set, SAF_PRECONDITION_ERROR);

     size_t n=0, i;
     ss_collection_t *colls=NULL;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SET must be a valid set handle"));
     SAF_REQUIRE(!cats || num_colls, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM_COLLS must be returned if CATS is requested"));

     /* Return what was requested by the client. */
     n = ss_array_nelmts(SS_SET_P(set,colls));
     if (_saf_setupReturned_string(name, ss_string_ptr(SS_SET_P(set,name))) != SAF_SUCCESS)
         SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable to return set name for set %s\n", ss_string_ptr(SS_SET_P(set,name))));
     if (max_topo_dim) *max_topo_dim = SS_SET(set)->tdim;
     if (role) *role = SS_SET(set)->srole;
     if (topmode) *topmode = (SAF_TopMode) SS_SET(set)->is_top;
     if (extmode) *extmode = (SAF_ExtendMode) SS_SET(set)->is_extendible;
     if (cats && n>0) {
         /* If the collections categories are to be returned and any were found either allocated storage for them or verify that
          * any client supplied storage is sufficient and fill the returned cat handles. */
         if (!*cats) {
             *cats = calloc(n, sizeof(**cats));
             if (!*cats)
                 SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable allocate memory for categories"));
         } else if (*num_colls<(int)n) {
             SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("client allocated mem, %i, too small for returned cats, %i", *num_colls, n));
         }
         colls = malloc(n*sizeof(*colls));
         ss_array_get(SS_SET_P(set,colls), ss_pers_tm, (size_t)0, n, colls);
         for (i=0; i<n; i++) {
             (*cats)[i] = SS_COLLECTION(colls+i)->cat;
         }
         colls = SS_FREE(colls);
     }
     if (num_colls) *num_colls = n;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	 int
 saf_describe_state_group(SAF_ParMode   pmode,           /* The parallel mode. */
                          SAF_StateGrp  *state_grp,      /* The state group to be described. */
                          char          **name,          /* [OUT] Returned name of the state group. Pass NULL if you do not want this
                                                          * value returned. */
                          SAF_Suite     *suite,          /* [OUT] Returned suite the state group is associated with. */
                          SAF_StateTmpl *stmpl,          /* [OUT] Returned state template. Pass NULL if you do not want this value
                                                          * returned. */
                          SAF_Quantity  *quantity,       /* [OUT] The returned quantity associated with the axis of the
                                                          * parametric space. For example, SAF_TIME_QUANTITY. */
                          SAF_Unit      *unit,           /* [OUT] The returned units associated with the axis of the parametric
                                                          * space. */
                          hid_t         *coord_data_type,/* [OUT] The returned data type of the coordinates of the parametric
                                                          * space. */
                          int           *num_states      /* [OUT] Returned number of states that have been written to this state
                                                          * group. Pass NULL if you do not want this value returned. */
                          )
 {
     SAF_ENTER(saf_describe_state_group, SAF_PRECONDITION_ERROR);

     int num_stategrp_state_comp;
     int index[1];

     SAF_Field *coord;
     SAF_Field *coords;
     SAF_Field *param_coord;
     SAF_Field *stategrp_state;
     SAF_Field *stategrp_contents;

     SAF_FieldTmpl param_coord_tmpl;
     SAF_FieldTmpl tmp_field_tmpl[1];

     hid_t stategrp_state_type;
     size_t stategrp_state_size;

     saf_describe_field(pmode, state_grp, NULL, name, suite,
                        NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, NULL, NULL);

     /* the stategrp blob should contain two field handles:
      * the first is the indirect coord field containing the mesh_coords, and param_coord
      * the second is the state field containing the fields stored at this suite_index */
     stategrp_contents = NULL;
     index[0] = 0;
     saf_read_field (pmode, state_grp, NULL, 1, SAF_TUPLES, index, (void **)(&stategrp_contents));
     coord = &(stategrp_contents[0]);
     stategrp_state = &(stategrp_contents[1]);

     /* now read the coord field and get the mesh coord and the param coord (dump times) */
     coords = NULL;
     saf_read_field (pmode, coord, NULL, 1, SAF_TUPLES, index, (void **)(&coords));
     param_coord = &(coords[0]);

     /* get information from the param_coord field */
     saf_describe_field(pmode, param_coord, &param_coord_tmpl, NULL, NULL, unit,
                        NULL, NULL, NULL, NULL, NULL, NULL,
                        coord_data_type, NULL, NULL, NULL, NULL);

     saf_describe_field_tmpl( pmode, &param_coord_tmpl, NULL, NULL, NULL,
                              quantity, NULL, NULL);

     /* get the state template for the stategrp_state  */
     saf_describe_field(pmode, stategrp_state, tmp_field_tmpl,
                        NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, NULL, NULL, NULL, NULL);

     saf_describe_field_tmpl(pmode, tmp_field_tmpl+0, NULL, NULL, NULL, NULL,
                             &num_stategrp_state_comp, NULL);

     if( stmpl != NULL ) {
         *stmpl = tmp_field_tmpl[0];
     }

     if( num_states != NULL ) {
         /* get the count for the stategrp_state field */
         saf_get_count_and_type_for_field(pmode, stategrp_state, NULL, &stategrp_state_size, &stategrp_state_type);

         *num_states = stategrp_state_size / num_stategrp_state_comp;
     }
     _saf_free(coords);
     _saf_free(stategrp_contents);
     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 int
 saf_describe_state_tmpl(SAF_ParMode pmode,              /* The parallel mode. */
                         SAF_StateTmpl *stmpl,           /* The state template handle. */
                         char **name,                    /* [OUT] The returned name.  Pass NULL if you do not want the name
                                                          * returned. */
                         int *num_ftmpls,                /* [OUT] The returned number of field templates which comprise this state
                                                          * template. */
                         SAF_FieldTmpl **ftmpls          /* [OUT] The returned field templates. */
                         )
 {
   SAF_ENTER(saf_describe_state_tmpl, SAF_PRECONDITION_ERROR);

   saf_describe_field_tmpl (pmode, stmpl, name, NULL, NULL, NULL, num_ftmpls, ftmpls);


   SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

	 int
 saf_describe_subset_relation(SAF_ParMode pmode,         /* The parallel mode. */
                              SAF_Rel *rel,              /* The relation handle. */
                              SAF_Set *sup,              /* [OUT] The superset. Pass NULL if you do not want this value returned. */
                              SAF_Set *sub,              /* [OUT] The subset. Pass NULL if you do not want this value returned. */
                              SAF_Cat *sup_cat,          /* [OUT] The collection category on the SUP set upon which the subset
                                                          * relation is defined. Note that collections of this category must
                                                          * have already been defined on SUP. Otherwise, an error is generated.
                                                          * Note that the four args SUP_CAT, SUB_CAT, SBMODE, and CBMODE are
                                                          * typically passed using one of the macros described in the
                                                          * saf_declare_subset_relation() call, SAF_COMMON(), SAF_BOUNDARY(),
                                                          * SAF_EMBEDBND() or SAF_GENERAL(). Pass NULL if you do not want this
                                                          * value returned. */
                              SAF_Cat *sub_cat,          /* [OUT] The collection category on the SUB set upon which the subset
                                                          * relation is defined. Again, pass NULL if you do not want this value
                                                          * returned. */
                              SAF_BoundMode *sbmode,     /* [OUT] Indicates whether SUB is the boundary of SUP. A value of
                                                          * SAF_BOUNDARY_TRUE, indicates that the SUB is a boundary of SUP. A
                                                          * value of SAF_BOUNDARY_FALSE indicates SUB is *not* a boundary of
                                                          * SUP. Pass NULL if you do not want this value returned. */
                              SAF_BoundMode *cbmode,     /* [OUT] Indicates whether *members* of collection on SUB are *on* the
                                                          * boundaries of members of the collection on SUP. A value of
                                                          * SAF_BOUNDARY_TRUE indicates they are. A value of SAF_BOUNDARY_FALSE
                                                          * indicates they are not. Pass NULL if you do not want this value
                                                          * returned. */
                              SAF_RelRep *srtype,        /* [OUT] The representation specification. Pass NULL if you do not want
                                                          * this handle returned. See saf_declare_subset_relation() for the
                                                          * meaning of values of this argument. */
                              hid_t *data_type           /* [OUT] The data-type of the data stored with the relation. Pass NULL
                                                          * if you do not want this value returned. */
                              )
 {
     SAF_ENTER(saf_describe_subset_relation, SAF_PRECONDITION_ERROR);
     hid_t               ftype=-1;               /* File datatype */
     ss_collection_t     sub_coll;               /* Collection on relation's subset */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("the REL argument must be a valid handle"));

     /* Return desired params. */
     if (sup) *sup = SS_REL(rel)->sup;
     if (sub) *sub = SS_REL(rel)->sub;
     if (sup_cat) *sup_cat = SS_REL(rel)->sup_cat;
     if (sub_cat) *sub_cat = SS_REL(rel)->sub_cat;
     if (cbmode) *cbmode = SS_REL(rel)->kind==SAF_RELKIND_BOUND ? SAF_BOUNDARY_TRUE : SAF_BOUNDARY_FALSE;
     if (sbmode) {
         if (SS_REL(rel)->kind == SAF_RELKIND_BOUND) {
             /* This subset relation is SOME kind of boundary relation.  The subset MAY be the boundary of the superset.  Look
              * at the superset record to find out if it is. */
             *sbmode = SAF_EQUIV(SS_SET_P(SS_REL_P(rel,sup),bnd_set), SS_REL_P(rel,sub)) ? SAF_BOUNDARY_TRUE : SAF_BOUNDARY_FALSE;
         } else {
             *sbmode = SAF_BOUNDARY_FALSE;
         }
     }
     if (srtype) *srtype = SS_REL(rel)->rep_type;
     if (data_type) {
         if (!SS_PERS_ISNULL(SS_REL_P(rel,r_blob))) {
             ss_blob_bound_f(SS_REL_P(rel,r_blob), NULL, NULL, NULL, NULL, &ftype);
             *data_type = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
             H5Tclose(ftype); ftype=-1;
         } else {
             /* Checking for the special case, where the subset collection has a count of 1, is of type SET and is a
              * decomposition. */
             _saf_getCollection_set(SS_REL_P(rel,sub), SS_REL_P(rel,sub_cat), &sub_coll);
             if (SS_COLLECTION(&sub_coll)->count<=1 &&
                 SS_COLLECTION(&sub_coll)->cell_type==SAF_CELLTYPE_SET &&
                 SS_COLLECTION(&sub_coll)->is_decomp) {
                 if (data_type) *data_type = H5Tcopy(ss_pers_tm);
             } else {
                 SAF_ERROR(SAF_CONSTRAINT_ERROR,_saf_errmsg("cannot return data_type and/or file prior to writing"));
             }
         }
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	 int
 saf_describe_suite(SAF_ParMode pmode,           /* The parallel mode. */
                    SAF_Suite   *suite,          /* A suite handle. */
                    char        **name,          /* [OUT] The returned name of the suite. Pass NULL if you do not want this value
                                                  * returned. */
                    int         *num_space_sets, /* [OUT] The number of sets returned in MESH_SPACE. */
                    SAF_Set     **mesh_space,    /* [OUT] The returned array of sets representing the computational meshes associated
                                                  * with each state of the suite. This is the list of sets in the "SAF_SPACE_SLICE"
                                                  * collection. */
                    SAF_Set     **param_space    /* [OUT] The returned array of sets representing the parametric space, such as
                                                  * time. These are associated with the histories of the suite and are thus
                                                  * contained in the "SAF_PARAM_SLICE" collection.  This will not be
                                                  * implemented at this time. */
                    )
 {
   SAF_ENTER(saf_describe_suite,0);

   int num_space_cats, num_param_cats, num_param_sets;
   SAF_Cat *space_cats, *param_cats;

   saf_describe_set (pmode, suite, name, NULL, NULL, NULL, NULL, NULL, NULL);

   space_cats = NULL;
   /* saf_find_categories (suite, SAF_ANY_NAME, SAF_SPACE_SLICE, SAF_ANY_TOPODIM, &num_space_cats, &space_cats); */
   saf_find_collections(pmode, suite, SAF_SPACE_SLICE,
                          SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM, SAF_DECOMP_TORF,
                          &num_space_cats, &space_cats);

   if( (num_space_sets != NULL) && (mesh_space != NULL) )
       /* find all sets that are immediate subsets of suite by the SAF_SPACE_SLICE category */
       saf_find_sets( pmode, SAF_FSETS_SUBS, suite, space_cats+0, num_space_sets, mesh_space);

   if( param_space != NULL ) {
       param_cats = NULL;
       /* saf_find_categories(suite, SAF_ANY_NAME, SAF_PARAM_SLICE, SAF_ANY_TOPODIM, &num_param_cats, &param_cats);  */
       saf_find_collections(pmode, suite, SAF_PARAM_SLICE,
                          SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM, SAF_DECOMP_TORF,
                          &num_param_cats, &param_cats);
       saf_find_sets(pmode, SAF_FSETS_SUBS, suite, param_cats+0, &num_param_sets, NULL);
       if( num_param_sets > 0 )
           saf_find_sets(pmode, SAF_FSETS_SUBS, suite, param_cats+0, &num_param_sets, param_space);
   }
   SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	 int
 saf_describe_topo_relation(SAF_ParMode pmode,           /* The parallel mode. */
                            SAF_Rel *rel,                /* The relation to be described. */
                            SAF_Set *set,                /* [OUT] The containing set of the collection that is sewn together by the
                                                          * relation. */
                            SAF_Cat *pieces,             /* [OUT] The collection of members that are sewn together. */
                            SAF_Set *range_set,
                            SAF_Cat *range_cat,          /* [OUT] Together the RANGE_S and RANGE_C pair identifies the collection
                                                          * used to glue the pieces together. */
                            SAF_Cat *storage_decomp,     /* [OUT] The decomposition of SET upon which the relation is actually
                                                          * stored. */
                            SAF_RelRep *trtype,          /* [OUT] The topology relation type. */
                            hid_t *data_type             /* [OUT] The type of the data. */
                            )
 {
     SAF_ENTER(saf_describe_topo_relation, SAF_PRECONDITION_ERROR);
     hid_t       ftype=-1;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle for all participating processes"));

     /* Return each of the desired values, a desired parameter is indicated by a non-null pointer. */
     if (set) *set = SS_REL(rel)->sub;
     if (pieces) *pieces = SS_REL(rel)->sub_cat;
     if (range_set) *range_set = SS_REL(rel)->sup;
     if (range_cat) *range_cat = SS_REL(rel)->sup_cat;
     if (storage_decomp) {
         if (!_saf_is_self_decomp(SS_REL_P(rel,sup_decomp_cat)) &&
             SAF_EQUIV(SS_REL_P(rel,sup_decomp_cat), SS_REL_P(rel,sub_decomp_cat))) {
             *storage_decomp = SS_REL(rel)->sup_decomp_cat;
         } else {
             *storage_decomp = *SAF_SELF(XXX);
         }
     }
     if (trtype) *trtype = SS_REL(rel)->rep_type;
     if (data_type) {
         if (SAF_STRUCTURED_ID==SS_RELREP(SS_REL_P(rel,rep_type))->id) {
             /* In the case of structured meshes, no topo relation data is written so we just return the following values to
              * indicate this. */
             *data_type = H5I_INVALID_HID;
         } else {
             /* The mesh is not structured so the topo relation data is written to the file and we must find the information
              * about the data_type. */
             if (SS_PERS_ISNULL(SS_REL_P(rel,r_blob)))
                 SAF_ERROR(SAF_CONSTRAINT_ERROR,_saf_errmsg("cannot return data_type and/or file prior to writing"));
             ss_blob_bound_f1(SS_REL_P(rel,r_blob), NULL, NULL, NULL, &ftype);
             *data_type = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
             H5Tclose(ftype); ftype=-1;
         }
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	 int
 saf_describe_unit(SAF_ParMode pmode,
                   SAF_Unit *unit,               /* Unit about which to retrieve information. */
                   char **name,                  /* If non-null then upon return this will point to an allocated copy of the
                                                  * unit singular name. */
                   char **abbr,                  /* If non-null then upon return this will point to an allocated copy of the
                                                  * unit singular abbreviation. */
                   char **url,                   /* If non-null then upon return this will point to an allocated copy of the
                                                  * URL for the unit's documentation. */
                   double *scale,                /* If non-null then upon return *SCALE will be the scale factor for the unit. */
                   double *offset,               /* If non-null then upon return *OFFSET will be the offset for the unit. */
                   double *logbase,              /* If non-null then upon return *LOGBASE will be the logarithm base for the
                                                  * unit. The returned value zero indicates no logarithm is applied. */
                   double *logcoef,              /* If non-null then upon return *LOGCOEF will be the multiplier of the
                                                  * logarithmic scale. */
                   SAF_Quantity *quantity        /* If non-null then upon return this will point to the handle of the quantity
                                                  * on which this unit is based. If the UNIT has not been defined yet (such as
                                                  * calling this function immediately after saf_declare_unit()) then the
                                                  * quantity handle will be initialized to a null link. */
                   )
 {
     SAF_ENTER(saf_describe_unit, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_UNIT(unit), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must be a valid unit handle"));

     /* fill in return values */
     _saf_setupReturned_string(name, ss_string_ptr(SS_UNIT_P(unit,name)));
     _saf_setupReturned_string(abbr, ss_string_ptr(SS_UNIT_P(unit,abbr)));
     _saf_setupReturned_string(url, ss_string_ptr(SS_UNIT_P(unit,url)));
     if (scale)    *scale    = SS_UNIT(unit)->scale;
     if (offset)   *offset   = SS_UNIT(unit)->offset;
     if (logbase)  *logbase  = SS_UNIT(unit)->logbase;
     if (logcoef)  *logcoef  = SS_UNIT(unit)->logcoef;
     if (quantity) *quantity = SS_UNIT(unit)->quant;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	1

	 #define saf_divide_quantity(PMODE,Q,DIVISOR,POWER)      saf_multiply_quantity(PMODE,(Q),(DIVISOR),-(POWER))









          

      

      

    

  

    
      
          
            
  	1

	 #define saf_divide_unit(U,SCALE,DIVISOR,POWER)      saf_multiply_unit((U),1.0/(SCALE),(DIVISOR),-(POWER))









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 char *
 saf_error_str(void)
 {
   return error_buffer;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	 int
 saf_extend_collection(SAF_ParMode pmode,        /* The parallel mode. */
                       SAF_Set *containing_set,  /* The containing set of the collection. */
                       SAF_Cat *cat,             /* The collection category of the collection. */
                       int add_count,            /* The number of members to add to the collection. */
                       SAF_IndexSpec add_ispec   /* The new indexing scheme. */
                       )
 {
     SAF_ENTER(saf_extend_collection, SAF_PRECONDITION_ERROR);
     ss_collection_t     coll=SS_COLLECTION_NULL;
     ss_indexspec_t      idx=SS_INDEXSPEC_NULL;
     int                 i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(containing_set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CONTAINING_SET must be a valid set handle for participating processes"));
     SAF_REQUIRE(SS_CAT(cat), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CAT must be a valid category handle for participating processes"));
     SAF_REQUIRE(_saf_valid_add_indexspec(pmode, containing_set, cat, add_ispec, add_count),
                 SAF_MED_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ADD_ISPEC sizes must be valid, total ADD_COUNT and be compatible with the existing indexing"
                             " for participating processes"));

     /* If this isn't the self collection, confirm this collection is, indeed, defined on an extendible set */
     if (!_saf_is_self_decomp(cat) && !SS_SET(containing_set)->is_extendible)
         SAF_RETURN(SAF_ASSERTION_ERROR);


     /* Get collection and update relevant portions */
     _saf_getCollection_set(containing_set, cat, &coll);
     SAF_DIRTY(&coll, pmode);
     SS_COLLECTION(&coll)->count += add_count;

     /* Get the default indexing spec and update relevant portions */
     ss_array_get(SS_COLLECTION_P(&coll,indexing), ss_pers_tm, (size_t)0, (size_t)1, &idx);
     SAF_DIRTY(&idx, pmode);
     for (i=0; i<add_ispec.ndims; i++)
         SS_INDEXSPEC(&idx)->sizes[i] += add_ispec.sizes[i];

     /* If this is a non-primitive collection, update the member list */
     if (SS_COLLECTION(&coll)->cell_type == SAF_CELLTYPE_SET)
         ss_array_resize(SS_COLLECTION_P(&coll,members), (size_t)(SS_COLLECTION(&coll)->count));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8
9

	 void
 saf_final(void)
 {
     SAF_ENTER(saf_final,/*void*/);

    _SAF_GLOBALS.AtExiting = false;
    _saf_final();
    SAF_LEAVE(/*void*/);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	 int
 saf_find_algebraics(SAF_ParMode pmode,
                     SAF_Db *db,                 /* Database in which to limit the search. */
                     const char *name,           /* Optional name for which to search. */
                     const char *url,            /* Optional URL for which to search. */
                     htri_t indirect,            /* Optional indirect flag for which to search. The caller should pass a
                                                  * negative value if it is not interested in restricting the search. */
                     int *num,                   /* For this and the succeeding argument [see Returned Handles]. */
                     SAF_Algebraic **found       /* For this and the preceding argument [see Returned Handles]. */
                     )
 {
     SAF_ENTER(saf_find_algebraics, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Algebraic, key, mask);
     size_t              nfound;
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_Algebraic, key, mask, name, name);
     if (url)  SAF_SEARCH_S(SAF_Algebraic, key, mask, url, url);
     if (indirect>=0) SAF_SEARCH(SAF_Algebraic, key, mask, indirect, indirect?TRUE:FALSE);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_algebraic_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound,
                                                NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	 int
 saf_find_alternate_indexspecs(SAF_ParMode pmode,        /* The parallel mode */
                               SAF_Set *containing_set,  /* The containing set of the collection.*/
                               SAF_Cat *cat,             /* The collection category. */
                               const char *name_grep,    /* The name of the alt index spec you wish to search for. Pass NULL if
                                                          * you do not wish to limit the search via a name. */
                               int *num,                 /* For this and the succeeding argument [see Returned Handles]. */
                               SAF_AltIndexSpec **found  /* For this and the preceding argument [see Returned Handles]. */
                               )
 {
     SAF_ENTER(saf_find_alternate_indexspecs, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_AltIndexSpec, key, mask);
     ss_collection_t     coll=SS_COLLECTION_NULL;
     ss_indexspec_t      *ispec=NULL;
     size_t              nispecs=0, i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     if (!_saf_is_self_decomp(cat)) {
         /* Get the array of index specifications for the collection. Skip the first one, which is the default index spec. */
         if (NULL==_saf_getCollection_set(containing_set, cat, &coll))
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to get collection"));
         nispecs = ss_array_nelmts(SS_COLLECTION_P(&coll,indexing));
         nispecs -= 1;
         ispec = ss_array_get(SS_COLLECTION_P(&coll,indexing), ss_pers_tm, (size_t)1, nispecs, NULL);

         /* If a name is supplied then prune the return value according to that name (or regular expression). Prune in such a
          * way as to keep the index specs in their definition order. */
         if (name_grep) {
             if ('@'==*name_grep) {
                 SAF_SEARCH_RE(SAF_AltIndexSpec, key, mask, name, name_grep+1);
             } else {
                 SAF_SEARCH_S(SAF_AltIndexSpec, key, mask, name, name_grep);
             }
             i=0;
             while (i<nispecs) {
                 if (0==ss_pers_cmp((ss_pers_t*)ispec+i, (ss_pers_t*)key, (ss_persobj_t*)&mask)) {
                     i++;
                 } else {
                     --nispecs;
                     memmove(ispec+i, ispec+i+1, (nispecs-i)*sizeof(*ispec));
                 }
             }
         }
     }

     /* Return only what the caller asked for... */
     if (!found) {
         /* Count the matches */
         assert(num);
         *num = nispecs;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         *found = ispec;
         ispec = NULL;
         if (num) *num = nispecs;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         if (nispecs>(size_t)*num)
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         *found = ispec;
         ispec = NULL;
         *num = nispecs;
     }

     SS_FREE(ispec);
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	 int
 saf_find_bases(SAF_ParMode pmode,
                SAF_Db *db,                      /* Database in which to limit the search. */
                const char *name,                /* Optional name to which to limit the search. */
                const char *url,                 /* Optional URL to which to limit the search. */
                int *num,                        /* For this and the succeeding argument [see Returned Handles]. */
                SAF_Basis **found                /* For this and the preceding argument [see Returned Handles]. */
                )
 {
     SAF_ENTER(saf_find_bases, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Basis, key, mask);
     size_t              nfound;
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_Basis, key, mask, name, name);
     if (url) SAF_SEARCH_S(SAF_Basis, key, mask, url, url);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_basis_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

	 int
 saf_find_categories(SAF_ParMode pmode,
                     SAF_Db *db,                 /* Database on which to restrict the search. */
                     SAF_Set *containing_set,    /* The set upon which to restrict the search. The special macro SAF_UNIVERSE(db)
                                                  * (which takes a database handle as an argument) allows the search to span
                                                  * all categories of the specified database. */
                     const char *name,           /* The name of the categories upon which to restrict the search. The constant
                                                  * SAF_ANY_NAME allows the search to span categories with any name. */
                     SAF_Role *role,             /* The role of the categories upon which to restrict the search. A null pointer
                                                  * allows the search to span categories with any role (see
                                                  * Collection Roles). */
                     int tdim,                   /* The topological dimension of the categories upon which to restrict the
                                                  * search. The constant SAF_ANY_TOPODIM allows the search to span categories
                                                  * with any topological dimension. */
                     int *num,                   /* For this and the succeeding argument [see Returned Handles]. */
                     SAF_Cat **found             /* For this and the preceding  argument [see Returned Handles]. */
                     )
 {
   SAF_ENTER(saf_find_categories, SAF_PRECONDITION_ERROR);
   SAF_KEYMASK(SAF_Cat, key, mask);
   size_t                nfound=SS_NOSIZE;
   ss_scope_t            scope=SS_SCOPE_NULL;
   size_t                i, j;
   ss_collection_t       coll;
   SAF_Cat               *cats=NULL;

   SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("PMODE must be valid"));
   if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
   SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("DB must be a valid database"));
   SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));
   SAF_REQUIRE(!role || SS_ROLE(role), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("ROLE must be a valid role handle or NULL"));
   SAF_REQUIRE(!containing_set || SS_SET(containing_set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
               _saf_errmsg("CONTAINING_SET must be a valid set handle or NULL"));

   /* fill in appropriate members for the find call */
   if (name)
       SAF_SEARCH_S(SAF_Cat, key, mask, name, name);
   if (tdim != SAF_ANY_TOPODIM)
       SAF_SEARCH(SAF_Cat, key, mask, tdim, tdim);
   if (role)
       SAF_SEARCH_LINK(SAF_Cat, key, mask, role, *role); /*search with `equal' not `eq', thus SAF_SEARCH_LINK() not SAF_SEARCH() */

   /* Get all categories that match (do not limit the results) because we'll need to prune that list against the CONTAINING_SET
    * if there was one. */
   ss_file_topscope(db, &scope);
   cats = (ss_cat_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
   if (!cats) SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("find failed"));

   /*If containing_set is an actual set (and not SAF_UNIVERSE(db)), then remove all
     categories from the list that are not in collections on the set*/
   if (containing_set && !_saf_is_universe(containing_set)) {
       for (i=j=0; i<nfound; i++) {
           if (_saf_getCollection_set(containing_set, cats+i, &coll)) {
               if (i!=j) cats[j] = cats[i];
               j++;
           }
       }
       nfound = j;
   }

   /*   Return only what the caller asked for...
    */
   if (!found) {
       /* Count the matches */
       assert(num);
       *num = nfound;
   } else if (!*found) {
       /* Library allocates results */
       *found = cats;
       cats = NULL;
       if (num) *num = nfound;
   } else {
       /* Find limited matches; client allocates result buffer */
       assert(num);
       if (nfound>(size_t)*num)
           SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
       memcpy(*found, cats, nfound*sizeof(*cats));
       *num = nfound;
   }

   /*  Cleanup...
    *  ...file handles if they wern't passed back
    */
   cats = SS_FREE(cats);
   SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103

	 int
 saf_find_collections(SAF_ParMode pmode,         /* The parallel mode. */
                      SAF_Set *containing_set,   /* The containing set in which to search for collections. In SAF_ONE()
                                                  * parallel mode, all processes except the process identified by the
                                                  * rank argument of the SAF_ONE() macro are free to pass SAF_NULL_SET
                                                  * with the set's database handle. */
                      SAF_Role *role,            /* The role of the collection. Pass NULL if you do not wish to
                                                  * limit the search by this parameter. */
                      SAF_CellType cell_type,    /* The cell-type of the members of the collection.  Pass SAF_ANY_CELLTYPE if you
                                                  * do not wish to limit the search by this parameter. */
                      int topo_dim,              /* The topological dimension of the collection. Pass SAF_ANY_TOPODIM if you do not
                                                  * wish to limit the search by this parameter. */
                      SAF_DecompMode decomp_mode,/* Whether the found collections must be a decomposition of the containing set.
                                                  * Pass SAF_DECOMP_TORF if it does not matter. */
                      int *num,                  /* For this and the succeeding argument, (see Returned Handles). */
                      SAF_Cat **found            /* For this and the preceding argument, (see Returned Handles). */
                      )
 {
     SAF_ENTER(saf_find_collections, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Cat, cat_key, cat_mask);
     SAF_KEYMASK(SAF_Collection, coll_key, coll_mask);
     ss_catobj_t         *cat_mask_p=NULL, cat_mask_z;
     ss_collectionobj_t  *coll_mask_p=NULL, coll_mask_z;
     size_t              ncolls;                 /* Number of collections in CONTAINING_SET */
     size_t              nfound=0;               /* Number of matches found */
     size_t              limit=SS_NOSIZE;        /* Limit number of matches returned */
     size_t              i;
     ss_collection_t     coll;
     ss_cat_t            cat;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(containing_set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CONTAINING_SET must be a valid set handle for participating processes"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM_COLLS and CATS must be compatible for return value allocation"));
     SAF_REQUIRE(!role || SS_ROLE(role), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ROLE must be a valid role handle if supplied"));

     /* Fill in the collection and category keys with desired information */
     if (cell_type != SAF_CELLTYPE_ANY)
         SAF_SEARCH(SAF_Collection, coll_key, coll_mask, cell_type, cell_type);
     if (topo_dim != SAF_ANY_TOPODIM)
         SAF_SEARCH(SAF_Cat, cat_key, cat_mask, tdim, topo_dim);
     if (decomp_mode != SAF_DECOMP_TORF)
         SAF_SEARCH(SAF_Collection, coll_key, coll_mask, is_decomp, decomp_mode?TRUE:FALSE);

     /* Allocate return value. */
     ncolls = ss_array_nelmts(SS_SET_P(containing_set,colls));
     if (!found) {
         /* Only counting */
         assert(num);
         *num=0;
     } else if (!*found) {
         /* Library allocates results */
         *found = calloc(ncolls, sizeof **found);
         if (num) *num = 0;
     } else {
         /* Client allocated results */
         assert(num);
         assert(*num>=0);
         limit = *num;
         *num = 0;
     }

     /* If the collection or catetory masks are empty then we should pass null for the mask arguments in order to match
      * everything and avoid an error regarding an empty mask. */
     memset(&coll_mask_z, 0, sizeof coll_mask_z);
     memset(&cat_mask_z, 0, sizeof cat_mask_z);
     coll_mask_p = memcmp(&coll_mask, &coll_mask_z, sizeof coll_mask) ? &coll_mask : NULL;
     cat_mask_p = memcmp(&cat_mask, &cat_mask_z, sizeof cat_mask) ? &cat_mask : NULL;

     /* Scan through the collections associated with the containing_set */
     for (i=0; i<ncolls; i++) {
         ss_array_get(SS_SET_P(containing_set,colls), 0, i, 1, &coll);
         cat = SS_COLLECTION(&coll)->cat;

         /* If a role is specified then determine whether it is the same role as what is associated with the cat for this
          * collection for this set. Since  collections of the self category can be explicitly stored in the set's collection
          * list then we have to be prepared for the case when cat->role is a null object link (because the "self" collection
          * category isn't allowed to point to a particular role. */
         if (role) {
             if (SS_PERS_ISNULL(SS_CAT_P(&cat,role))) continue;
             if (!SS_PERS_EQUAL(role, SS_CAT_P(&cat,role))) continue;
         }

         /* Compare the collection and category with the keys we initialized above. */
         if (coll_mask_p && 0!=ss_pers_cmp((ss_pers_t*)&coll, (ss_pers_t*)coll_key, (ss_persobj_t*)coll_mask_p)) continue;
         if (cat_mask_p && 0!=ss_pers_cmp((ss_pers_t*)&cat, (ss_pers_t*)cat_key, (ss_persobj_t*)cat_mask_p)) continue;

         /* Found a match. */
         if (nfound>=limit)
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         if (found)
             (*found)[nfound] = cat;
         nfound++;
     }

     if (num) *num = nfound;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	 int
 saf_find_coords(SAF_ParMode pmode,              /* The parallel mode. */
                 SAF_Db *db,                     /* Database in which to limit the search. */
                 SAF_Set *base,                  /* The base space for which coordinate fields are desired. */
                 int *num,                       /* For this and the succeeding argument [see Returned Handles]. */
                 SAF_Field **found               /* For this and the preceding argument [see Returned Handles]. */
                 )
 {
     SAF_ENTER(saf_find_coords, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Field, key, mask);
     size_t              nfound;
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(base) || _saf_is_universe(base), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BASE must be either a valid set handle or the universe set for all participating processes"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (base && !_saf_is_universe(base)) SAF_SEARCH(SAF_Field, key, mask, base_space, *base);
     SAF_SEARCH(SAF_Field, key, mask, is_coord_field, TRUE);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_field_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matchine objects"));
         }
         *num = nfound;
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 SAF_Field *
 saf_find_default_coords(SAF_ParMode pmode,      /* The parallel mode */
                         SAF_Set *base,          /* The set for which the default coordinate field is returned */
                         SAF_Field *field        /* [OUT] The returned field handle, if found, otherwise SAF_NOT_SET_FIELD */
                         )
 {
     SAF_ENTER(saf_find_default_coords, NULL);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(NULL);

     SAF_REQUIRE(SS_SET(base), SAF_LOW_CHK_COST, NULL,
                 _saf_errmsg("BASE must be a valid set handle for participating processes"));

     if (!field && NULL==(field=malloc(sizeof *field)))
         SAF_ERROR(NULL, _saf_errmsg("unable to allocate return value"));
     *field = SS_SET(base)->dflt_coordfld;

     SAF_LEAVE(field);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	 int
 saf_find_evaluations(SAF_ParMode pmode,
                      SAF_Db *db,                /* Database in which to limit the search. */
                      const char *name,          /* Optional name for which to search. */
                      const char *url,           /* Optional URL for which to search. */
                      int *num,                  /* For this and the succeeding argument [see Returned Handles]. */
                      SAF_Eval **found           /* For this and the preceding argument [see Returned Handles]. */
                      )
 {
     SAF_ENTER(saf_find_evaluations, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Eval, key, mask);
     size_t      nfound;
     ss_scope_t  scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_Eval, key, mask, name, name);
     if (url)  SAF_SEARCH_S(SAF_Eval, key, mask, url, url);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_evaluation_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound,
                                                 NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	 int
 saf_find_field_tmpls(SAF_ParMode pmode,         /* The parallel mode. */
                      SAF_Db *db,                /* the database context for this search (previously retrieved from base_space) */
                      const char *name,          /* The name of the field template. */
                      SAF_Algebraic *atype,      /* The algebraic type to limit the search to. Pass NULL if you do
                                                  * not want to limit the search by this parameter. */
                      SAF_Basis *basis,          /* The basis to limit the search to. Pass NULL if you do not want to
                                                  * limit the search by this parameter. */
                      SAF_Quantity *quantity,    /* The quantity to search for. Pass NULL if you do not want to
                                                  * limit the search by this parameter. */
                      int *num,                  /* For this and the succeeding argument [see Returned Handles]. */
                      SAF_FieldTmpl **found      /* For this and the preceding argument [see Returned Handles]. */
                      )
 {
     SAF_ENTER(saf_find_field_tmpls, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_FieldTmpl, key, mask);
     size_t      nfound;
     ss_scope_t  scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(!atype || SS_ALGEBRAIC(atype), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ATYPE must be a valid algebraic handle if supplied"));
     SAF_REQUIRE(!basis || SS_BASIS(basis), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BASIS must be a valid basis handle if supplied"));
     SAF_REQUIRE(!quantity || SS_QUANTITY(quantity), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("QUANTITY must be a valid quantity handle if supplied"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_FieldTmpl, key, mask, name, name);
     if (quantity) SAF_SEARCH(SAF_FieldTmpl, key, mask, quantity, *quantity);
     if (basis) SAF_SEARCH(SAF_FieldTmpl, key, mask, basis, *basis);
     if (atype) SAF_SEARCH(SAF_FieldTmpl, key, mask, algebraic, *atype);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_fieldtmpl_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound,
                                                NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112

	 int
 saf_find_fields(SAF_ParMode pmode,              /* The parallel mode. */
                 SAF_Db *db,                     /* Database in which to limit the search. */
                 SAF_Set *base,                  /* The base space to limit the search to. Pass SAF_UNIVERSE() or NULL if you
                                                  * do not want to limit the search to any particular base space. */
                 const char *name,               /* Limit search to fields with this name. Pass SAF_ANY_NAME if you do not want
                                                  * to limit the search. */
                 SAF_Quantity *quantity,         /* Limit search to fields of specified quantity. Pass NULL to not limit search. */
                 SAF_Algebraic *atype,           /* Limit the search to this algebraic type. Pass SAF_ALGTYPE_ANY if you do
                                                  * not want to limit the search. */
                 SAF_Basis *basis,               /* Limit the search to this basis. Pass SAF_ANY_BASIS if you do not want to
                                                  * limit the search. */
                 SAF_Unit *unit,                 /* Limit search to fields with these units. Pass SAF_ANY_UNIT to not limit
                                                  * search. */
                 SAF_Cat *coeff_assoc,           /* Limit search. Pass SAF_ANY_CAT to not limit the search. */
                 int assoc_ratio,                /* Limit search. Pass SAF_ANY_RATIO to not limit the search. */
                 SAF_Cat *eval_decomp,           /* Limit search. Pass SAF_ANY_CAT to not limit the search. */
                 SAF_Eval *eval_func,            /* Limit search. Pass SAF_ANY_EFUNC to not limit the search. */
                 int *nfound,                    /* For this and the succeeding argument, (see Returned Handles). */
                 SAF_Field **found               /* For this and the preceding argument, (see Returned Handles). */
                 )
 {
     SAF_ENTER(saf_find_fields, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Field, key, mask);
     int                 nftmpls=0, n;
     SAF_FieldTmpl       *ftmpls=NULL;
     size_t              thisListN, nret=0, i;
     SAF_Field           *thisList=NULL, *retval=found?*found:NULL;
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(!base || SS_SET(base), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BASE must either be a valid set handle or the universe set if supplied"));
     SAF_REQUIRE(!quantity || SS_QUANTITY(quantity), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("QUANTITY must either be a valid quantity handle or SAF_ANY_QUANTITY"));
     SAF_REQUIRE(!atype || SS_ALGEBRAIC(atype), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ATYPE must be a valid algebraic type handle or SAF_ANY_ALGEBRAIC"));
     SAF_REQUIRE(!basis || SS_BASIS(basis), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BASIS must be a valid basis handle or SAF_ANY_BASIS"));
     SAF_REQUIRE(!unit || SS_UNIT(unit), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must either be a valid unit handle or SAF_ANY_UNIT"));
     SAF_REQUIRE(!eval_func || SS_EVALUATION(eval_func), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("EVAL_FUNC must be a valid evaluation function handle or SAF_ANY_EVALUATION"));
     SAF_REQUIRE(!coeff_assoc || SS_CAT(coeff_assoc), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("COEFF_ASSOC must either be a valid cat handle or SAF_ANY_CAT"));
     SAF_REQUIRE(!eval_decomp || SS_CAT(eval_decomp), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("EVAL_DECOMP must either be a valid cat handle or SAF_ANY_CAT"));
     SAF_REQUIRE(_saf_valid_memhints(nfound, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NFOUND and FOUND must be compatible for return value allocation"));

     /* Where do we search? */
     ss_file_topscope(db, &scope);

     /* First find all the templates that match the search criteria, then loop over those templates to find the matching
      * fields. */
     if (atype || basis || quantity) {
         saf_find_field_tmpls(pmode, db, NULL, atype, basis, quantity, &nftmpls, &ftmpls);
         /* We're done early if the search criteria yielded no matching field template. */
         if (0==nftmpls) {
             if (found) *nfound = 0;
             SAF_RETURN(SAF_SUCCESS);
         }
     }

     /* Initialize the key/mask for the field search */
     if (name) SAF_SEARCH_S(SAF_Field, key, mask, name, name);
     if (coeff_assoc) SAF_SEARCH(SAF_Field, key, mask, dof_assoc_cat, *coeff_assoc);
     if (SAF_ANY_INT!=assoc_ratio) SAF_SEARCH(SAF_Field, key, mask, assoc_ratio, assoc_ratio);
     if (eval_decomp) SAF_SEARCH(SAF_Field, key, mask, eval_decomp_cat, *eval_decomp);
     if (base && !_saf_is_universe(base)) SAF_SEARCH(SAF_Field, key, mask, base_space, *base);
     if (unit) SAF_SEARCH(SAF_Field, key, mask, units, *unit);
     if (eval_func) SAF_SEARCH(SAF_Field, key, mask, evaluation, *eval_func);

     /*  Now, loop over the number of field templates doing finds on the fields */
     for (n=0; n<MAX(1, nftmpls); n++) {
         /* Fill in the field template id for this pass if we have any */
         if (ftmpls) SAF_SEARCH(SAF_Field, key, mask, ftmpl, ftmpls[n]);

         /* Find fields matching key/mask */
         thisList = SS_PERS_FIND(&scope, key, mask_count?&mask:NULL, SS_NOSIZE, thisListN);

         /* Append these fields to the return value */
         if (!found) {
             /* Count the matches */
             assert(nfound);
             nret += thisListN;
         } else if (!*found) {
             /* Find all matches; library allocates results */
             if (NULL==(retval=realloc(retval, MAX(nret+thisListN,1)*sizeof(*retval))))
                 SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate space for fields"));
             for (i=0; i<thisListN; i++)
                 retval[nret++] = thisList[i];
         } else {
             /* Find limited matches; client allocates result buffer */
             assert(nfound);
             if ((int)(nret+thisListN)>*nfound)
                 SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
             for (i=0; i<thisListN; i++)
                 retval[nret++] = thisList[i];
         }

         thisList = SS_FREE(thisList);
     }

     /* Return values */
     if (nfound) *nfound = nret;
     if (found) *found = retval;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

	 int
 saf_find_matching_sets(SAF_ParMode pmode,       /* The parallel mode. */
                        SAF_Db *db,              /* The database in which to search */
                        const char *name_grep,   /* The name of the desired set(s) or a limited regular expression that the
                                                  * set names must match. If this argument begins with a leading "at sign", '@',
                                                  * character, the remaining characters will be treated as a limited form of
                                                  * a regular expression akin to that supported by 'ed.' The constant SAF_ANY_NAME
                                                  * can be passed if the client does not want to limit the search by name. */
                        SAF_SilRole srole,       /* The subset inclusion lattice role of the desired set(s). The SAF_ANY_SILROLE
                                                  * constant can be passed if the client is not interested in restricting the
                                                  * search on this criteria. */
                        int tdim,                /* The topological dimension of the desired set(s). The SAF_ANY_TOPODIM constant
                                                  * can be passed if the client is not interested in restricting the search on this
                                                  * criteria. */
                        SAF_ExtendMode extmode,  /* User to specify if the set is extendible or not (whether it can grow or not).
                                                  * Pass SAF_EXTENDIBLE_TRUE, SAF_EXTENDIBLE_FALSE, or SAF_EXTENDIBLE_TORF */
                        SAF_TopMode topmode,     /* whether the matching sets should be top sets. Pass SAF_TOP_TRUE, SAF_TOP_FALSE,
                                                  * or SAF_TOP_TORF */
                        int *num,                /* For this and the succeeding argument [see Returned Handles]. */
                        SAF_Set **found          /* For this and the preceding argument [see Returned Handles]. */
                        )
 {
     SAF_ENTER(saf_find_matching_sets, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Set, key, mask);
     size_t      nfound;
     ss_scope_t  scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FILE(db), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DATABASE must be a database handle"));
     SAF_REQUIRE(srole == SAF_SUITE || srole == SAF_TIME || srole == SAF_SPACE || srole == SAF_PARAM || srole == SAF_ANY_SILROLE,
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("the SROLE must be one of SAF_TIME, SAF_SPACE, SAF_PARAM, or SAF_ANY_SILROLE"));
     SAF_REQUIRE(srole != SAF_TIME || tdim == 1, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if SROLE is TIME then TDIM must be 1"));
     SAF_REQUIRE(tdim >= 0 || tdim == SAF_ANY_TOPODIM, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("TDIM must be SAF_ANY_TOPODIM or positive"));
     SAF_REQUIRE(extmode == SAF_EXTENDIBLE_TRUE || extmode == SAF_EXTENDIBLE_FALSE || extmode == SAF_EXTENDIBLE_TORF,
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("EXTMODE cannot be arbitrarily non-zero for truth"));
     SAF_REQUIRE(topmode == SAF_TOP_TRUE || topmode == SAF_TOP_FALSE || topmode == SAF_TOP_TORF,
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("TOPMODE cannot be arbitrarily non-zero for truth"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     /* fill in record with stuff to look for */
     ss_file_topscope(db, &scope);
     if (name_grep) {
         if (name_grep[0] == '@') {
             SAF_SEARCH_RE(SAF_Set, key, mask, name, name_grep+1);
         } else {
             SAF_SEARCH_S(SAF_Set, key, mask, name, name_grep);
         }
     }
     if (srole != SAF_ANY_SILROLE)
         SAF_SEARCH(SAF_Set, key, mask, srole, srole);
     if (tdim != SAF_ANY_TOPODIM)
         SAF_SEARCH(SAF_Set, key, mask, tdim, tdim);
     if (topmode != SAF_TOP_TORF)
         SAF_SEARCH(SAF_Set, key, mask, is_top, topmode);
     if (extmode != SAF_EXTENDIBLE_TORF)
         SAF_SEARCH(SAF_Set, key, mask, is_extendible, extmode);

     /*  Now, find ids of matching records... */
     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_set_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 SAF_Algebraic *
 saf_find_one_algebraic(SAF_Db *database,                /* The database in which to search */
                        const char *name,                /* The name for which to search */
                        SAF_Algebraic *buf               /* [OUT] Optional algebraic handle to initialize and return */
                        )
 {
     SAF_ENTER(saf_find_one_algebraic, NULL);
     int                 n=1;

     saf_find_algebraics(SAF_EACH, database, name, NULL, SAF_TRISTATE_TORF, &n, &buf);
     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 SAF_Basis *
 saf_find_one_basis(SAF_Db *database,                    /* The database in which to search */
                    const char *name,                    /* The name for which to search */
                    SAF_Basis *buf                       /* [OUT] Optional basis handle to initialize and return. */
                    )
 {
     SAF_ENTER(saf_find_one_basis, NULL);
     int n=1;

     saf_find_bases(SAF_EACH, database, name, NULL, &n, &buf);
     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 SAF_Eval *
 saf_find_one_evaluation(SAF_Db *database,               /* The database in which to search */
                         const char *name,               /* The name for which to search */
                         SAF_Eval *buf                   /* [OUT] Optional buffer to fill in and return */
                         )
 {
     SAF_ENTER(saf_find_one_evaluation,NULL);
     int         n=1;

     saf_find_evaluations(SAF_EACH, database, name, NULL, &n, &buf);
     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 SAF_Quantity *
 saf_find_one_quantity(SAF_Db *database,         /* The database in which to find the specified quantity. */
                       const char *desc,         /* Quantity description to find. */
                       SAF_Quantity *buf         /* [OUT] Optional quantity handle to initialize and return. */
                       )
 {
     SAF_ENTER(saf_find_one_quantity, NULL);
 #ifdef HASH_QUANTITIES /*RPM DEBUGGING 2004-09-26*/
     size_t limit=1;
     buf = (SAF_Quantity*)_saf_htab_find(QHash, _saf_hkey_str(desc), &limit, (ss_pers_t*)buf);
     assert(1==limit);
 #else
     int n;

     /* Look for quantity by name */
     n = 1;
     saf_find_quantities(SAF_EACH, database, desc, NULL, NULL, SAF_ANY_INT, NULL, &n, &buf);

     /* Look for quantity by abbreviation */
     if (0==n) {
         n = 1;
         saf_find_quantities(SAF_EACH, database, NULL, desc, NULL, SAF_ANY_INT, NULL, &n, &buf);
     }
 #endif

     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 SAF_RelRep *
 saf_find_one_relrep(SAF_Db *database,           /* The database in which to search */
                     const char *name,           /* The name for which to search */
                     SAF_RelRep *buf             /* [OUT] Optional buffer to initialize and return */
                     )
 {
     SAF_ENTER(saf_find_one_relrep, NULL);
     int n=1;

     saf_find_relreps(SAF_EACH, database, name, NULL, SAF_ANY_INT, &n, &buf);
     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 SAF_Role *
 saf_find_one_role(SAF_Db *database,                     /* The database in which to search */
                   const char *name,                     /* The name for which to search */
                   SAF_Role *buf                         /* [OUT] Optional role handle to initialize and return. */
                   )
 {
     SAF_ENTER(saf_find_one_role, NULL);
     int                 n=1;

     saf_find_roles(SAF_EACH, database, name, NULL, &n, &buf);
     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 SAF_Unit *
 saf_find_one_unit(SAF_Db *database,             /* The database in which to find the specified unit. */
                   const char *name,             /* The singular name of the unit to find, e.g., "meter". */
                   SAF_Unit *buf                 /* [OUT] Optional unit handle to initialize and return. */
                   )
 {
     SAF_ENTER(saf_find_one_unit, NULL);
 #ifdef HASH_UNITS /*RPM DEBUGGING 2004-09-26*/
     size_t limit=1;
     buf = (SAF_Unit*)_saf_htab_find(UHash, _saf_hkey_str(name), &limit, (ss_pers_t*)buf);
     assert(1==limit);
 #else
     int n;

     /* Look for unit by name */
     n = 1;
     saf_find_units(SAF_EACH, database, name, NULL, NULL, SAF_ANY_DOUBLE, SAF_ANY_DOUBLE, SAF_ANY_DOUBLE, SAF_ANY_DOUBLE,
                    NULL, &n, &buf);

     /* Look for unit by abbreviation */
     if (0==n) {
         n = 1;
         saf_find_units(SAF_EACH, database, NULL, name, NULL, SAF_ANY_DOUBLE, SAF_ANY_DOUBLE, SAF_ANY_DOUBLE, SAF_ANY_DOUBLE,
                        NULL, &n, &buf);
     }
 #endif
     SAF_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	 int
 saf_find_quantities(SAF_ParMode pmode,
                     SAF_Db *db,                 /* Database in which to limit the search. */
                     const char *desc,           /* Optional quantity description for which to search. */
                     const char *abbr,           /* Optional abbreviation for which to search. */
                     const char *url,            /* Optional URL for which to search. */
                     unsigned flags,             /* Optional flags for which to search, or SAF_ANY_INT. */
                     int *power,                 /* Optional base quantity powers for which to search. If the pointer is
                                                  * non-null then the elements can be SAF_ANY_INT for the ones in which the
                                                  * caller is not interested. */
                     int *num,                   /* For this and the succeeding argument [see Returned Handles]. */
                     SAF_Quantity **found        /* For this and the preceding argument [see Returned Handles]. */
                     )
 {
     SAF_ENTER(saf_find_quantities, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Quantity, key, mask);
     size_t      nfound;
     ss_scope_t  scope;
     int         i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (desc) SAF_SEARCH_S(SAF_Quantity, key, mask, name, desc);
     if (abbr) SAF_SEARCH_S(SAF_Quantity, key, mask, abbr, abbr);
     if (url)  SAF_SEARCH_S(SAF_Quantity, key, mask, url, url);
     if (SAF_ANY_INT!=flags) SAF_SEARCH(SAF_Quantity, key, mask, flags, flags);
     if (power) {
         for (i=0; i<SS_MAX_BASEQS; i++) {
             if (SAF_ANY_INT!=power[i]) SAF_SEARCH(SAF_Quantity, key, mask, power[i], power[i]);
         }
     }

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_quantity_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound,
                                               NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	 int
 saf_find_relreps(SAF_ParMode pmode,
                  SAF_Db *db,                    /* Database in which to limit the search. */
                  const char *name,              /* Optional name for which to search. */
                  const char *url,               /* Optional URL for which to search. */
                  int id,                        /* Optional ID for which to search, or pass SAF_ANY_INT. */
                  int *num,                      /* For this and the succeeding argument [see Returned Handles]. */
                  SAF_RelRep **found             /* For this and the preceding argument [see Returned Handles]. */
                  )
 {
     SAF_ENTER(saf_find_relreps, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_RelRep, key, mask);
     size_t              nfound;
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_RelRep, key, mask, name, name);
     if (url) SAF_SEARCH_S(SAF_RelRep, key, mask, url, url);
     if (SAF_ANY_INT!=id) SAF_SEARCH(SAF_RelRep, key, mask, id, id);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_relrep_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	 int
 saf_find_roles(SAF_ParMode pmode,
                SAF_Db *db,                      /* Database in which to limit the search. */
                const char *name,                /* Optional name to which to limit the search. */
                char *url,                       /* Optional URL to which to limit the search. */
                int *num,                        /* For this and the succeeding argument [see Returned Handles]. */
                SAF_Role **found                 /* For this and the preceding argument [see Returned Handles]. */
                )
 {
     SAF_ENTER(saf_find_roles, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Role, key, mask);
     size_t              nfound;
     ss_scope_t          scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_Role, key, mask, name, name);
     if (url)  SAF_SEARCH_S(SAF_Role, key, mask, url, url);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_role_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

	 int
 saf_find_sets(SAF_ParMode pmode,        /* The parallel mode. */
               SAF_FindSetMode fmode,    /* The find mode. Possible values are SAF_FSETS_TOP to find the top-level set in the
                                          * subset inclusion lattice in which SET is a member; SAF_FSETS_BOUNDARY to find the
                                          * boundary of set SET; SAF_FSETS_SUBS to find all sets which are immediate subsets of SET
                                          * by the specified collection category; SAF_FSETS_SUPS to find all sets which are
                                          * immediate supersets of SET by the specified collection category; and
                                          * SAF_FSETS_LEAVES to find all leaf sets in the subset inclusion lattice rooted at
                                          * SET (a leaf set is a set that is a descendent of SET by the specified collection
                                          * category and which has no sets below it). */
               SAF_Set *set,             /* The set in the subset inclusion lattice at which to begin searching. */
               SAF_Cat *cat,             /* The collection category upon which to search for subsets, supersets, or leaf sets. */
               int *num,                 /* For this and the succeeding argument [see Returned Handles]. */
               SAF_Set **found           /* For this and the preceding argument [see Returned Handles]. */
               )
 {
     SAF_ENTER(saf_find_sets, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Rel, relkey, relmask);
     size_t      nrelsfound;             /* Number of relations found */
     ss_rel_t    *allrels=NULL;          /* Relations that were found */
     ss_scope_t  scope=SS_SCOPE_NULL;    /* The scope of SET used to search for relations defined on SET */
     ss_rel_t    frel=SS_REL_NULL;       /* Found relation */
     ss_set_t    fset=SS_SET_NULL;       /* Found set */
     htri_t      duplicate;              /* True if Set is a duplicate or error occurs */
     ss_set_t    *subs=NULL;             /* Allocated array of subsets */
     int         nsubs=0;                /* Number of subsets in the `subs' array */
     size_t      i, j;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SET must be a valid set handle"));
     SAF_REQUIRE(fmode==SAF_FSETS_TOP || fmode==SAF_FSETS_SUBS || fmode==SAF_FSETS_SUPS || fmode==SAF_FSETS_LEAVES ||
                 fmode==SAF_FSETS_BOUNDARY,
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FMODE must be SAF_FSETS... _TOP, _SUBS, _SUPS, _LEAVES or _BOUNDARY"));
     SAF_REQUIRE(((fmode==SAF_FSETS_SUPS || fmode==SAF_FSETS_SUBS || fmode==SAF_FSETS_LEAVES) && (SS_CAT(cat) || !cat)) ||
                 ((fmode==SAF_FSETS_TOP || fmode==SAF_FSETS_BOUNDARY) && (!cat || SAF_EQUIV(cat, SAF_NOT_APPLICABLE_CAT))),
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("CAT arg applicable only for SAF_FSETS_SUPS, SAF_FSETS_SUBS and SAF_FSETS_LEAVES modes"));

     /* For recursive SAF_FSETS_LEAVES calls to this function the _saf_valid_memhints() doesn't apply as both are null ptrs. */
     SAF_REQUIRE((SAF_FSETS_LEAVES==fmode && saf_find_sets_g.depth>0) ||
                 _saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));
     SAF_REQUIRE(fmode!=SAF_FSETS_LEAVES || saf_find_sets_g.depth>0 || num, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM is required in a top-level SAF_FSETS_LEAVES mode call"));

     /* ISSUE: This function looks for Relations only in the same scope that stores SET and thus cannot traverse a subset
      *        inclusion lattice that extends outside that scope. [rpm 2004-06-21] */
     ss_pers_scope((ss_pers_t*)set, &scope);

     switch (fmode) {
     case SAF_FSETS_BOUNDARY:
         if (found && !*found && NULL==(*found=calloc(1, sizeof(**found))))
             SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("cannot allocate Set return value"));
         if (!SS_PERS_ISNULL(SS_SET_P(set,bnd_set))) {
             if (num) *num = 1;
             if (found) (*found)[0] = SS_SET(set)->bnd_set;
         } else {
             if (num) *num = 0;
         }
         break;

     case SAF_FSETS_TOP:
         /* fill in search criteria */
         SAF_SEARCH(SAF_Rel, relkey, relmask, kind, SAF_RELKIND_EQUAL);
         if (!SS_PERS_ISNULL(cat)) {
             SAF_SEARCH(SAF_Rel, relkey, relmask, sub_cat, *cat);
             SAF_SEARCH(SAF_Rel, relkey, relmask, sup_cat, *cat);
         }

         /* loop until found a top */
         fset = *set;
         while (1) {
            /* Did we found the top? */
             if (SS_SET(&fset)->is_top && SS_SET(&fset)->srole==SS_SET(set)->srole) {
                 if (num) *num = 1;
                 if (found && !*found && NULL==(*found=calloc(1, sizeof(**found))))
                     SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("cannot allocate Set return value"));
                 (*found)[0] = fset;
                 break;
             }

             /* Find the next set up */
             SAF_SEARCH(SAF_Rel, relkey, relmask, sub, fset);
             nrelsfound=1;
             if (NULL==ss_pers_find(&scope, (ss_pers_t*)relkey, (ss_persobj_t*)&relmask, (size_t)0, &nrelsfound,
                                    (ss_pers_t*)&frel, NULL))
                 SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("find failed"));
             if (nrelsfound!=1)
                 SAF_ERROR(SAF_CONSTRAINT_ERROR,_saf_errmsg("unable to find a top for set \"%s\"",
                                                            ss_string_ptr(SS_SET_P(set,name))));
             fset = SS_REL(&frel)->sup;
         }
         break;

     case SAF_FSETS_SUBS:
     case SAF_FSETS_SUPS:
         /* Fill in search criteria. */
         if (fmode == SAF_FSETS_SUBS) {
             SAF_SEARCH(SAF_Rel, relkey, relmask, sup, *set);
         } else {
             SAF_SEARCH(SAF_Rel, relkey, relmask, sub, *set);
         }
         SAF_SEARCH(SAF_Rel, relkey, relmask, kind, SAF_RELKIND_EQUAL);
         if (!SS_PERS_ISNULL(cat)) {
             SAF_SEARCH(SAF_Rel, relkey, relmask, sub_cat, *cat);
             SAF_SEARCH(SAF_Rel, relkey, relmask, sup_cat, *cat);
         }

         /* Find matching relations */
         nrelsfound = SS_NOSIZE;
         allrels = (ss_rel_t*)ss_pers_find(&scope, (ss_pers_t*)relkey, (ss_persobj_t*)&relmask, (size_t)0, &nrelsfound, NULL, NULL);
         if (!allrels)
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("failed when finding relations associated with the set"));

         /* If the category is SAF_ANY_CAT, then allrels[] will hold a link to each relation of the scope, regardless of
          * category. This means we might end up with sets listed multiple times. We must prune the list of sets so that
          * each set is mentioned at most one time. This fixes HYPer02781: saf_find_sets() won't accept SAF_ANY CAT. */
         for (i=1; i<nrelsfound; i++) {
             if (SAF_FSETS_SUPS==fmode) {
                 for (j=0, duplicate=FALSE; j<i && !duplicate; j++)
                     duplicate = SS_PERS_EQ(SS_REL_P(allrels+j,sup), SS_REL_P(allrels+i,sup));
             } else {
                 for (j=0, duplicate=FALSE; j<i && !duplicate; j++)
                     duplicate = SS_PERS_EQ(SS_REL_P(allrels+j,sub), SS_REL_P(allrels+i,sub));
             }
             if (duplicate) {
                 allrels[i] = allrels[nrelsfound-1]; /*replace current rel with the last rel*/
                 --nrelsfound; /*we discarded one relation*/
                 --i; /*repeat loop at current location*/
             }
         }

         /* Return what the caller asked for. */
         if (!found) {
             /* Count the matches */
             assert(num);
             *num = nrelsfound;
         } else if (!*found) {
             /* Find all matches; library allocates results */
             if (NULL==(*found=malloc(MAX(nrelsfound,1)*sizeof(**found))))
                 SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate return value"));
             if (num) *num = nrelsfound;
         } else {
             /* Find limited matches; client allocates result buffer */
             assert(num);
             if (nrelsfound>(size_t)*num)
                 SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
             *num = nrelsfound;
         }
         if (found) {
             for (i=0; i<nrelsfound; i++) {
                 if (SAF_FSETS_SUBS==fmode) {
                     (*found)[i] = SS_REL(allrels+i)->sub;
                 } else {
                     (*found)[i] = SS_REL(allrels+i)->sup;
                 }
             }
         }
         break;

     case SAF_FSETS_LEAVES:
         /* Finding the leaves is a recursive operation: For the given set, find the leaves of all its subsets and merge those
          * lists, removing duplicates. */

         /* ISSUE: For a SAF_FSETS_LEAVES search with a null collection category (SAF_ANY_CAT) this function will return a list
          *        of unique sets by pruning out the duplicates. However, the pruning occurs down at the leaves and not in the
          *        internal nodes of the graph, and therefore we may end up traversing portions of the graph repeatedly.
          *        [rpm 2004-06-21] */

         if (0==saf_find_sets_g.depth)
             memset(&saf_find_sets_g, 0, sizeof saf_find_sets_g);

         /* Make sure this set isn't already in the list of sets to be returned. */
         for (i=0, duplicate=FALSE; i<saf_find_sets_g.nused && !duplicate; i++) {
             duplicate = SS_PERS_EQ(set, saf_find_sets_g.sets+i);
         }
         if (duplicate) {
             if (num) *num = 0;
             goto done;
         }

         /* Find this set's subsets */
         subs = NULL;
         saf_find_sets(pmode, SAF_FSETS_SUBS, set, cat, &nsubs, &subs);

         if (0==nsubs) {
             /* This set has no subsets: it must be a leaf. Add it to the list of sets since we already know it's not a
              * duplicate of anything in that list. */
             if (saf_find_sets_g.nused>=saf_find_sets_g.nalloc) {
                 saf_find_sets_g.nalloc = MAX(64, 2*saf_find_sets_g.nalloc);
                 if (NULL==(saf_find_sets_g.sets=realloc(saf_find_sets_g.sets,
                                                         saf_find_sets_g.nalloc*sizeof(saf_find_sets_g.sets[0]))))
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate list of matching sets"));
             }
             saf_find_sets_g.sets[saf_find_sets_g.nused++] = *set;
         } else {
             /* Recursively add leaves of the subsets */
             assert(nsubs>0); /*for cast*/
             for (i=0; i<(size_t)nsubs; i++) {
                 saf_find_sets_g.depth++;
                 saf_find_sets(pmode, fmode, subs+i, cat, NULL, NULL); /*return values added to saf_find_sets_g*/
                 saf_find_sets_g.depth--;
             }
         }

         /* Free up subset list */
         subs = SS_FREE(subs);
         nsubs = 0;

         /* When the top-level call is about to return, saf_find_sets_g contains the array of sets to be returned. Either
          * return that array, copy the sets into a caller-supplied array, or just return the count. */
         if (0==saf_find_sets_g.depth) {
             if (!found) {
                 /* Count the matches */
                 assert(num);
                 *num = saf_find_sets_g.nused;
                 saf_find_sets_g.sets = SS_FREE(saf_find_sets_g.sets);
             } else if (!*found) {
                 /* Find all matches; library allocates results */
                 *found = saf_find_sets_g.sets;
                 if (num) *num = saf_find_sets_g.nused;
                 saf_find_sets_g.sets = NULL;
             } else {
                 /* Find limited matches; client allocates result buffer */
                 assert(num);
                 if ((int)saf_find_sets_g.nused>*num)
                     SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
                 memcpy(*found, saf_find_sets_g.sets, saf_find_sets_g.nused*sizeof(*found));
                 *num = saf_find_sets_g.nused;
                 saf_find_sets_g.sets = SS_FREE(saf_find_sets_g.sets);
             }
             memset(&saf_find_sets_g, 0, sizeof saf_find_sets_g); /*cleanup for next call*/
         }
         break;
     }

     SS_FREE(allrels);
 done:
     SAF_LEAVE(SAF_SUCCESS);

 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

	 int
 saf_find_state_groups(SAF_ParMode  pmode,               /* The parallel mode. */
                       SAF_Suite    *suite,              /* The suite within which to search. */
                       const char   *name,               /* The name of the state group for which to search.  Pass SAF_ANY_NAME
                                                          * if you do not want to limit your search. */
                       int          *num_state_grps,     /* [OUT] Returned number of state groups found. */
                       SAF_StateGrp **state_grps         /* [OUT] Returned state groups found. */
                       )
 {
   SAF_ENTER(saf_find_state_groups, SAF_PRECONDITION_ERROR);
   SAF_Db db=SS_FILE_NULL;
   /*SAF_Role stategrp_role;*/

   int found = 0;
   SAF_Cat stategrp_cat;

   /* get and set the database and db handles */
   ss_pers_file((ss_pers_t*)suite, &db);

   /* stategrp_role = saf_find_one_role( database, "stategroup_role" ); */

   /* stategrp_cats = NULL; */
   /* saf_find_categories( suite, "stategroups", SAF_ANY_ROLE, SAF_ANY_TOPODIM, &num_cats, &stategrp_cats); */
   {
     int l_numFound = 0, i;
     SAF_Cat *l_collsFound = NULL;
     saf_find_collections(pmode, suite, SAF_TOPOLOGY, SAF_CELLTYPE_ANY,
                          SAF_ANY_TOPODIM, SAF_DECOMP_TORF,
                          &l_numFound, &l_collsFound);

     for(i=0;i<l_numFound;i++) {
         char *l_name=0;
         saf_describe_category(SAF_ALL, l_collsFound+i, &l_name, NULL, NULL );
         if( !strcmp(l_name,"stategroups") ) {
             found=1;
             stategrp_cat = l_collsFound[i];
             _saf_free(l_name);
             break;
         }
         _saf_free(l_name);
     }
     if( l_collsFound != NULL )
         free(l_collsFound);

   }


   if( found == 0 ) {
       if (num_state_grps != NULL)
           *num_state_grps = 0;
       if (state_grps != NULL)
           *state_grps = NULL;
       return SAF_SUCCESS;
   }
   else {

       saf_find_fields( pmode, &db, suite, name, NULL, SAF_ALGTYPE_ANY, SAF_ANY_BASIS, SAF_ANY_UNIT,
                        &stategrp_cat, SAF_ANY_RATIO, SAF_ANY_CAT, SAF_ANY_EFUNC, num_state_grps, state_grps);
   }

   SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 int
 saf_find_state_tmpl(SAF_ParMode   pmode,        /* The parallel mode. */
                     SAF_Db *database,           /* the database context for this search */
                     const char    *name,        /* The name of the state template you are searching for.  Pass SAF_ANY_NAME if you
                                                  * do not wish to limit your search to just this name. */
                     int           *num_stmpls,  /* For this and the succeeding argument [see Returned Handles]. */
                     SAF_StateTmpl **stmpls      /* For this and the preceding argument [see Returned Handles]. */
                     )
 {
   SAF_ENTER(saf_find_state_tmpl, SAF_PRECONDITION_ERROR);

   saf_find_field_tmpls (pmode, database, name, SAF_ALGTYPE_ANY, SAF_ANY_BASIS, SAF_ANY_QUANTITY,
                         num_stmpls, stmpls);

   SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	 int
 saf_find_subset_relations(SAF_ParMode pmode,    /* The parallel mode. */
                           SAF_Db *db,           /* Database in which to limit the search. */
                           SAF_Set *sup,         /* The superset to limit search to. */
                           SAF_Set *sub,         /* The subset to limit search to. */
                           SAF_Cat *sup_cat,     /* The collection category on the superset to limit search to. Pass
                                                  * SAF_ANY_CAT if you do not want to limit the search to any particular
                                                  * category. */
                           SAF_Cat *sub_cat,     /* The collection category on the subset to limit search to. Pass SAF_ANY_CAT
                                                  * if you do not want to limit the search to any particular category. */
                           SAF_BoundMode sbmode, /* If SAF_BOUNDARY_TRUE, limit search to relations in which the subset is the
                                                  * boundary of the superset. */
                           SAF_BoundMode cbmode, /* If SAF_BOUNDARY_TRUE, limit search to relations in which the members of the
                                                  * subset are on the boundaries of the members of the superset. */
                           int *num,             /* For this and the succeeding argument, (see Returned Handles). */
                           SAF_Rel **found       /* For this and the preceding argument, (see Returned Handles). */
                           )
 {
     SAF_ENTER(saf_find_subset_relations, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Rel, key, mask);
     size_t      nfound;
     ss_scope_t  scope=SS_SCOPE_NULL;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(!sup_cat || SS_CAT(sup_cat), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SUP_CAT must either be a valid category handle or SAF_ANY_CAT"));
     SAF_REQUIRE(!sub_cat || SS_CAT(sub_cat), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SUB_CAT must either be a valid category handle or SAF_ANY_CAT"));
     SAF_REQUIRE(SS_SET(sub), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SUB must be a valid set handle"));
     SAF_REQUIRE(SS_SET(sup), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SUP must be a valid set handle"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM and FOUND must be compatible for the return value allocation"));

     ss_file_topscope(db, &scope);

     /* See if the superset's bnd_set matches the sbmode search criteria. */
     if ((sbmode==SAF_BOUNDARY_TRUE && SAF_EQUIV(SS_SET_P(sup,bnd_set),sub)) || sbmode==SAF_BOUNDARY_FALSE) {
         /* The sbmode search criteria matches.  Continue to find the subset relations matching the other criteria. */
         SAF_SEARCH(SAF_Rel, key, mask, sub, *sub);
         SAF_SEARCH(SAF_Rel, key, mask, sup, *sup);
         if (sup_cat) SAF_SEARCH(SAF_Rel, key, mask, sup_cat, *sup_cat);
         if (sub_cat) SAF_SEARCH(SAF_Rel, key, mask, sub_cat, *sub_cat);
         SAF_SEARCH(SAF_Rel, key, mask, kind, cbmode==SAF_BOUNDARY_TRUE?SAF_RELKIND_BOUND:SAF_RELKIND_EQUAL);

         if (!found) {
             /* Count the matches */
             assert(num);
             nfound = SS_NOSIZE;
             ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
             *num = nfound;
         } else if (!*found) {
             /* Find all matches; library allocates results */
             nfound = SS_NOSIZE;
             *found = (ss_rel_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound,
                                              NULL, NULL);
             if (num) *num = nfound;
         } else {
             /* Find limited matches; client allocates result buffer */
             assert(num);
             nfound = *num;
             if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                    _SAF_GLOBALS.find_detect_overflow)) {
                 SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
             }
             *num = nfound;
         }
     } else {
         if (!found || *found) {
             /* Count the matches or client allocates result buffer */
             assert(num);
             *num = 0;
         } else {
             /* library allocates results */
             if (num) *num = nfound;
         }
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 int
 saf_find_suites(SAF_ParMode pmode,      /* The parallel mode. */
                 SAF_Db  *database,      /* The database in which to search. */
                 const char  *name,      /* The name to limit the search to.  The constant SAF_ANY_NAME can be passed if
                                          * the client does not want to limit the search by name.  */
                 int         *num_suites,/* [OUT] The returned number of suites. */
                 SAF_Suite   **suites    /* [OUT] The returned suites. */
                 )
 {
   SAF_ENTER(saf_find_suites, SAF_PRECONDITION_ERROR);

   /* find suites of type SAF_SUITE */
   saf_find_matching_sets(pmode, database, name, SAF_SUITE, 1, SAF_EXTENDIBLE_TORF, SAF_TOP_TRUE,
                          num_suites, suites);

   SAF_LEAVE(SAF_SUCCESS);

 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	 int
 saf_find_topo_relations(SAF_ParMode pmode,              /* The parallel mode. */
                         SAF_Db *db,                     /* The database in which to search for topology relations. */
                         SAF_Set *set,                   /* The set whose topology is sought. */
                         SAF_Set *topo_ancestor,         /* [OUT] In many cases, the topology for a given set is known only on some
                                                          * ancestor of the set. This return value indicates that ancestor.  If
                                                          * SAF_EQUIV() for SET and TOPO_ANCESTOR is true, then the topology
                                                          * relations found by this call are indeed those defined on the
                                                          * specified set. Otherwise, they are defined on the TOPO_ANCESTOR. */
                         int *num,                       /* For this and the succeeding argument, (see Returned Handles). */
                         SAF_Rel **found                 /* For this and the preceding argument, (see Returned Handles). */
                         )
 {
     SAF_ENTER(saf_find_topo_relations, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Rel, key, mask);
     size_t               nfound;
     ss_scope_t           scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_SET(set), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SET must be a valid handle"));
 #if 0 /*not currently used*/
     SAF_REQUIRE(topo_ancestor, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("TOPO_ANCESTOR must be non-null"));
 #else
     if (topo_ancestor) *topo_ancestor = SS_SET_NULL;
 #endif
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     /* fill in search criteria */
     ss_file_topscope(db, &scope);
     SAF_SEARCH(SAF_Rel, key, mask, sub, *set);
     SAF_SEARCH(SAF_Rel, key, mask, kind, SAF_RELKIND_SUBSET);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_rel_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 SAF_Unit *
 saf_find_unit_not_applicable(void)
 {
   SAF_ENTER(saf_find_unit_not_applicable, NULL);
   SAF_LEAVE(&SAF_NOT_APPLICABLE_UNIT_g);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	 int
 saf_find_units(SAF_ParMode pmode,
                SAF_Db *db,                      /* Database in which to limit the search. */
                const char *name,                /* Optional unit description for which to search. */
                const char *abbr,                /* Optional abbreviation for which to search. */
                const char *url,                 /* Optional URL for which to search. */
                double scale,                    /* Optional scale for which to search (or pass SAF_ANY_DOUBLE). */
                double offset,                   /* Optional offset for which to search (or pass SAF_ANY_DOUBLE). */
                double logbase,                  /* Optional logorithm base for which to search (or pass SAF_ANY_DOUBLE). */
                double logcoef,                  /* Optional logorithm coefficient for which to search (or pass
                                                  * SAF_ANY_DOUBLE). */
                SAF_Quantity *quant,             /* Optional quantity for which to search. */
                int *num,                        /* For this and the succeeding argument [see Returned Handles]. */
                SAF_Unit **found                 /* For this and the preceding argument [see Returned Handles]. */
                )
 {
     SAF_ENTER(saf_find_units, SAF_PRECONDITION_ERROR);
     SAF_KEYMASK(SAF_Unit, key, mask);
     size_t      nfound;
     ss_scope_t  scope;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(ss_file_isopen(db, NULL)>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DB must be a valid database"));
     SAF_REQUIRE(_saf_valid_memhints(num, (void**)found), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NUM and FOUND must be compatible for return value allocation"));

     ss_file_topscope(db, &scope);
     if (name) SAF_SEARCH_S(SAF_Unit, key, mask, name, name);
     if (abbr) SAF_SEARCH_S(SAF_Unit, key, mask, abbr, abbr);
     if (url)  SAF_SEARCH_S(SAF_Unit, key, mask, url, url);
     if (SAF_ANY_DOUBLE!=scale) SAF_SEARCH(SAF_Unit, key, mask, scale, scale);
     if (SAF_ANY_DOUBLE!=offset) SAF_SEARCH(SAF_Unit, key, mask, offset, offset);
     if (SAF_ANY_DOUBLE!=logbase) SAF_SEARCH(SAF_Unit, key, mask, logbase, logbase);
     if (SAF_ANY_DOUBLE!=logcoef) SAF_SEARCH(SAF_Unit, key, mask, logcoef, logcoef);
     if (!SS_PERS_ISNULL(quant)) SAF_SEARCH(SAF_Unit, key, mask, quant, *quant);

     if (!found) {
         /* Count the matches */
         assert(num);
         nfound = SS_NOSIZE;
         ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, SS_PERS_TEST, NULL);
         *num = nfound;
     } else if (!*found) {
         /* Find all matches; library allocates results */
         nfound = SS_NOSIZE;
         *found = (ss_unit_t*)ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, NULL, NULL);
         if (num) *num = nfound;
     } else {
         /* Find limited matches; client allocates result buffer */
         assert(num);
         nfound = *num;
         if (NULL==ss_pers_find(&scope, (ss_pers_t*)key, mask_count?(ss_persobj_t*)&mask:NULL, 0, &nfound, (ss_pers_t*)*found,
                                _SAF_GLOBALS.find_detect_overflow)) {
             SAF_ERROR(SAF_CONSTRAINT_ERROR, _saf_errmsg("found too many matching objects"));
         }
         *num = nfound;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 void
 saf_freeInfo_path(SAF_PathInfo info /* a SAF_PathInfo object obtained from a saf_readInfo_path() call. */)
 {
    SAF_ENTER(saf_freeInfo_path,/*void*/);
    SAF_REQUIRE(info,SAF_LOW_CHK_COST,/*void*/,_saf_errmsg("INFO must be non-NULL"));

    if (info->errStr)
       free(info->errStr);
    if (info->dbPropsBuf)
    {
       free(info->dbPropsBuf);
       H5Tclose(info->dbPropsType);
    }
    free(info);
    SAF_LEAVE(/*void*/);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 SAF_DbProps *
 saf_freeProps_database(SAF_DbProps *properties)
 {
     if (properties) free(properties);
     return NULL;
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 SAF_LibProps *
 saf_freeProps_lib(SAF_LibProps *properties)
 {
     if (properties) free(properties);
     return NULL;
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8
9

	 const char *
 saf_getInfo_errmsg(
    const SAF_PathInfo info      /* [IN] database info object obtained from a saf_readInfo_path() call. */
 )
 {
     SAF_ENTER(saf_getInfo_errmsg, "");
     const char *retval = info->statError ? info->errStr : "";
     SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 void
 saf_getInfo_hdfversion(
    const SAF_PathInfo info,/* [IN] database info object obtained from a saf_readInfo_path() call. */
    int *major,          /* [OUT] major version number. Ignored if NULL. */
    int *minor,          /* [OUT] minor version number. Ignored if NULL. */
    int *patch,          /* [OUT] patch (aka "release") version number. Ignored if NULL. */
    char *annot          /* [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL. */
 )
 {
    SAF_ENTER(saf_getInfo_hdfversion,/*void*/);
    SAF_REQUIRE(info,SAF_LOW_CHK_COST,/*void*/,_saf_errmsg("INFO must be non-NULL"));
    if (info->allOk)
       _saf_getInfo_version(info, "hdf5", major, minor, patch, annot);
    SAF_LEAVE(/*void*/);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 int
 saf_getInfo_isHDFfile(const SAF_PathInfo info /* [IN] database info object obtained from a saf_readInfo_path() call. */)
 {
     SAF_ENTER(saf_getInfo_isHDFfile, info->isHDFfile);
     SAF_LEAVE(info->isHDFfile);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 int
 saf_getInfo_isSAFdatabase(
    const SAF_PathInfo info      /* [IN] database info object obtained from a saf_readInfo_path() call. */
 )
 {
     SAF_ENTER(saf_getInfo_isSAFdatabase, info->allOk);
     SAF_LEAVE(info->allOk);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 void
 saf_getInfo_libversion(
    const SAF_PathInfo info,/* [IN] database info object obtained from a saf_readInfo_path() call. */
    int *major,          /* [OUT] major version number. Ignored if NULL. */
    int *minor,          /* [OUT] minor version number. Ignored if NULL. */
    int *patch,          /* [OUT] patch (aka "release") version number. Ignored if NULL. */
    char *annot          /* [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL. */
 )
 {
    SAF_ENTER(saf_getInfo_libversion,/*void*/);
    SAF_REQUIRE(info,SAF_LOW_CHK_COST,/*void*/,_saf_errmsg("INFO must be non-NULL"));
    if (info->allOk)
       _saf_getInfo_version(info, "saf", major, minor, patch, annot);
    SAF_LEAVE(/*void*/);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 void
 saf_getInfo_mpiversion(
    const SAF_PathInfo info,/* [IN] database info object obtained from a saf_readInfo_path() call. */
    int *major,          /* [OUT] major version number. Ignored if NULL. */
    int *minor,          /* [OUT] minor version number. Ignored if NULL. */
    int *patch,          /* [OUT] patch (aka "release") version number. Ignored if NULL. */
    char *annot          /* [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL. */
 )
 {
    SAF_ENTER(saf_getInfo_mpiversion,/*void*/);
    SAF_REQUIRE(info,SAF_LOW_CHK_COST,/*void*/,_saf_errmsg("INFO must be non-NULL"));
    if (info->allOk)
       _saf_getInfo_version(info, "mpi", major, minor, patch, annot);
    SAF_LEAVE(/*void*/);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 int
 saf_getInfo_permissions(
    const SAF_PathInfo info      /* [IN] database info object obtained from a saf_readInfo_path() call. */
 )
 {
     SAF_ENTER(saf_getInfo_permissions, info->permissions);
     SAF_LEAVE(info->permissions);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 int
 saf_getInfo_staterror(
    const SAF_PathInfo info      /* [IN] database info object obtained from a saf_readInfo_path() call. */
 )
 {
     SAF_ENTER(saf_getInfo_staterror, info->statError);
     SAF_LEAVE(info->statError);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

	 int
 saf_get_attribute(SAF_ParMode pmode,    /* One of the parallel modes. */
                   ss_pers_t *obj,       /* The handle to the object from which the attribute will be read. */
                   const char *name,     /* The name of the attribute. See SAF_ATT_NAMES and other reserved attribute names
                                          * for special kinds of attribute queries. */
                   hid_t *type,          /* IN[OUT] If TYPE is NULL, this argument will be ignored. If TYPE points
                                          * to a valid datatype, then the attribute will be converted to the specified type as
                                          * it is read. If it does not, there will be *no*data*conversion* and the output value
                                          * will be the datatype of the data returned (the caller should invoke H5Tclose()). */
                   int *count,           /* [OUT] The number of items in the attribute. If COUNT is NULL, then the value of
                                          * COUNT will not be returned. */
                   void **value          /* IN[OUT] Points to an array of COUNT values each having datatype
                                          * TYPE. If VALUE is NULL, then no attribute values will be returned. If
                                          * VALUE points to NULL, then the library will allocate the array of values which is
                                          * returned. Otherwise the library assumes that VALUE
                                          * points to an array whose size is sufficient for storing COUNT values of datatype
                                          * TYPE. That is, if VALUE is pointing to non-NULL, then so must COUNT point to non-NULL
                                          * *and* the value pointed to by COUNT will be used by SAF as the size, in items of type
                                          * TYPE, of the block of memory pointed to by VALUE. For a SAF_ATT_NAMES query if the
                                          * caller supplies a buffer for this argument then it should be a buffer of !char
                                          * pointers, the values of which will be allocated by this function. */
                   )
 {
    SAF_ENTER(saf_get_attribute, SAF_PRECONDITION_ERROR);
    ss_attr_t            attr, *attrs=NULL;
    size_t               nfound, my_count=SS_NOSIZE, i, maxfind;
    hid_t                stored_type=-1;

    SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("PMODE must be valid"));
    if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

    SAF_REQUIRE(name != NULL, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR, _saf_errmsg("NAME must not be null"));
    SAF_REQUIRE(_saf_valid_memhints(count, (void**)value), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("COUNT and VALUE must be compatible for return value allocation"));
    SAF_REQUIRE(obj != NULL, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR, _saf_errmsg("OBJ must not be null"));

    if (!strcmp(name, SAF_ATT_COUNT)) {
        /* Only count the matching attributes */
        ss_attr_find(obj, NULL, 0, SS_NOSIZE, &nfound, SS_PERS_TEST);
        if (count) *count = nfound;
    } else if (!strcmp(name, SAF_ATT_NAMES)) {
        /* Return the matching attribute names */
        maxfind = value && *value && count ? (size_t)*count : SS_NOSIZE;
        if (NULL==(attrs=ss_attr_find(obj, NULL, 0, maxfind, &nfound, NULL)))
            SAF_ERROR(SAF_SSLIB_ERROR, _saf_errmsg("ss_attr_find failed"));

        /* allocate string pointers */
        if (!*value) {
            if (NULL==(*value=calloc(nfound, sizeof(char *))))
                SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate string pointers for names"));
        } else {
            memset(*value, 0, nfound*sizeof(char*));
        }

        /* Copy attribute names into string pointers */
        /* ISSUE: If the pool allocation is being used then we'll have a problem if there are more attributes than what the
         *        string pool can store. */
        for (i=0; i<nfound; i++)
            _saf_setupReturned_string((char**)*value+i, ss_string_ptr(SS_ATTR_P(attrs+i,name)));

        /* Output arguments */
        if (count) *count = nfound;
        if (type) *type = -1;

    } else {
        /* Find the attribute with the specified name */
        if (NULL==ss_attr_find(obj, name, 0, 1, &nfound, &attr))
            SAF_ERROR(SAF_SSLIB_ERROR, _saf_errmsg("ss_attr_find failed for \"%s\"", name));

        /* As per defect HYPer03337, it is not an error to request an attribute that is not defined. */
        if (0==nfound) {
            if (count) *count = 0;
            goto done;
        }

        /* Obtain the datatype and count. */
        ss_attr_describe(&attr, NULL, &stored_type, &my_count);
        if (!type) {
            type = &stored_type;
        } else if (*type<=0) {
            *type = stored_type;
        }
        if (count) *count = my_count;

        /* Read the attribute data */
        *value = ss_attr_get(&attr, *type, 0, my_count, *value);
        if (NULL==*value) SAF_ERROR(SAF_SSLIB_ERROR, _saf_errmsg("ss_attr_read failed for \"%s\"", name));
    }

 done:
    SS_FREE(attrs);
    SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 int
 saf_get_cat_att(SAF_ParMode pmode,
                 SAF_Cat *cat,                   /* Collection category owning the attribute for which we're searching. */
                 const char *name,               /* Name of the attribute. */
                 hid_t *datatype,                /* [OUT] Datatype of the attribute as it is stored. */
                 int *count,                     /* [OUT] Number of elements contained in the attribute. */
                 void **value                    /* [OUT] On successful return this will point to an allocated array containing
                                                  * COUNT elements each of type DATATYPE. */
                 )
 {
   SAF_ENTER(saf_get_cat_att, SAF_PRECONDITION_ERROR);
   int retval = saf_get_attribute(pmode, (ss_pers_t*)cat, name, datatype, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

	 int

 saf_get_count_and_type_for_field(SAF_ParMode pmode,     /* The parallel mode. */
                                  SAF_Field *field,      /* The field handle. */
                                  SAF_FieldTarget *target, /* Optional field targeting information. */
                                  size_t *Pcount,        /* [OUT] The number of items that would be placed in the buffer by a
                                                          * call to the saf_read_field() function.  The caller may pass a value
                                                          * of NULL for this parameter if this value is not desired. */
                                  hid_t *Ptype           /* [OUT] The type of the items that would be placed in the buffer by a
                                                          * call to the saf_read_field() function.  The caller may pass a value
                                                          * of NULL for this parameter if this value is not desired. The
                                                          * returned HDF5 datatype can be closed by the caller when no longer
                                                          * needed. */
                                  )
 {
     SAF_ENTER(saf_get_count_and_type_for_field, SAF_PRECONDITION_ERROR);
     ss_scope_t          scope=SS_SCOPE_NULL;            /* Scope containing FIELD */
     ss_fieldtmpl_t      ftmpl=SS_FIELDTMPL_NULL;        /* Field template for FIELD */
     ss_set_t            basespace=SS_SET_NULL;          /* Base space of FIELD */
     ss_cat_t            dof_assoc_cat=SS_CAT_NULL;      /* Cached from FIELD */
     int                 scope_size;                     /* Size of the communicator for `scope' */
     hsize_t             count;                          /* Needed because PCOUNT is not the right type */
     hid_t               ftype;                          /* File datatype */
     hbool_t             desireHandles;                  /* Should we read field links or the pointed-to-field's dofs? */
     ss_field_t          *ifields=NULL;                  /* Indirect fields */
     size_t              icount=0;                       /* Number of indirect fields */
     ss_field_t          *comps=NULL;                    /* Component fields */
     int                 num_comps;                      /* Number of component fields */
     static SAF_FieldTarget ft_zero;                     /* Default field targeting */
     int                 numberOfComponents;
     int                 collSize;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     ss_pers_scope((ss_pers_t*)field, &scope);
     ss_scope_comm(&scope, NULL, NULL, &scope_size);
     if (!target) target = &ft_zero;

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle"));
     SAF_REQUIRE(SS_PERS_ISNULL(&target->decomp) || pmode==SAF_ALL || 1==scope_size, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if targeting of storage decomposition is used, the read must be a SAF_ALL mode read or the "
                             "database must be opened on only a single processor"));

     if (Pcount)
         *Pcount = 1234567;

     /* Cache some stuff for convenience */
     ftmpl = SS_FIELD(field)->ftmpl;
     dof_assoc_cat = SS_FIELD(field)->dof_assoc_cat;
     basespace = SS_FIELD(field)->base_space;

     /* When a field is stored on "self" then we store actual field coefficient values.  When a field is not stored on "self"
      * then DOFs are stored on the subsets specified by the decomposition.  In this case the field values of this "parent"
      * field are the handles to the "actual" fields found on each of the subsets. Dofs are stored in the dof_blob while field
      * handles are stored in a variable length array. */
     if (!SS_PERS_ISNULL(SS_FIELD_P(field,dof_blob))) {
         /*  In this case the field appears to be stored on self so the stored values are real field DOF values. */
         SAF_ASSERT(_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat)), SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                    _saf_errmsg("if a dof_blob exists then the field must not be storing pointers to other fields"));
         ss_blob_bound_f1(SS_FIELD_P(field,dof_blob), NULL, NULL, &count, &ftype);
         if (Ptype) *Ptype = H5Tget_native_type(target->data_type>0?target->data_type:ftype, H5T_DIR_DEFAULT);
         H5Tclose(ftype); ftype=-1;
         if (Pcount) *Pcount = count;
     } else if (ss_array_nelmts(SS_FIELD_P(field,indirect_fields))>0) {
         /* In this case the field is stored on a decomposition.  The stored values are handles to the fields on the parts *
          * forming the decomposition.  The datatype is known to be handles (to fields) and the VL-array tells how
          * many. However the caller may have used the saf_target_field() function to request the field to be remapped. */
         if (SS_PERS_ISNULL(&target->decomp)) {
             desireHandles = TRUE;
         } else if (_saf_is_self_decomp(&target->decomp)) {
             desireHandles = FALSE;
         } else {
             desireHandles = TRUE;
         }
         if (desireHandles) {
             /* The caller has not requested the field to be remapped, thus we can assume that the caller desires handles... */
             if (Pcount) *Pcount = ss_array_nelmts(SS_FIELD_P(field,indirect_fields));
             if (Ptype) *Ptype = H5Tcopy(ss_pers_tm); /*target datatype is ignored in this case*/
         } else {
             /* The caller has requested the field to be remapped, we must track down the proper count by examining the
              * collection that the field is defined on (rather than the one that it is decomposed on) and the proper type
              * by following the indirection. */
             if (Pcount) {
                 /* First we'll figure out how many DOFs the remapped field has. We'll use the category that field is defined on
                  * and the basespace to identify the collection that the field DOFS are associated with. Note that the
                  * basespace is actually kept with the field template. If the number of components is negative then the
                  * component count must be gotten by recursing on the indirect fields until a valid component count is
                  * encountered. */
                 numberOfComponents = SS_FIELDTMPL(&ftmpl)->num_comps;
                 if (numberOfComponents <= 0)
                     _saf_numberOfComponentsOf_field(pmode, field, &numberOfComponents);
                 saf_describe_collection(pmode, &basespace, &dof_assoc_cat, NULL, &collSize, NULL, NULL, NULL);
                 *Pcount = collSize * SS_FIELD(field)->assoc_ratio * numberOfComponents;
             }
             if (Ptype) {
                 if (target->data_type<=0) {
                     /*  Then we'll get the indirect handles using a recursive call with no field targeting. */
                     saf_get_count_and_type_for_field(pmode, field, NULL, &icount, NULL);
                     if (!icount)
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("no indirect field handles"));
                     if (NULL==(ifields=malloc(icount*sizeof(*ifields))))
                         SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate buffer to recieve indirect fields"));
                     saf_read_field(pmode, field, NULL, SAF_WHOLE_FIELD, (void**)&ifields);

                     /* We'll now get the type of the first field on the decomposition to determine the type to return.  Note
                      * that we are not requiring the data types of the fields to match since saf_read_field will do the
                      * appropriate data type conversions. Use the same targeting as for FIELD. */
                     saf_get_count_and_type_for_field(pmode, ifields, target, NULL, Ptype);
                     ifields = SS_FREE(ifields);
                 } else {
                     *Ptype  = H5Tget_native_type(target->data_type, H5T_DIR_DEFAULT);
                 }
             }
         }
     } else {
         /* In this case the field is a component of another field or is made up of components.  The datatype and count are
          * unknown.  However the caller may have used the saf_target_field() function to request the field to be remapped. */
         if (SS_PERS_ISNULL(&target->decomp)) {
             desireHandles = TRUE;
         } else if (_saf_is_self_decomp(&target->decomp)) {
             desireHandles = FALSE;
         } else {
             desireHandles = TRUE;
         }
         if (desireHandles) {
             if (Pcount) *Pcount = 0;
             if (Ptype) *Ptype = H5I_INVALID_HID;
         } else {
             /* Lets find out if the field is made up of components.  If it is then get the size and count of the first
              * component, otherwise punt since it is a component of another field. */
             saf_describe_field(pmode, field, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &num_comps,
                                &comps, NULL, NULL);
             if (0 < num_comps) {
                 /* In this case the field is made up of components.  We can use the count and type of the first component. */
                 saf_get_count_and_type_for_field(pmode, comps+0, NULL, Pcount, Ptype);
                 if (Pcount) *Pcount *= num_comps;
                 comps = SS_FREE(comps);
             } else {
                 /* In this case the field is a component of another field and has no storage of its own.  It really should have
                  * a blob record which provides the offset/skip info for traversing the blob of the parent field but that is
                  * not currently the case... */
                 if (Pcount) *Pcount = 0;
                 if (Ptype) *Ptype  = H5I_INVALID_HID;
             }
         }
     }

     assert(!Pcount || *Pcount!=1234567);
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

	 int
 saf_get_count_and_type_for_subset_relation(SAF_ParMode pmode,           /* The parallel mode. */
                                            SAF_Rel *rel,                /* The relation handle. */
                                            SAF_RelTarget *target,       /* Optional relation targeting information. */
                                            size_t *abuf_sz,             /* [OUT] The number of items that would be placed in
                                                                          * the A-buffer by a call to the
                                                                          * saf_read_subset_relation() function.  The caller
                                                                          * may pass value of NULL for this parameter if this
                                                                          * value is not desired. */
                                            hid_t *abuf_type,            /* [OUT] The type of the items that would be placed in
                                                                          * the A-buffer by a call to the
                                                                          * saf_read_subset_relation() function.  The caller
                                                                          * may pass value of NULL for this parameter if this
                                                                          * value is not desired. */
                                            size_t *bbuf_sz,             /* [OUT] The number of items that would be placed in
                                                                          * the B-buffer by a call to the
                                                                          * saf_read_subset_relation() function.  The caller
                                                                          * may pass value of NULL for this parameter if this
                                                                          * value is not desired. */
                                            hid_t *bbuf_type             /* [OUT] The type of the items that would be placed in
                                                                          * the B-buffer by a call to the
                                                                          * saf_read_subset_relation() function.  The caller
                                                                          * may pass value of NULL for this parameter if this
                                                                          * value is not desired. */
                                            )
 {
     SAF_ENTER(saf_get_count_and_type_for_subset_relation, SAF_PRECONDITION_ERROR);
     ss_set_t            sub;                    /* Cached subset from the relation */
     hid_t               ftype=-1;               /* File datatype for blobs */
     hsize_t             size;                   /* Size of a blob */
     ss_collection_t     sub_coll;               /* Collection on relation's subset */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle for all participating processes"));

     /* ISSUE: Relation targeting is not yet implemented. */
     SAF_ASSERT(!target, SAF_LOW_CHK_COST, SAF_NOTIMPL_ERROR, _saf_errmsg("Relation targeting is not yet implemented"));

     /* Cache some stuff for convenience */
     sub = SS_REL(rel)->sub;
     if (NULL==_saf_getCollection_set(&sub, SS_REL_P(rel,sub_cat), &sub_coll))
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("required subset collection was not available"));

     /* If the collection is of size 1 and the type is SET and represents part of a decomposition then this is the special case
      * where we store the relation data in the collection. */
     if (SS_COLLECTION(&sub_coll)->count==1 &&
         SS_COLLECTION(&sub_coll)->cell_type==SAF_CELLTYPE_SET &&
         SS_COLLECTION(&sub_coll)->is_decomp) {
         if (abuf_sz) *abuf_sz   = 1;
         if (abuf_type) *abuf_type = H5Tcopy(H5T_NATIVE_SIZE);
     } else {
         /*  First, dealing with the range to be stored in abuf (indirect_rels or r_blob). There is always an A-buffer... */
         if (ss_array_nelmts(SS_REL_P(rel,indirect_rels))>0) {
             if (abuf_sz) *abuf_sz = ss_array_nelmts(SS_REL_P(rel,indirect_rels));
             if (abuf_type) *abuf_type = H5Tcopy(ss_pers_tm);
         } else if (!SS_PERS_ISNULL(SS_REL_P(rel,r_blob))) {
             ss_blob_bound_f1(SS_REL_P(rel,r_blob), NULL, NULL, &size, &ftype);
             if (abuf_type) *abuf_type = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
             H5Tclose(ftype); ftype=-1;
             if (abuf_sz) *abuf_sz = size;
         } else {
             if (abuf_sz) *abuf_sz = 0;
             if (bbuf_sz) *bbuf_sz = 0;
             if (abuf_type) *abuf_type = H5I_INVALID_HID;
             if (bbuf_type) *bbuf_type = H5I_INVALID_HID;
             return SAF_SUCCESS;
         }

         /* Now to get the info for the B-buffer (domain blob).  Note that there may have been no B-buffer. */
         if (SS_PERS_ISNULL(SS_REL_P(rel,d_blob))) {
             if (bbuf_sz) *bbuf_sz = 0;
             if (bbuf_type) *bbuf_type = H5I_INVALID_HID;
         } else {
             ss_blob_bound_f1(SS_REL_P(rel,d_blob), NULL, NULL, &size, &ftype);
             if (bbuf_type) *bbuf_type = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
             H5Tclose(ftype); ftype=-1;
             if (bbuf_sz) *bbuf_sz = size;
         }
     }
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

	 int
 saf_get_count_and_type_for_topo_relation(SAF_ParMode pmode,     /* The parallel mode. */
                                          SAF_Rel *rel,          /* The relation handle. */
                                          SAF_RelTarget *target, /* Targeting information. */
                                          SAF_RelRep *PrepType,  /* [OUT] The mapping representation type (arbitrary, structured, or
                                                                  * unstructured). The caller may pass value of NULL for this
                                                                  * parameter if this value is not desired. */
                                          size_t *abuf_sz,       /* [OUT] The number of items that would be placed in the A-buffer by
                                                                  * a call to the saf_read_topo_relation() function.  The caller
                                                                  * may pass value of NULL for this parameter if this value is not
                                                                  * desired. */
                                          hid_t *abuf_type,      /* [OUT] The type of the items that would be placed in the
                                                                  * A-buffer by a call to the saf_read_topo_relation()
                                                                  * function.  The caller may pass value of NULL for this
                                                                  * parameter if this value is not desired. */
                                          size_t *bbuf_sz,       /* [OUT] The number of items that would be placed in the B-buffer by
                                                                  * a call to the saf_read_topo_relation() function.  The caller
                                                                  * may pass value of NULL for this parameter if this value is not
                                                                  * desired. */
                                          hid_t *bbuf_type       /* [OUT] The type of the items that would be placed in the
                                                                  * B-buffer by a call to the saf_read_topo_relation()
                                                                  * function.  The caller may pass value of NULL for this
                                                                  * parameter if this value is not desired. */
                                          )
 {
     SAF_ENTER(saf_get_count_and_type_for_topo_relation, SAF_PRECONDITION_ERROR);
     static SAF_RelTarget        rt_zero;                /* Default targeting */
     ss_scope_t                  scope=SS_SCOPE_NULL;    /* Scope containing REL */
     int                         scope_size;             /* Size of the communicator for `scope' */
     size_t                      maxFactor=0;
     size_t                      minFactor=0;
     ss_set_t                    sup=SS_SET_NULL;
     ss_cat_t                    storage_decomp=SS_CAT_NULL;
     ss_relrep_t                 relrep=SS_RELREP_NULL;
     ss_blob_t                   rblob=SS_BLOB_NULL;
     ss_blob_t                   dblob=SS_BLOB_NULL;
     hsize_t                     r_size, d_size;         /* Sizes of range and domain blobs in elements */
     hid_t                       mtype=-1, ftype=-1;     /* Memory and file datatypes */
     hbool_t                     desireHandles, haveFactor;
     ss_collection_t             storage_coll=SS_COLLECTION_NULL;
     size_t                      IAcount, IBcount, d;
     hid_t                       IAtype=-1, IBtype=-1;
     void                        *IAbuf=NULL, *IBbuf=NULL;
     ss_relrep_t                 haveRelRep=SS_RELREP_NULL;
     ss_rel_t                    *theRels=NULL;
     int                         collectionSize;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     ss_pers_scope((ss_pers_t*)rel, &scope);
     ss_scope_comm(&scope, NULL, NULL, &scope_size);
     if (!target) target = &rt_zero;

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle"));
     SAF_REQUIRE((target->is_set && (SS_PERS_ISNULL(&target->decomp) || pmode==SAF_ALL || 1==scope_size)) || !target->is_set,
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if targeting of storage decomposition is used, the read must be a SAF_ALL mode read "
                             "or the database must be opened on only a single processor"));

     /* Check that data has actually been written to this relation and if not, return either what is known about it in the
      * relation handle itself or no information. */
     if (SS_PERS_ISNULL(SS_REL_P(rel,r_blob)) && SS_PERS_ISNULL(SS_REL_P(rel,d_blob)) &&
         0==ss_array_nelmts(SS_REL_P(rel,indirect_rels))) {
         if (abuf_sz)
             *abuf_sz = SS_NOSIZE==SS_REL(rel)->m.abuf_size ? 0 : SS_REL(rel)->m.abuf_size;
         if (bbuf_sz)
             *bbuf_sz = SS_NOSIZE==SS_REL(rel)->m.bbuf_size ? 0 : SS_REL(rel)->m.bbuf_size;
         if (abuf_type)
             *abuf_type = SS_REL(rel)->m.abuf_type>0 ? H5Tcopy(SS_REL(rel)->m.abuf_type) : H5I_INVALID_HID;
         if (bbuf_type)
             *bbuf_type = SS_REL(rel)->m.bbuf_type>0 ? H5Tcopy(SS_REL(rel)->m.bbuf_type) : H5I_INVALID_HID;
         goto theExit;
     }

     /* Cache some things for convenience */
     sup = SS_REL(rel)->sup;
     storage_decomp = SS_REL(rel)->sub_decomp_cat;
     relrep = SS_REL(rel)->rep_type;
     rblob = SS_REL(rel)->r_blob;
     dblob = SS_REL(rel)->d_blob;


     /* A topological relation that is stored on self is treated quite a bit differently that one that is stored on a
      * decomposition... */
     if (_saf_is_self_decomp(&storage_decomp)) {
         /*  Quick check for structured topology (nothing to read)... */
         if (SAF_STRUCTURED_ID==SS_RELREP(&relrep)->id) {
             if (PrepType) *PrepType = *SAF_STRUCTURED;
             if (abuf_sz) *abuf_sz = 0;
             if (abuf_type) *abuf_type = H5I_INVALID_HID;;
             if (bbuf_sz) *bbuf_sz = 0;
             if (bbuf_type) *bbuf_type = H5I_INVALID_HID;
             goto theExit;
         }

         ss_blob_bound_f1(&rblob, NULL, NULL, &r_size, &ftype);
         mtype = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
         H5Tclose(ftype); ftype=-1;

         /* The nature of the A- and B-buffers depends on the rep type. */
         switch (SS_RELREP(&relrep)->id) {
         case SAF_UNSTRUCTURED_ID:
             if (PrepType) *PrepType = *SAF_UNSTRUCTURED;
             if (abuf_sz) *abuf_sz = 1;
             if (abuf_type) *abuf_type = H5Tcopy(mtype);
             if (bbuf_sz) *bbuf_sz = r_size;
             if (bbuf_type) *bbuf_type = H5Tcopy(mtype);
             break;
         case SAF_ARBITRARY_ID:
             /* In this case, we need to get the blob record for the domain of the relation too */
             ss_blob_bound_f1(&dblob, NULL, NULL, &d_size, NULL);

             if (PrepType) *PrepType = *SAF_ARBITRARY;
             if (abuf_sz) *abuf_sz = d_size;
             if (abuf_type) *abuf_type = H5Tcopy(mtype);
             if (bbuf_sz) *bbuf_sz = r_size;
             if (bbuf_type) *bbuf_type = H5Tcopy(mtype);
             break;
         default:
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unknown topology relation type %s (%d)",
                                                   ss_string_ptr(SS_RELREP_P(&relrep,name)), SS_RELREP(&relrep)->id));
         }
     } else {
         /* The relation is stored on a decomposition. There are two cases here: the caller wishes to receive info about the map
          * on self decomposition (remapping the values to "global") or the caller wishes to recieve info on the (indirect)
          * handles to the relations which actually have the data. The caller informs SAF of which of these two cases is desired
          * by using the saf_target_topo_relation function. */
         if (SS_PERS_ISNULL(&target->decomp)) {
             desireHandles = TRUE;
         } else if (_saf_is_self_decomp(&target->decomp)) {
             desireHandles = FALSE;
         } else {
             desireHandles = TRUE;
         }
         if (desireHandles) {
             if (NULL==_saf_getCollection_set(&sup, &storage_decomp, &storage_coll))
                 SAF_ERROR(SAF_CONSTRAINT_ERROR,
                           _saf_errmsg("collection \"%s\" not found on set \"%s\"",
                                       ss_string_ptr(SS_CAT_P(&storage_decomp,name)),
                                       ss_string_ptr(SS_SET_P(&sup,name))));
             if (PrepType) *PrepType = *SAF_NOT_APPLICABLE_RELREP;
             if (abuf_sz) *abuf_sz = (size_t)SS_COLLECTION(&storage_coll)->count;
             if (abuf_type) *abuf_type = H5Tcopy(ss_pers_tm);
             if (bbuf_sz) *bbuf_sz = 0;
             if (bbuf_type) *bbuf_type = H5I_INVALID_HID;
         } else {
             /* Case 2: the caller wishes to receive info about the maps as though they had been stored on self rather than on a
              * decomposition. The caller should expect the info on the number and types of items stored at A- and/or B-buffers.
              * The appropriate number of buffers data depends in the nature of the relation: structured, unstructured, or
              * arbitrary. */

             /* First we'll get the indirect handles using a recursive call. */
             IAcount = 0;
             IAtype = H5I_INVALID_HID;
             IBcount = 0;
             IBtype = H5I_INVALID_HID;
             saf_get_count_and_type_for_topo_relation(pmode, rel, NULL, NULL, &IAcount, &IAtype, &IBcount, &IBtype);
             if (IAcount < 1)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("no indirect topo handles"));
             IAbuf = NULL;
             IBbuf = NULL;
             if (saf_read_topo_relation(pmode, rel, NULL, &IAbuf, &IBbuf)!=SAF_SUCCESS || !IAbuf)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't retrieve indirect topo handles"));

             /* We'll read each of the topo relations on the decomposition to determine the "mapping factor". The mapping factor
              * is the number of maps for each member of the "stitched" collection (example: nodes per zone). We'll be using the
              * "mapping factor" to compute the returned (predicted) B-buffer size. */
             haveFactor = FALSE;
             haveRelRep = SS_RELREP_NULL;
             theRels = IAbuf;
             for (d=0; d<IAcount; d++) {
                 void *Abuf, *Bbuf;
                 size_t Acount=0, Bcount=0;
                 hid_t Atype=H5I_INVALID_HID, Btype=H5I_INVALID_HID;
                 SAF_RelRep thisRelRep;

                 saf_get_count_and_type_for_topo_relation(pmode, theRels+d, NULL, &thisRelRep, &Acount, &Atype, &Bcount, &Btype);
                 if (SS_PERS_ISNULL(&haveRelRep)) {
                     haveRelRep = thisRelRep;
                 } else if (!SAF_EQUIV(&haveRelRep, SAF_ERROR_RELREP) && !SAF_EQUIV(&haveRelRep,&thisRelRep)) {
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("multiple relation representations found"));
                 }
                 Abuf = Bbuf = NULL;
                 if (saf_read_topo_relation(pmode, theRels+d, NULL, &Abuf, &Bbuf)!=SAF_SUCCESS || !Abuf)
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't retrieve indirect topo handles"));

                 /* Look at the size of the A-buffer and the contents if the size is exactly 1. This is the "mapping factor"
                  * indicating how many of the "stitching" category for each of the "stitched" category.  Update both the max an
                  * min encountered... */
                 if (Acount==1 && Bcount>0) {
                     size_t tmp;
                     _saf_convert(Atype, Abuf, H5T_NATIVE_SIZE, &tmp);
                     if (haveFactor) {
                         if (tmp<minFactor) minFactor = tmp;
 #ifdef SSLIB_SUPPORT_PENDING
                         /* This is the old code. It looks wrong. [rpm 2004-05-26] */
                         if (minFactor<tmp) maxFactor = tmp;
 #else
                         if (tmp>maxFactor) maxFactor = tmp;
 #endif /*SSLIB_SUPPORT_PENDING*/
                     } else {
                         minFactor = maxFactor = tmp;
                         haveFactor = TRUE;
                     }
                 }
                 Abuf = SS_FREE(Abuf);
                 Bbuf = SS_FREE(Bbuf);
             }

             if (SAF_EQUIV(&haveRelRep, SAF_ARBITRARY)) {
                 if (PrepType) *PrepType = *SAF_ARBITRARY;
                 SAF_ERROR(SAF_NOTIMPL_ERROR, _saf_errmsg("\"arbitrary\" topo remapping not implemented yet"));
             } else if (SAF_EQUIV(&haveRelRep, SAF_STRUCTURED)) {
                 if (PrepType) *PrepType = *SAF_STRUCTURED;
                 if (abuf_sz) *abuf_sz = 0;
                 if (abuf_type) *abuf_type = H5I_INVALID_HID;
                 if (bbuf_sz) *bbuf_sz = 0;
                 if (bbuf_type) *bbuf_type = H5I_INVALID_HID;
             } else if (SAF_EQUIV(&haveRelRep, SAF_UNSTRUCTURED)) {
                 if (haveFactor && minFactor==maxFactor) {
                     saf_describe_collection(pmode, SS_REL_P(rel,sub), SS_REL_P(rel,sub_cat), NULL, &collectionSize, NULL, NULL,
                                             NULL);
                     if (PrepType) *PrepType = *SAF_UNSTRUCTURED;
                     if (abuf_sz) *abuf_sz = 1;
                     if (abuf_type) *abuf_type = H5Tcopy(H5T_NATIVE_SIZE);
                     if (bbuf_sz) *bbuf_sz = collectionSize * minFactor;
                     if (bbuf_type) *bbuf_type = H5Tcopy(H5T_NATIVE_SIZE);
                 } else {
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("mixed factors not supported in topo remapping"));
                 }
             }

             IAbuf = SS_FREE(IAbuf);
             IBbuf = SS_FREE(IBbuf);
         }
     }

 theExit:

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_get_field_att(SAF_ParMode pmode, SAF_Field *fld, const char *name, hid_t *type, int *count, void **value)
 {
    SAF_ENTER(saf_get_field_att, SAF_PRECONDITION_ERROR);
    int retval = saf_get_attribute(pmode, (ss_pers_t*)fld, name, type, count, value);
    SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_get_field_tmpl_att(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, const char *name, hid_t *type, int *count, void **value)
 {
   SAF_ENTER(saf_get_field_tmpl_att, SAF_PRECONDITION_ERROR);
   int retval = saf_get_attribute(pmode, (ss_pers_t*)ftmpl, name, type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_get_set_att(SAF_ParMode pmode, SAF_Set *set, const char *key, hid_t *type, int *count, void **value)
 {
   SAF_ENTER(saf_get_set_att, SAF_PRECONDITION_ERROR);
   int retval = saf_get_attribute(pmode, (ss_pers_t*)set, key, type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_get_state_grp_att(SAF_ParMode pmode, SAF_StateGrp *state_grp, const char *key, hid_t *type, int *count, void **value)
 {
   SAF_ENTER(saf_get_state_grp_att, SAF_PRECONDITION_ERROR);
   int retval = saf_get_attribute(pmode, (ss_pers_t*)&state_grp, key, type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_get_state_tmpl_att(SAF_ParMode pmode, SAF_StateTmpl *stmpl, const char *att_key, hid_t *att_type, int *count, void **value)
 {
   SAF_ENTER(saf_get_state_tmpl_att, SAF_PRECONDITION_ERROR);
   int retval = saf_get_attribute(pmode, (ss_pers_t*)stmpl, att_key, att_type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_get_suite_att(SAF_ParMode pmode, SAF_Suite *suite, const char *att_key, hid_t *att_type, int *count, void **value)
 {
   SAF_ENTER(saf_get_suite_att, SAF_PRECONDITION_ERROR);
   int retval = saf_get_attribute(pmode, (ss_pers_t*)suite, att_key, att_type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 hid_t
 saf_grab_hdf5(SAF_Db *file)
 {
     SAF_ENTER(saf_grab_hdf5, SAF_FAILURE);
     SAF_LEAVE(ss_file_isopen(file, NULL));
 }









          

      

      

    

  

    
      
          
            
  	1

	 #define saf_init(PROPERTIES) (SAF_VERSION_VAR++, SAF_PARALLEL_VAR++, _saf_init((PROPERTIES)))









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 int
 saf_is_self_stored_field(SAF_ParMode pmode,     /* The parallel mode. */
                          SAF_Field *field,      /* The handle of the field which is to be examined. */
                          hbool_t *result        /* [OUT] Optional pointer to memory which is to receive the result of the test:
                                                  * true if the field is self stored or false if it is stored on a
                                                  * decomposition. */
                          )
 {
     SAF_ENTER(saf_is_self_stored_field, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle"));

     /* When a field is stored on "self" then we store actual field coefficient values.  When a field is not stored on "self"
      * then DOFs are stored on the subsets specified by the decomposition.  In this case the field values of this "parent"
      * field are the handles to the "actual" fields found on each of the subsets. */
     if (_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat))) {
         if (result) *result = TRUE;
     } else {
         if (result) *result = FALSE;
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 int
 saf_is_self_stored_topo_relation(SAF_ParMode pmode,     /* The parallel mode. */
                                  SAF_Rel *rel,          /* The handle of the topological relation which is to be examined. */
                                  hbool_t *Presult       /* [OUT] A pointer to caller supplied memory which is to receive the
                                                          * result of the test: true if the relation is self stored or false if
                                                          * it is stored on a decomposition.  Note that it is permitted for the
                                                          * caller to pass a value of NULL for this parameter. */
                                  )
 {
     SAF_ENTER(saf_is_self_stored_topo_relation, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     if (Presult)
         *Presult = _saf_is_self_decomp(SS_REL_P(rel,sub_decomp_cat));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 int
 saf_log_unit(SAF_ParMode pmode,
              SAF_Unit *unit,                 /* The unit which is being translated by OFFSET. */
              double logbase,                 /* The base of the logarithm */
              double logcoef                  /* The amount by which to multiply the unit after taking the log. */
              )
 {
     SAF_ENTER(saf_log_unit, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_UNIT(unit), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must be a valid unit handle"));
     SAF_REQUIRE(logbase>=0.0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("LOGBASE must be non-negative"));
     SAF_REQUIRE(logcoef || !logbase, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("LOGCOEF must be non-zero if a logarithmic scale is used"));

     SAF_DIRTY(unit, pmode);
     SS_UNIT(unit)->logcoef = logbase ? logcoef : 0.0;
     SS_UNIT(unit)->logbase = logbase;

     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	 int
 saf_multiply_quantity(SAF_ParMode pmode,
                       SAF_Quantity *quantity,                   /* IN[OUT] The quantity which is affected by this operation */
                       SAF_Quantity *multiplier,                 /* What to multiply into QUANTITY */
                       int power                                 /* Number of times to multiply MULTIPLIER into QUANTITY */
                       )
 {
     SAF_ENTER(saf_multiply_quantity, SAF_PRECONDITION_ERROR);
     int         i, recip;
     unsigned    dim_q=(SAF_DIMENSIONLESS_QUANTITY & SS_QUANTITY(quantity)->flags);
     unsigned    dim_m=(SAF_DIMENSIONLESS_QUANTITY & SS_QUANTITY(multiplier)->flags);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_QUANTITY(quantity), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("QUANTITY must be a valid quantity handle"));
     SAF_REQUIRE(SS_QUANTITY(multiplier), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("MULTIPLIER must be a valid quantity handle"));


     /* Determine if Q is the reciprocal of M^POWER */
     recip = (dim_q == dim_m);
     for (i=0; i<SS_MAX_BASEQS && recip; i++)
         if (SS_QUANTITY(quantity)->power[i] != -power*SS_QUANTITY(multiplier)->power[i]) recip=0;

     SAF_DIRTY(quantity, pmode);
     if (recip) {
         /* If Q and M are reciprocals then turn U into a dimensionless quntity. */
         SS_QUANTITY(quantity)->flags |= SAF_DIMENSIONLESS_QUANTITY;

     } else if (dim_q==dim_m) {
         /* If Q and M are both dimensioned quantities (the default) then multiply them in the normal cancelling fasion. If Q
          * and M are both dimensionless quantities then they should have only positive powers and they can be added in the
          * normal fasion (the powers refer to cancelling powers in the numerator and denominator). */
         for (i=0; i<SS_MAX_BASEQS; i++)
             SS_QUANTITY(quantity)->power[i] += power * SS_QUANTITY(multiplier)->power[i];

     } else if (dim_q) {
         /* If Q is dimensionless but M is dimensioned, then set Q to be M and turn off the dimensionless flag. In other words,
          * the powers originally in Q cancel themselves. */
         SS_QUANTITY(quantity)->flags &= ~SAF_DIMENSIONLESS_QUANTITY;
         for (i=0; i<SS_MAX_BASEQS; i++)
             SS_QUANTITY(quantity)->power[i] = power * SS_QUANTITY(multiplier)->power[i];

     } else {
         /* Q is dimensioned but M isn't. Just discard M since it would cancel itself anyway. */
     }

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	 int
 saf_multiply_unit(SAF_ParMode pmode,
                   SAF_Unit *unit,                  /* The unit which is being modified by multiplying MULTIPLIER into it. */
                   double coef,                     /* A real coefficient multiplied into UNIT */
                   SAF_Unit *multiplier,            /* The optional multiplicand unit */
                   int power                        /* The power to which MULTIPLIER is raised before multiplying it into UNIT */
                   )
 {
     SAF_ENTER(saf_multiply_unit, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_UNIT(unit), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must be a valid unit handle"));
     SAF_REQUIRE(0==SS_UNIT(unit)->offset, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must have a zero offset (the default)"));
     SAF_REQUIRE(0==SS_UNIT(unit)->logbase, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must not have a logarithm base assigned (the default)"));
     SAF_REQUIRE(coef>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("COEF must be positive"));
     SAF_REQUIRE(!multiplier || SS_UNIT(multiplier),
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("MULTIPLIER must be a valid unit handle if supplied"));
     SAF_REQUIRE(!multiplier || 0==SS_UNIT(multiplier)->offset, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("MULTIPLIER must have a zero offset if supplied"));
     SAF_REQUIRE(!multiplier || 0==SS_UNIT(multiplier)->logbase, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("MULTIPLIER must not use a logarithmic scale if supplied"));

     /* Mark unit as having been modified. */
     SAF_DIRTY(unit, pmode);

     /* Fix affected wildcards */
     if (0==SS_UNIT(unit)->scale)
         SS_UNIT(unit)->scale = 1.0;

     /* Initial quantity */
     if (SS_PERS_ISNULL(SS_UNIT_P(unit,quant)) && multiplier && power) {
         SS_UNIT(unit)->quant = SS_UNIT(multiplier)->quant;
         SS_UNIT(unit)->scale *= SS_UNIT(multiplier)->scale;
         --power;
     }

     /* If the unit has a quantity already assigned then create a new quantity to assign to the unit. */
     if (!SS_PERS_ISNULL(SS_UNIT_P(unit,quant)) && multiplier && power) {
         ss_scope_t u_scope;
         ss_quantity_t *q;
         ss_pers_scope((ss_pers_t*)unit, &u_scope);
         q = SS_PERS_COPY(SS_UNIT_P(unit,quant), &u_scope, SAF_ALL==pmode?SS_ALLSAME:0U);
         SS_UNIT(unit)->quant = *q;
         ss_string_reset(SS_QUANTITY_P(q,name));
         ss_string_reset(SS_QUANTITY_P(q,abbr));
         ss_string_reset(SS_QUANTITY_P(q,url));
         saf_multiply_quantity(pmode, q, SS_UNIT_P(multiplier,quant), power);
         SS_FREE(q);
     }

     /* Adjust scale */
     if (multiplier) SS_UNIT(unit)->scale *= pow(SS_UNIT(multiplier)->scale, (double)power);
     SS_UNIT(unit)->scale *= coef;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 int
 saf_offset_unit(SAF_ParMode pmode,
                 SAF_Unit *unit,                 /* The unit which is being translated by OFFSET. */
                 double offset                   /* The amount by which to translate the unit. */
                 )
 {
     SAF_ENTER(saf_offset_unit, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_UNIT(unit), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must be a valid unit handle"));
     SAF_REQUIRE(0==SS_UNIT(unit)->logbase, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must not have a logarithm base assigned (the default)"));

     SAF_DIRTY(unit, pmode);
     SS_UNIT(unit)->offset += offset;
     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	 SAF_Db *
 saf_open_database(const char *path,             /* The name of the database. */
                   SAF_DbProps *properties       /* This argument, if not null, provides database
                                                  * properties that will override the default properties provided by
                                                  * saf_createProps_database(). */
                   )
 {
   SAF_ENTER(saf_open_database, NULL);

   SAF_Db        *db=NULL;
   SAF_DbProps   *p=properties;
   unsigned      flags=0;
   ss_prop_t     *fprops=NULL;
   size_t        regno;
   ss_scope_t    regscope;
   size_t        naux, i;
   ss_file_ref_t *filerefs=NULL;

   SAF_REQUIRE(path != NULL, SAF_LOW_CHK_COST, NULL, _saf_errmsg("PATH must be non-null"));

   /* Obtain properties. Either the user passed in a database properties handle or they passed null. In the latter
    * case we create our own handle to default properties and release that at the end. */
   if (!properties)
       p = saf_createProps_database();
   SAF_REQUIRE(p, SAF_HIGH_CHK_COST, NULL,
               _saf_errmsg("PROPERTIES must be a valid handle if supplied"));

   /* Build an SSlib property list and flags for opening the file */
   if (NULL==(fprops = ss_prop_new(path)))
       SAF_ERROR(NULL, _saf_errmsg("cannot create property list for ss_file_open"));
   if (ss_prop_add(fprops, "comm", H5T_NATIVE_MPI_COMM, &(p->DbComm))<0)
       SAF_ERROR(NULL, _saf_errmsg("cannot insert MPI communicator into property list for ss_file_open"));
   flags |= p->ReadOnly ? H5F_ACC_RDONLY : H5F_ACC_RDWR | H5F_ACC_CREAT;
   if (p->Clobber) flags |= H5F_ACC_TRUNC | H5F_ACC_CREAT | H5F_ACC_RDWR;
   if (p->MemoryResident) flags |= H5F_ACC_TRANSIENT | H5F_ACC_CREAT | H5F_ACC_RDWR;

   /* Open or create the file */
   if (NULL==(db=ss_file_open(NULL, path, flags, fprops)))
       SAF_ERROR(NULL, _saf_errmsg("ss_file_open failed"));

   /* Open all auxiliary files using the same communicator */
   if (NULL==(filerefs=ss_file_references(db, &naux, NULL, NULL)))
       SAF_ERROR(NULL, _saf_errmsg("cannot obtain list of auxiliary files"));
   if (ss_file_openall(naux, filerefs, flags, fprops)<0)
       SAF_ERROR(NULL, _saf_errmsg("cannot open some auxiliary files"));

   /* Attach registry scopes to the files unless we're opening a registry */
   if (!p->NoRegistries) {
       for (regno=0; regno<_SAF_GLOBALS.p.reg.nused; regno++) {
           if (!_SAF_GLOBALS.p.reg.db[regno]) continue;
           if (NULL==ss_file_topscope(_SAF_GLOBALS.p.reg.db[regno], &regscope))
               SAF_ERROR(NULL, _saf_errmsg("cannot get top scope for registry"));
           if (ss_file_registry(db, &regscope)<0)
               SAF_ERROR(NULL, _saf_errmsg("cannot set registry for file"));
           for (i=0; i<naux; i++) {
               if (ss_file_registry(&(filerefs[i].file), &regscope)<0)
                   SAF_ERROR(NULL, _saf_errmsg("cannot set registry for auxiliary file"));
           }
       }
   }

   /* Free the property list */
   ss_prop_dest(fprops);
   for (i=0; i<naux; i++) SS_FREE(filerefs[i].newname);
   SS_FREE(filerefs);

   SAF_LEAVE(db);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	 int
 saf_put_attribute(SAF_ParMode pmode,    /* One of the parallel modes. */
                   ss_pers_t *obj,       /* The handle to the object the attribute is to be associated with. */
                   const char *name,     /* The name of the attribute. */
                   hid_t type,           /* The datatype of the attribute. */
                   int count,            /* The number of items of type TYPE pointed to by *VALUE. */
                   const void *value     /* The attribute value(s) (an array of COUNT value(s) of type TYPE). */
                   )
 {
    SAF_ENTER(saf_put_attribute, SAF_PRECONDITION_ERROR);
    ss_attr_t    attr;
    hid_t        type_here=-1;

    SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("PMODE must be valid"));
    if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

    SAF_REQUIRE(obj, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("OBJ must not be null"));
    SAF_REQUIRE(name != NULL, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("NAME must not be null"));
    SAF_REQUIRE(count >= 0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("COUNT must be non-negative"));
    SAF_REQUIRE(count==0 || value!=NULL, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("if count is non-zero, VALUE must not be null"));
    SAF_REQUIRE(true, SAF_NO_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("database in which object exists must not be open for read-only access"));

    /* As a special case, if TYPE is H5T_C_S1 then create a temporary datatype which is exactly the same length as the
     * NUL-terminated string passed in as the VALUE argument. */
    if (H5Tequal(type, H5T_C_S1)) {
        if (count>1)
            SAF_ERROR(SAF_PARAMETER_ERROR, _saf_errmsg("H5T_C_S1 type can only be used if COUNT is zero or one"));
        if ((type = type_here = H5Tcopy(H5T_C_S1))<0)
            SAF_ERROR(SAF_MISC_ERROR, _saf_errmsg("H5Tcopy() failed"));
        if (H5Tset_size(type, strlen(value)+1)<0)
            SAF_ERROR(SAF_MISC_ERROR, _saf_errmsg("H5Tset_size() failed"));
    }

    /* Create a new attribute object */
    if (NULL==ss_attr_new(obj, name, type, (size_t)count, value, SAF_ALL==pmode?SS_ALLSAME:0U, &attr, NULL))
        SAF_ERROR(SAF_SSLIB_ERROR, _saf_errmsg("unable to create attribute \"%s\"", name));

    /* Cleanup */
    if (type_here>0) H5Tclose(type_here);

    SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 int
 saf_put_cat_att(SAF_ParMode pmode,              /* Parallel mode for adding the new attribute. */
                 SAF_Cat *cat,                   /* Collection category for which the new attribute is added. */
                 const char *name,               /* The name of the attribute. */
                 hid_t datatype,                 /* The datatype of each element of the VALUE for the attribute. */
                 int count,                      /* The number of elements pointed to by VALUE, each of type DATATYPE. */
                 const void *value               /* The array of COUNT elements each of type DATATYPE to use for the
                                                  * attribute's value. */
                 )
 {
   SAF_ENTER(saf_put_cat_att, SAF_PRECONDITION_ERROR);
   int retval = saf_put_attribute(pmode, (ss_pers_t*)cat, name, datatype, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_put_field_att(SAF_ParMode pmode, SAF_Field *field, const char *name, hid_t type, int count, const void *value)
 {
    SAF_ENTER(saf_put_field_att, SAF_PRECONDITION_ERROR);
    int retval = saf_put_attribute(pmode, (ss_pers_t*)field, name, type, count, value);
    SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_put_field_tmpl_att(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, const char *name, hid_t type, int count, const void *value)
 {
   SAF_ENTER(saf_put_field_tmpl_att, SAF_PRECONDITION_ERROR);
   int retval = saf_put_attribute(pmode, (ss_pers_t*)ftmpl, name, type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_put_set_att(SAF_ParMode pmode, SAF_Set *set, const char *key, hid_t type, int count, const void *value)
 {
   SAF_ENTER(saf_put_set_att, SAF_PRECONDITION_ERROR);
   int retval = saf_put_attribute(pmode, (ss_pers_t*)set, key, type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_put_state_grp_att(SAF_ParMode pmode, SAF_StateGrp *state_grp, const char *key, hid_t type, int count, const void *value)
 {
   SAF_ENTER(saf_put_state_grp_att, SAF_PRECONDITION_ERROR);
   int retval = saf_put_attribute(pmode, (ss_pers_t*)state_grp, key, type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_put_state_tmpl_att(SAF_ParMode pmode, SAF_StateTmpl *stmpl, const char *att_key, hid_t att_type, int count, const void *value)
 {
   SAF_ENTER(saf_put_state_tmpl_att, SAF_PRECONDITION_ERROR);
   int retval = saf_put_attribute(pmode, (ss_pers_t*)stmpl, att_key, att_type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7

	 int
 saf_put_suite_att(SAF_ParMode pmode, SAF_Suite *suite, const char *att_key, hid_t att_type, int count, const void *value)
 {
   SAF_ENTER(saf_put_suite_att, SAF_PRECONDITION_ERROR);
   int retval = saf_put_attribute(pmode, (ss_pers_t*)suite, att_key, att_type, count, value);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 int
 saf_quantify_unit(SAF_ParMode pmode,
                   SAF_Unit *unit,        /* The unit whose quantity information is being set. */
                   SAF_Quantity *quantity,/* The quantity which this unit measures.            */
                   double scale           /* This argument can be used to defined a new unit as some scale of the base unit for
                                           * the quantity without requiring the unit definition to include a multiplication by
                                           * the base unit. The SCALE is multiplied into any scale which is already present. */
                   )
 {
     SAF_ENTER(saf_quantify_unit, SAF_PRECONDITION_ERROR);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     SAF_REQUIRE(SS_UNIT(unit), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("UNIT must be a valid unit handle"));
     SAF_REQUIRE(SS_QUANTITY(quantity), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("QUANTITY must be a valid quantity handle"));
     SAF_REQUIRE(scale>0.0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("SCALE must be positive"));

     /* If UNIT already has a quantity then the new quantity must be structurally equivalent. */
     if (!SS_PERS_ISNULL(SS_UNIT_P(unit,quant))) {
         assert(SS_MAX_BASEQS==7);
         if (SS_QUANTITY(SS_UNIT_P(unit,quant))->flags    != SS_QUANTITY(quantity)->flags ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[0] != SS_QUANTITY(quantity)->power[0] ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[1] != SS_QUANTITY(quantity)->power[1] ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[2] != SS_QUANTITY(quantity)->power[2] ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[3] != SS_QUANTITY(quantity)->power[3] ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[4] != SS_QUANTITY(quantity)->power[4] ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[5] != SS_QUANTITY(quantity)->power[5] ||
             SS_QUANTITY(SS_UNIT_P(unit,quant))->power[6] != SS_QUANTITY(quantity)->power[6]) {
             SAF_ERROR(SAF_CONTEXT_ERROR, _saf_errmsg("UNIT and QUANTITY are incompatible"));
         }
     }

     /* Associate QUANTITY with UNIT */
     SAF_DIRTY(unit, pmode);
     SS_UNIT(unit)->quant = *quantity;
     SS_UNIT(unit)->scale *= scale;

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

	 SAF_PathInfo
 saf_readInfo_path(
    const char *path,    /* [IN] path of a file to get the info for */
    int independent      /* [IN] A flag for independent operation. If non-zero, perform the work and return the results only on
                            the calling processor. Otherwise, this function must be called collectively by all processors in
                            the communicator used to init the SAF library. In other words, call this function from one processor
                            with a non-zero value for this argument or call it an all processors with a zero argument on all
                            processors. Note also that if this call is made independently, then all succeeding calls involving
                            the returned SAF_PathInfo object must be made independently and by the same processor. */
 )
 {
    SAF_ENTER(saf_readInfo_path,NULL);

    int rank=0;
    SAF_PathInfo result;
    int theStats[2];

    SAF_REQUIRE(path!=NULL,SAF_LOW_CHK_COST,NULL,_saf_errmsg("path must be non-NULL"));

    independent = independent; /* quite the compiler */

 #ifdef HAVE_PARALLEL
    if (!independent)
       MPI_Comm_rank(_SAF_GLOBALS.p.LibComm,&rank);
 #endif

    /* allocate the SAF_PathInfo stuff */
    result = (SAF_PathInfo) calloc(1, sizeof(SAF_PathInfoPkt));

    /* in all cases, only stat the file on processor 0 in the lib communicator */
    if (rank == 0)
    {
       struct stat statBuf;

       /* stat the file */
       if (stat(path, &statBuf)==-1)
          theStats[0] = errno;
       else
       {
          theStats[0] = 0;

 #ifdef WIN32
         /* These S_* #defines dont exist in WIN32*/
         #define S_IRWXU _S_IREAD|_S_IWRITE|_S_IEXEC /*owner, = 00700*/
         #define S_IRWXG 00070 /*group*/
         #define S_IRWXO 00007 /*others*/
 #endif

          theStats[1] = (int) (statBuf.st_mode & (S_IRWXU | S_IRWXG | S_IRWXO));
       }

       /* if the stat succeeded, theStats[0] will be zero and we can proceed. In such case, to save a broadcast, I next test
          whether the file is an HDF5 file and if not, set theStats[0] to a contrived error code for that case. The only worry
          is to make sure my contrived error code does not collide with another case in the switch statement below. */
       if (!theStats[0] && !H5Fis_hdf5(path))
          theStats[0] = ENOTHDF5;

    }

 #ifdef HAVE_PARALLEL
    if (!independent)
       MPI_Bcast(&theStats, 2, MPI_INT, 0, _SAF_GLOBALS.p.LibComm);
 #endif

    /* handle any inital errors */
    if (theStats[0])
    {
       result->statError = 1;
       result->permissions = theStats[1];
       switch (theStats[0])
       {
          case ENOTHDF5: result->errStr = _saf_strdup("not an hdf5 file"); break;
          case EACCES:   result->errStr = _saf_strdup("permission denied"); break;
          case ENOENT:   result->errStr = _saf_strdup("does not exist"); break;
          case ENOTDIR:  result->errStr = _saf_strdup("invalid path"); break;
          default:
          {
             result->errStr = (char *) malloc(32);
             sprintf(result->errStr,"unspecified stat error %d",theStats[0]);
             break;
          }
       }
       goto done;
    }
    else
    {
       result->statError = 0;
       result->permissions = theStats[1];
    }

    /* at this point, we know we can read the file and that it is an HDF5 file */

    /* we proceed using HDF interface to obtain SAF's version stuff because we can't always be assured we will have
       a valid SSlib file AND we'd like to return as much information to the client as possible AND, once we've coded
       to use HDF5, there is little point in also doing it with anything higher */
    {
        hid_t fid, topgroup, attr, dtype, fprop_id;

 #ifdef HAVE_PARALLEL
       fprop_id = H5Pcreate(H5P_FILE_ACCESS);
       if (independent) {
           H5Pset_fapl_mpio(fprop_id, MPI_COMM_SELF, MPI_INFO_NULL);
       } else {
           H5Pset_fapl_mpio(fprop_id, _SAF_GLOBALS.p.LibComm, MPI_INFO_NULL);
       }
 #else
       fprop_id = H5Pcopy(H5P_DEFAULT);
 #endif

       /* try to open the file */
       fid = H5Fopen(path, H5F_ACC_RDONLY, fprop_id);
       H5Pclose(fprop_id);

       if (fid < 0)
       {
          result->isHDFfile = 0;
          goto done;
       }
       else
          result->isHDFfile = 1;

       /* open the "/SAF" group, which is the name of the top-level scope in an SSlib file */
       H5E_BEGIN_TRY {
          topgroup = H5Gopen(fid,"/SAF");
       } H5E_END_TRY

       if (topgroup < 0)
       {
          H5Fclose(fid);
          goto done;
       }

       /* obtain data type, size information and allocate space for data */
       attr = H5Aopen_name(topgroup, "version");
       dtype = H5Aget_type(attr);
       result->dbPropsType = H5Tget_native_type(dtype, H5T_DIR_DEFAULT);
       result->dbPropsBuf = malloc(H5Tget_size(result->dbPropsType));

       /* read the DbProps attribute */
       H5Aread(attr, result->dbPropsType, result->dbPropsBuf);

       H5Tclose(dtype);
       H5Aclose(attr);
       H5Gclose(topgroup);
       H5Fclose(fid);
    }

    result->allOk = 1;

  done:
    SAF_LEAVE(result);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	 int
 saf_read_alternate_indexspec(SAF_ParMode pmode,         /* The parallel mode. */
                              SAF_AltIndexSpec *aspec,   /* The alternate index spec handle to read. */
                              void **buf                 /* The buffer to be filled in with the data. */
                              )
 {
     SAF_ENTER(saf_read_alternate_indexspec, SAF_PRECONDITION_ERROR);
     double              timer_start=0;
     ss_collection_t     coll=SS_COLLECTION_NULL;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_INDEXSPEC(aspec), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ASPEC must be a valid alt index spec handle"));
     SAF_REQUIRE(buf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BUF cannot be null"));

     /* Start the timer. */
     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(false);

     /* Obtain the collection record. */
     coll = SS_INDEXSPEC(aspec)->coll;
     if (!SS_COLLECTION(&coll))
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to obtain collection record"));

     /* Read in the buf data. */
     if (SS_PERS_ISNULL(SS_INDEXSPEC_P(aspec,blob)))
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("attempt to read non-existent blob; there is no data for the alternate index spec"));
     if (NULL==(*buf=ss_blob_read1(SS_INDEXSPEC_P(aspec,blob), (hsize_t)0, (hsize_t)SS_COLLECTION(&coll)->count, 0U, NULL)))
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to read buf alt index spec data"));

     /* Accumulate times */
     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummReadTime += (_saf_wall_clock(false) - timer_start);

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

	 int
 saf_read_field(SAF_ParMode pmode,       /* The parallel mode. */
                SAF_Field *field,        /* The field which is to be read. */
                SAF_FieldTarget *target, /* Field targeting information. */
                int member_count,        /* A count of the number of members of the collection in which the field's dofs are n:1
                                          * associated with that are actually being written in this call. This value is ignored
                                          * if you are reading the entire field's dofs in this call (i.e., REQ_TYPE =
                                          * SAF_TOTALITY). Also note that as a convenience, we provide the macro
                                          * SAF_WHOLE_FIELD which expands to a comma separated list of appropriate values for
                                          * this argument and the next two, for the case in which the whole field is being read
                                          * in this call. */
                SAF_RelRep *req_type,    /* The type of I/O request. We use a relation representation type here to specify the
                                          * type of the partial request because it captures the necessary information. Pass
                                          * SAF_HSLAB if you are reading the dofs of a partial hyperslab of the members of the
                                          * associated collection. In this case, MEMBER_IDS points to 3 N-tuples of starts,
                                          * counts and strides of the hyperslab (hypersample) request. Pass SAF_TUPLES, if you
                                          * are reading the dofs for an arbitrary list of members of the associated collection.
                                          * In this case, the MEMBER_IDS points to a list of N-tuples. In both cases, 'N' is
                                          * the number of indexing dimensions in the associated collection. Finally, pass
                                          * SAF_TOTALITY if you are reading the entire field's set of dofs. */
                int *member_ids,         /* Depending on the value of REQ_TYPE, this argument points to 3 N-tuples storing,
                                          * respectively, the starts, counts and strides *in*each*dimension* of the associated
                                          * collection or to a list of MEMBER_COUNT N-tuples, each one identifying a single
                                          * member of the associated collection or to NULL in the case of a SAF_TOTALITY request. */
                void **Pbuf              /* [IN|OUT] A pointer to a buffer pointer which is to receive the values read.  The
                                          * caller may supply a pointer to a value of NULL if this function is to allocate a
                                          * buffer.  If the caller supplies a pointer to a non-NULL pointer (to a buffer) then
                                          * it is up to the caller to ensure that the buffer is of sufficient size to hold all
                                          * of the data retrieved.  The caller should use saf_describe_field() or
                                          * saf_get_count_and_type_for_field() to determine the datatype of the values read. */
                )
 {
     SAF_ENTER(saf_read_field, SAF_PRECONDITION_ERROR);
     double              timer_start=0;                  /* Start time for accumulating total field read times */
     ss_scope_t          scope=SS_SCOPE_NULL;            /* Scope containing FIELD */
     int                 scope_size;                     /* Size of the cummunicator for `scope' */
     static SAF_FieldTarget ft_zero;                     /* Default field targeting */
     hbool_t             has_been_written;               /* True if data has been written to the field */
     int                 retval;                         /* Return value for this function */
     ss_fieldtmpl_t      ftmpl=SS_FIELDTMPL_NULL;        /* Cached field template link from FIELD */
     ss_algebraic_t      algebraic=SS_ALGEBRAIC_NULL;    /* Cached algebraic type link from FIELD */
     ss_blob_t           dof_blob=SS_BLOB_NULL;          /* Cashed DOF blob from FIELD */
     hbool_t             desireHandles;                  /* Should we read field handles instead of dofs? */
     size_t              size;                           /* Number of elements to read */
     hsize_t             hsize;                          /* Size to bass to blob functions */
     size_t              offset;                         /* Index of first element to read */
     hid_t               memDatatype=-1;                 /* Type of data to store in returned PBUF array */
     hid_t               fileDatatype=-1;                /* Type of data stored in the file */
     SAF_Db              base_space_db;                  /* The database holding the base space of FIELD */
     size_t              numberOfGlobalDOFs;
     hid_t               theGlobalDOFType;
     SAF_FieldTmpl       theGlobalTemplate;
     SAF_Interleave      theGlobalComponentInterleave;
     size_t              theGlobalDOFSize;
     void                *theGlobalBuffer=NULL;
     char                *theGlobalPointer;
     size_t              numberOfLocalFields;
     int                 theGlobalComponentCount;
     SAF_Set             theGlobalSet;
     void                *buffer;
     SAF_Field           *theLocalFields;
     size_t              f;
     hid_t               theHandleType;
     size_t              numberOfGlobalValues;

     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(false);

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     ss_pers_scope((ss_pers_t*)field, &scope);
     ss_scope_comm(&scope, NULL, NULL, &scope_size);
     if (!target) target = &ft_zero;

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle"));
     SAF_REQUIRE(Pbuf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PBUF must be non-null"));
     SAF_REQUIRE(_saf_is_valid_io_request(pmode, field, member_count, req_type, member_ids, 1),
                 SAF_HIGH_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if partial I/O request, associated collection must be 1D indexed, REQ_TYPE must be SAF_HSLAB "
                             "or a single SAF_TUPLE and field's interleave, if multi-component, must be SAF_INTERLEAVE_VECTOR"));
     SAF_REQUIRE(SS_PERS_ISNULL(&target->decomp) || pmode==SAF_ALL || 1==scope_size, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if field targeting of storage decomposition is used, the read must be a SAF_ALL mode read or the "
                             "database must be opened on only a single processor"));

     /* If there is no data written to this field, try using _saf_read_comp_field instead. */
     saf_data_has_been_written_to_field(pmode, field, &has_been_written);
     if(!has_been_written) {
         retval = _saf_read_comp_field(pmode, field, member_count, req_type, member_ids, Pbuf);
         SAF_RETURN(retval);
     }

     /* Cache some stuff for convenience */
     ftmpl = SS_FIELD(field)->ftmpl;
     algebraic = SS_FIELDTMPL(&ftmpl)->algebraic;
     dof_blob = SS_FIELD(field)->dof_blob;

     /* We can't get here without passing the valid_io_request pre-condition and all the limitations it currently
      * imposes. So, we know member_ids is either an array of 3 ints {start, count, stride} where stride is constrained
      * to 1 for SAF_HSLAB or an array of 1 int {index} for SAF_TUPLES. Regardless, member_ids[0] is the starting position
      * and member_count is the size of the request. */
     if (_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat)) && !SS_ALGEBRAIC(&algebraic)->indirect) {
         /* The stored values in the field are real field DOF values. */
         ss_blob_bound_f1(&dof_blob, NULL, NULL, &hsize, &fileDatatype);
         if (SAF_TOTALITY_ID==SS_RELREP(req_type)->id) {
             size = (size_t)hsize;
             offset = 0;
         } else {
             offset = member_ids[0];
             size = member_count;
         }
         memDatatype = H5Tget_native_type(target->data_type>0?target->data_type:fileDatatype, H5T_DIR_DEFAULT);

         /*  Allocate a return buffer if the caller did not provide one... */
         if (!*Pbuf && NULL==(*Pbuf=malloc(size*H5Tget_size(memDatatype))))
             SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate space to read field"));

         /* Read field DOFs from blob dataset filling the return buffer... */
         if (ss_blob_bind_m1(&dof_blob, *Pbuf, memDatatype, (hsize_t)size)<0 ||
             NULL==ss_blob_read1(&dof_blob, (hsize_t)offset, (hsize_t)size, SS_BLOB_UNBIND, NULL))
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to read field dofs"));
     } else {
         /* The field is stored on a decomposition.  The stored values are handles to the fields on the parts forming the
          * decomposition.  The datatype is known to be handles (to fields) and the blob record tells how many. However the
          * caller may have used the saf_target_field() function to request the field to be remapped. */
         if (SAF_TOTALITY_ID==SS_RELREP(req_type)->id) {
             offset = 0;
             size = ss_array_nelmts(SS_FIELD_P(field,indirect_fields));
         } else {
             offset = member_ids[0];
             size = member_count;
         }
         if (SS_PERS_ISNULL(&target->decomp)) {
             desireHandles = TRUE;
         } else if (_saf_is_self_decomp(&target->decomp)) {
             desireHandles = FALSE;
         } else {
             desireHandles = TRUE;
         }
         if (desireHandles) {
             /* We need to adjust the offset for the case of a homogeneous field of fields (probably a state field) because all
              * the data is compressed into a single blob. For an inhomogeneous field the size and count need no adjustment. */
             if (_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat)) && SS_ALGEBRAIC(&algebraic)->indirect) {
                 assert(SS_FIELDTMPL(&ftmpl)->num_comps>=0);
                 size *= SS_FIELDTMPL(&ftmpl)->num_comps;
                 offset *= SS_FIELDTMPL(&ftmpl)->num_comps;
             }
             if (NULL==(*Pbuf = ss_array_get(SS_FIELD_P(field,indirect_fields), ss_pers_tm, offset, size, *Pbuf)))
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to read field links"));
         } else {
             /* The caller wishes to receive the DOFs as though they had been stored on self rather than on a
              * decomposition. What we need to do is to allocate a buffer big enough for the mapped field. We then read the each
              * local field one at a time and move the DOFs from the local field buffer to the global buffer. */

             /* ISSUE: For an indirect field the the local fields are all "similar". That is, they have the same algebraic type,
              *        association category, units and such. This function should check for this but doesn't. In the future
              *        some differences can be smoothed-over (such as units) but some probably can not (such as algebraic
              *        type). */
             /* ISSUE: The proper use of PMODE is not fully worked out. */
             /* ISSUE: Multiple indirection may actually fall out of this solution but that is not at all clear. */

             saf_get_count_and_type_for_field(pmode, field, target, &numberOfGlobalDOFs, &theGlobalDOFType);
             saf_describe_field(pmode, field, &theGlobalTemplate, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                                &theGlobalComponentCount, NULL, &theGlobalComponentInterleave, NULL);
             if (target->is_set) theGlobalComponentInterleave = target->comp_intlv;
 #if 0
             /*  This needs to be fixed.  The problem is if theGlobalComponentCount == -1,
              *  then we don't know if we need to check the interleave.  We will only
              *  find out once we have read in the first block if we have multiple components,
                  *  so the test needs to be moved, not sure where at this point. */
             if (theGlobalComponentCount > 1) {
                 if (theGlobalComponentInterleave != SAF_INTERLEAVE_VECTOR &&
                     theGlobalComponentInterleave != SAF_INTERLEAVE_COMPONENT) {
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid component interleave"));
                 }
             }
 #endif

             /*  Allocate storage for the global buffer. */
             theGlobalDOFSize = H5Tget_size(theGlobalDOFType);
             if (*Pbuf) {
                 theGlobalBuffer = *Pbuf;
             } else {
                 if (numberOfGlobalDOFs == 0) {
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("field has no global DOFs"));
                 }
                 theGlobalBuffer = malloc(numberOfGlobalDOFs * H5Tget_size(theGlobalDOFType));
                 if (theGlobalBuffer == NULL) {
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("can't allocate global DOF buffer"));
                 }
             }
             theGlobalPointer = theGlobalBuffer;

             saf_get_count_and_type_for_field(pmode, field, NULL, &numberOfLocalFields, &theHandleType);
             if (numberOfLocalFields < 1) {
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("no indirect field handles"));
             }
             saf_describe_field(pmode, field, &theGlobalTemplate, NULL, &theGlobalSet, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                                NULL, NULL, NULL, NULL, NULL);
             saf_describe_field_tmpl(pmode, &theGlobalTemplate, NULL, NULL, NULL, NULL, NULL, NULL);
             buffer = NULL;
             saf_read_field(pmode, field, NULL, SAF_WHOLE_FIELD, &buffer);
             if (buffer == NULL) {
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't read field handles"));
             }
             theLocalFields = buffer;
             for (f=0; f<numberOfLocalFields; f++) {
                 size_t   numberOfLocalDOFs;
                 hid_t theLocalDOFType;

                 saf_get_count_and_type_for_field(pmode, theLocalFields+f, target, &numberOfLocalDOFs, &theLocalDOFType);
                 if (target->data_type>0)
                     theLocalDOFType = target->data_type;
                 if (0 < numberOfLocalDOFs) {
                     void          *Abuffer;
                     size_t         AbufSize;
                     hid_t          AbufType;
                     void          *Bbuffer;
                     size_t         BbufSize;
                     hid_t          BbufType;
                     int            C;
                     size_t         G,L;
                     size_t         CGstride, Gstride;
                     size_t         CLstride, Lstride;
                     int            numberOfSubsetRels;
                     SAF_Cat        theCat;
                     int            theLocalComponentCount;
                     SAF_Field     *theLocalComponentFields;
                     SAF_Interleave theLocalComponentInterleave;
                     size_t         numberOfLocalValues;
                     void          *theLocalBuffer;
                     size_t         theLocalDOFSize;
                     char          *theLocalPointer;
                     SAF_Set        theLocalSet;
                     SAF_FieldTmpl  theLocalTemplate;
                     SAF_Rel       *theSubsetRels;
                     SAF_IndexSpec  ispec;
                     size_t         origin;
                     SAF_RelRep     srtype;

                     theLocalComponentFields = NULL;
                     saf_describe_field(pmode, theLocalFields+f, &theLocalTemplate, NULL, &theLocalSet, NULL, NULL, NULL, &theCat,
                                        NULL, NULL, NULL, NULL, &theLocalComponentCount, &theLocalComponentFields, NULL, NULL);

                     /* If the component count is negative then it is an indirect field and the component count must be gotten
                      * by recursing on the indirect fields until a valid component count is encountered. */
                     if (theLocalComponentCount == -1)
                         _saf_numberOfComponentsOf_field(pmode, theLocalFields+f, &theLocalComponentCount);

                     numberOfGlobalValues = numberOfGlobalDOFs / theLocalComponentCount;
                     numberOfLocalValues = numberOfLocalDOFs / theLocalComponentCount;

                     if (theLocalComponentFields != NULL) {
                         int c;
                         char *thePointer;

                         theLocalDOFSize = H5Tget_size(theLocalDOFType);
                         theLocalBuffer  = malloc(numberOfLocalDOFs*theLocalDOFSize);
                         if (theLocalBuffer == NULL)
                             SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("can't allocate local DOF buffer"));

                         thePointer = theLocalBuffer;
                         for(c=0; c<theLocalComponentCount; c++) {
                             saf_read_field(pmode, theLocalComponentFields+c, NULL, SAF_WHOLE_FIELD, (void **)&thePointer);
                             thePointer += theLocalDOFSize * numberOfLocalValues;
                         }

                         free(theLocalComponentFields);

                         theLocalComponentInterleave = SAF_INTERLEAVE_COMPONENT;
                     } else {
                         theLocalDOFSize = H5Tget_size(theLocalDOFType);
                         theLocalBuffer  = malloc(numberOfLocalDOFs*theLocalDOFSize);
                         if (theLocalBuffer == NULL)
                             SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("can't allocate local DOF buffer"));
                         saf_read_field(pmode, theLocalFields+f, target, SAF_WHOLE_FIELD, &theLocalBuffer);
                         theLocalComponentInterleave = target->comp_intlv;
                     }
                     theLocalPointer = theLocalBuffer;
                     if (theLocalComponentCount > 1) {
                         if (theLocalComponentInterleave != SAF_INTERLEAVE_VECTOR &&
                             theLocalComponentInterleave != SAF_INTERLEAVE_COMPONENT) {
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid component interleave"));
                         }
                     }
                     saf_describe_field_tmpl(pmode, &theLocalTemplate, NULL, NULL, NULL, NULL, NULL, NULL);
                     saf_describe_collection(pmode, &theLocalSet, &theCat, NULL, NULL, &ispec, NULL, NULL);
                     origin = ispec.origins[0];

                     numberOfSubsetRels = 0;
                     theSubsetRels      = NULL;
 #ifdef SSLIB_SUPPORT_PENDING /* Fix me in Phase-II */
                     /* ISSUE: When remapping an indirect field we only look in the top-scope of the file containing the
                      *        field's base space when searching for the subset relations. [rpm 2004-05-24] */
 #endif /*SSLIB_SUPPORT_PENDING*/
                     ss_pers_file((ss_pers_t*)&theGlobalSet, &base_space_db);
                     saf_find_subset_relations(pmode, &base_space_db, &theGlobalSet, &theLocalSet, &theCat, &theCat,
                                               SAF_BOUNDARY_FALSE, SAF_BOUNDARY_FALSE, &numberOfSubsetRels, &theSubsetRels);
                     if (numberOfSubsetRels!=1 || !theSubsetRels)
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't locate subset relation for field stored on domain"));
                     saf_describe_subset_relation(pmode, theSubsetRels, NULL, NULL, NULL, NULL, NULL, NULL, &srtype, NULL);
                     saf_get_count_and_type_for_subset_relation(pmode, theSubsetRels, NULL, &AbufSize, &AbufType, &BbufSize,
                                                                &BbufType);
                     Abuffer = NULL;
                     Bbuffer = NULL;
                     saf_read_subset_relation(pmode, theSubsetRels, NULL, &Abuffer, &Bbuffer);
                     if (!Abuffer)
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't read subset for domain"));
                     if (Bbuffer)
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unexpected B-buffer for subset for domain"));

                     /* Handle hyperslabs, by creating a tuple out of the hyperslab.  This isn't very efficient but it is the
                      * most economical to program. */
                     if (SAF_EQUIV(&srtype, SAF_HSLAB)) {
                         if (AbufSize != 3)
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid hyper slab relation"));
                         if (H5Tequal(AbufType,H5T_NATIVE_INT)) {
                             int i;
                             int *p;
                             int start;
                             int count;
                             int stride;

                             start  = ((int *)Abuffer)[0];
                             count  = ((int *)Abuffer)[1];
                             stride = ((int *)Abuffer)[2];
                             free(Abuffer);

                             p = malloc(count*sizeof(int));
                             for (i=0; i<count; i++) {
                                 p[i] = start + i * stride;
                             }
                             AbufSize = count;
                             Abuffer = p;
                         }
                     }

                     if (AbufSize != numberOfLocalValues)
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("subset size != number of local DOFs"));

                     if (theGlobalComponentInterleave == SAF_INTERLEAVE_VECTOR) {
                         CGstride = 1;
                         Gstride = theGlobalComponentCount;
                     } else {
                         CGstride = numberOfGlobalValues;
                         Gstride = 1;
                     }
                     if (theLocalComponentInterleave == SAF_INTERLEAVE_VECTOR) {
                         CLstride = 1;
                         Lstride = theLocalComponentCount;
                     } else {
                         CLstride = numberOfLocalValues;
                         Lstride = 1;
                     }

                     if (H5Tequal(AbufType,H5T_NATIVE_INT)) {
                         int *p = (int*)Abuffer;
                         void *buf = malloc(MAX(theLocalDOFSize, theGlobalDOFSize));
                         for (C=0; C<theLocalComponentCount; ++C) {
                             for (L=0; L<numberOfLocalValues; ++L) {
                                 G = (size_t)(p[L]) - origin;
                                 if (numberOfGlobalValues <= G) {
                                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid index found in A-buffer"));
                                 }
                                 memcpy(buf, theLocalPointer+(L*Lstride+C*CLstride)*theLocalDOFSize, theLocalDOFSize);
                                 H5Tconvert(theLocalDOFType, theGlobalDOFType, 1, buf, NULL, H5P_DEFAULT);
                                 memcpy(theGlobalPointer+(G*Gstride+C*CGstride)*theGlobalDOFSize, buf, theGlobalDOFSize);
                             }
                         }
                         SS_FREE(buf);
                     } else if (H5Tequal(AbufType,H5T_NATIVE_UINT)) {
                         unsigned int *p = (unsigned int *)Abuffer;
                         void *buf = malloc(MAX(theLocalDOFSize, theGlobalDOFSize));
                         for (C=0; C<theLocalComponentCount; ++C) {
                             for (L=0; L<numberOfLocalValues; ++L) {
                                 G = (size_t)(p[L]) - origin;
                                 if (numberOfGlobalValues <= G) {
                                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid index found in A-buffer"));
                                 }
                                 memcpy(buf, theLocalPointer+(L*Lstride+C*CLstride)*theLocalDOFSize, theLocalDOFSize);
                                 H5Tconvert(theLocalDOFType, theGlobalDOFType, 1, buf, NULL, H5P_DEFAULT);
                                 memcpy(theGlobalPointer+(G*Gstride+C*CGstride)*theGlobalDOFSize, buf, theGlobalDOFSize);
                             }
                         }
                         SS_FREE(buf);
                     } else if (H5Tequal(AbufType,H5T_NATIVE_LONG)) {
                         long *p = (long *)Abuffer;
                         void *buf = malloc(MAX(theLocalDOFSize, theGlobalDOFSize));
                         for (C=0; C<theLocalComponentCount; ++C) {
                             for (L=0; L<numberOfLocalValues; ++L) {
                                 G = (size_t)(p[L]) - origin;
                                 if (numberOfGlobalValues <= G) {
                                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid index found in A-buffer"));
                                 }
                                 memcpy(buf, theLocalPointer+(L*Lstride+C*CLstride)*theLocalDOFSize, theLocalDOFSize);
                                 H5Tconvert(theLocalDOFType, theGlobalDOFType, 1, buf, NULL, H5P_DEFAULT);
                                 memcpy(theGlobalPointer+(G*Gstride+C*CGstride)*theGlobalDOFSize, buf, theGlobalDOFSize);
                             }
                         }
                         SS_FREE(buf);
                     } else if (H5Tequal(AbufType,H5T_NATIVE_ULONG)) {
                         unsigned long *p = (unsigned long *)Abuffer;
                         void *buf = malloc(MAX(theLocalDOFSize, theGlobalDOFSize));
                         for (C=0; C<theLocalComponentCount; ++C) {
                             for (L=0; L<numberOfLocalValues; ++L) {
                                 G = (size_t)(p[L]) - origin;
                                 if (numberOfGlobalValues <= G) {
                                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid index found in A-buffer"));
                                 }
                                 memcpy(buf, theLocalPointer+(L*Lstride+C*CLstride)*theLocalDOFSize, theLocalDOFSize);
                                 H5Tconvert(theLocalDOFType, theGlobalDOFType, 1, buf, NULL, H5P_DEFAULT);
                                 memcpy(theGlobalPointer+(G*Gstride+C*CGstride)*theGlobalDOFSize, buf, theGlobalDOFSize);
                             }
                         }
                         SS_FREE(buf);
                     } else {
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unsupported type for subset for domain"));
                     }
                     free(Abuffer);
                     free(theSubsetRels);
                     free(theLocalBuffer);
                 }
             }
             free(buffer);
             if (*Pbuf == NULL)
                 *Pbuf = theGlobalBuffer;
         }
     }

     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummReadTime += (_saf_wall_clock(false) - timer_start);

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106

	 int
 saf_read_state(SAF_ParMode  pmode,              /* The parallel mode */
                SAF_StateGrp *state_grp,         /* The state group from which this state will be read. */
                int          state_index,        /* An index that specifies which state within the state group will be read.
                                                  * This index is 0-based. */
                SAF_Set      *mesh,              /* [OUT] Returned ID of the mesh associated with this state. */
                SAF_Field    *deflt_coords,      /* [OUT] Returned ID of the default coordinate field of MESH; we may want to
                                                  * delete this argument since the client can call saf_find_default_coords()
                                                  * for MESH. */
                void         *coord_data,        /* [OUT] Returned coordinate of STATE_INDEX within the state group.  For
                                                  * instance, this is typically the time value of the state. */
                SAF_Field    **fields            /* The IDs of the fields (the dependent variables) to be read from this state.
                                                  * The caller may supply a pointer to a value of NULL if this function is to
                                                  * allocate a buffer.  If the caller supplies a pointer to a non-nil pointer,
                                                  * then it is the responsibility of the caller to ensure that the buffer is of
                                                  * sufficient size to contain the coordinates.  This size (NUM_FIELDS) is the
                                                  * number of field templates (NUM_FTMPLS) obtained by a call to
                                                  * saf_describe_state_tmpl().*/
                )
 {
   SAF_ENTER(saf_read_state, SAF_PRECONDITION_ERROR);

   SAF_Field *coord;
   SAF_Set suite;
   int index[1];
   SAF_Db db=SS_FILE_NULL;
   SAF_Field *coords,*tmp_deflt_coords;
   SAF_Field *tmp_fields;
   SAF_Field *mesh_coord, *param_coord;
   SAF_Field *stategrp_state;
   SAF_FieldTmpl stategrp_tmpl;
   size_t group_size;
   hid_t group_type;
   SAF_Field *stategrp_contents;

   /* find the suite associated with this stategroup */
   saf_describe_field(pmode, state_grp, &stategrp_tmpl, NULL, &suite,
                      NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                      NULL, NULL, NULL, NULL);

   saf_get_count_and_type_for_field(pmode, state_grp, NULL, &group_size, &group_type );

   if( group_size != 2 ) {
     printf("size of stategrp field != 2\n");
   }


   /* get and set the database and db handles */
   ss_pers_file((ss_pers_t*)&suite, &db);

   {


     /* the stategrp blob should contain two field handles:
          the first is the indirect coord field containing the mesh_coords, and param_coord
          the second is the state field containing the fields stored at this suite_index
     */
     stategrp_contents = NULL;
     index[0] = 0;
     saf_read_field (pmode, state_grp, NULL, 1, SAF_TUPLES, index, (void **)(&stategrp_contents));
     coord = &(stategrp_contents[0]);
     stategrp_state = &(stategrp_contents[1]);

     /* now read the coord field and get the mesh coord and the param coord (dump times) */
     coords = NULL;
     saf_read_field (pmode, coord, NULL, 1, SAF_TUPLES, index, (void **)(&coords));
     mesh_coord = &(coords[1]);
     param_coord = &(coords[0]);

     if( deflt_coords != NULL ) {
         tmp_deflt_coords = NULL;
         saf_read_field( pmode, mesh_coord, NULL, 1, SAF_TUPLES, &state_index, (void **)&tmp_deflt_coords);
         *deflt_coords = *tmp_deflt_coords;
     }

     /* get the mesh set that the mesh_default_coord lives on */
     if( mesh != NULL ) {
       saf_describe_field( pmode, deflt_coords, NULL, NULL, mesh,
                         NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                         NULL, NULL, NULL, NULL, NULL);
     }

     if( coord_data != NULL ) {
         saf_read_field(pmode, param_coord, NULL, 1, SAF_TUPLES, &state_index, (void **)&coord_data);
     }

     if( fields != NULL ) {
         if( *fields == NULL ) {
                 tmp_fields = NULL;
                 saf_read_field( pmode, stategrp_state, NULL, 1, SAF_TUPLES, &state_index, (void **)&tmp_fields);
                 *fields = tmp_fields;
         }
         else {
                 tmp_fields = *fields;
                 saf_read_field( pmode, stategrp_state, NULL, 1, SAF_TUPLES, &state_index, (void **)&tmp_fields);
         }
     }


   }

     free(coords);
     free(stategrp_contents);

     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

	 int
 saf_read_subset_relation(SAF_ParMode pmode,     /* The parallel mode. */
                          SAF_Rel *rel,          /* The relation whose data is to be read. */
                          SAF_RelTarget *target, /* Relation targeting information. */
                          void **abuf,           /* The data representing those members in the range collection (on the superset)
                                                  * that are related to the members in the domain collection (on the subset). */
                          void **bbuf            /* Optional data for boundary subsets indicating which local piece of boundary
                                                  * each member in the domain collection represents in each member of the
                                                  * range collection (see saf_declare_subset_relation()) */
                          )
 {
     SAF_ENTER(saf_read_subset_relation, SAF_PRECONDITION_ERROR);
     double              timer_start=0;          /* Timer for accumulating time spent reading data. */
     ss_set_t            sub,sup;                /* Relation's subset and superset */
     ss_collection_t     sub_coll, sup_coll;     /* Relation's sub and super collections */
     size_t              width;                  /* Number of elements in a collection `members' array */
     ss_pers_t           val;                    /* Element from a collection `members' array; link to a set hopefully. */
     hsize_t             size;                   /* Number of elements in a blob */
     hid_t               ftype=-1;               /* File datatype for a blob */
     hid_t               mtype=-1;               /* Memory datatype corresponding to `ftype' */
     int                 i;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle"));
     SAF_REQUIRE(abuf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ABUF cannot be null for all participating processes"));
     SAF_ASSERT(!target, SAF_LOW_CHK_COST, SAF_NOTIMPL_ERROR,
                _saf_errmsg("Relation targeting is not implemented"));

     /* Start timer */
     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(false);

     /* Cache some stuff */
     sub = SS_REL(rel)->sub;
     if (NULL==_saf_getCollection_set(&sub, SS_REL_P(rel,sub_cat), &sub_coll))
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("required subset collection was not available"));
     sup = SS_REL(rel)->sup;

     /* Just as in the write case, we need to do something special for the case in which the domain collection contains just 1
      * member AND is a decomposition of its containing set.  */
     if (SS_COLLECTION(&sub_coll)->count<=1 &&
         SS_COLLECTION(&sub_coll)->cell_type==SAF_CELLTYPE_SET &&
         SS_COLLECTION(&sub_coll)->is_decomp) {
         if (NULL==_saf_getCollection_set(&sup, SS_REL_P(rel,sup_cat), &sup_coll))
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("attempt to read non-existent collection members"));
         if (0==(width=ss_array_nelmts(SS_COLLECTION_P(&sup_coll,members))))
             SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("attempt to read non-existent collection members"));
         if (SS_COLLECTION(&sup_coll)->count!=(int)width)
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("apparent attempt to read members array before it's been completey filled"));

         /* Scan list of members for the one pointing to the subset and return a link to it in the array */
         for (i=0; i<SS_COLLECTION(&sup_coll)->count; i++) {
             ss_array_get(SS_COLLECTION_P(&sup_coll,members), ss_pers_tm, (size_t)i, 1, &val);
             if (SS_PERS_EQ(&val,SS_REL_P(rel,sub))) {
                 if (!*abuf && NULL==(*abuf=malloc(sizeof(size_t))))
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate space to return collection members"));
                 *(size_t*)(*abuf) = i;
                 break;
             }
         }
         if (i>=SS_COLLECTION(&sup_coll)->count)
             SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to find subset in the superset collection's member list"));
     } else {
         /*  First, read the abuf (range) data; it is *always* present either indirectly or in a blob. */
         if (ss_array_nelmts(SS_REL_P(rel,indirect_rels))>0) {
             *abuf = ss_array_get(SS_REL_P(rel,indirect_rels), ss_pers_tm, (size_t)0, SS_NOSIZE, *abuf);
             if (!*abuf) SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("problems reading indirect relation pointers"));
             mtype = H5I_INVALID_HID;
         } else if (!SS_PERS_ISNULL(SS_REL_P(rel,r_blob))) {
             /* obtain the data set type. Note, it will be same for bbuf too, needed below. */
             ss_blob_bound_f1(SS_REL_P(rel,r_blob), NULL, NULL, &size, &ftype);
             mtype = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
             H5Tclose(ftype); ftype=-1;

             /* allocate space for the abuf data or check size */
             if (!*abuf && NULL==(*abuf = malloc((size_t)size*H5Tget_size(mtype))))
                 SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate space to read abuf of relation"));

             /* read the data */
             ss_blob_bind_m1(SS_REL_P(rel,r_blob), *abuf, mtype, size);
             ss_blob_read1(SS_REL_P(rel,r_blob), (hsize_t)0, size, SS_BLOB_UNBIND, NULL);
         } else {
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("attempt to read non-existent range data"));
         }

         /* Read the bbuf (domain) data */
         if (bbuf) {
             /* Issue: If the client requests BBUF but none was written, is that an error? Unfortunately, the only answer that
              *        works in all cases is to declare this an error. This is so because it is not possible to notify the client
              *        that none was written except by returning *BBUF==NULL and that is *not* possible in the case that the client
              *        has pre-allocated BBUF (except if we opt to free the pre-allocated BBUF, and then set it to NULL which I
              *        don't think would be a good idea). We limit returning error to *only* this case. The other case returns
              *        BBUF==NULL */
             if (SS_PERS_ISNULL(SS_REL_P(rel,d_blob))) {
                 if (*bbuf)
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("attempt to read non-existent bbuf blob into pre-allocated memory"));
             } else {
                 /* allocate space for the bbuf data or check size */
                 ss_blob_bound_f1(SS_REL_P(rel,d_blob), NULL, NULL, &size, NULL);
                 if (!*bbuf && NULL==(*bbuf=malloc((size_t)size*H5Tget_size(mtype))))
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("unable to allocate space to read bbuf of relation"));

                 /* read the data */
                 ss_blob_bind_m1(SS_REL_P(rel,d_blob), *bbuf, mtype, size);
                 ss_blob_read1(SS_REL_P(rel,d_blob), (hsize_t)0, size, SS_BLOB_UNBIND, NULL);
             }
         }
     }

     if (mtype>0) H5Tclose(mtype);
     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummReadTime += _saf_wall_clock(FALSE) - timer_start;

     SAF_LEAVE(SAF_SUCCESS);

 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

	 int
 saf_read_topo_relation(SAF_ParMode pmode,       /* The parallel mode. */
                        SAF_Rel *rel,            /* The topology relation to be read. */
                        SAF_RelTarget *target,   /* Relation targeting information. */
                        void **abuf,             /* The returned data. See saf_declare_topo_relation(). */
                        void **bbuf              /* The returned data. See saf_declare_topo_relation(). */
                        )
 {
     SAF_ENTER(saf_read_topo_relation, SAF_PRECONDITION_ERROR);
     static SAF_RelTarget        rt_zero;                /* Default targeting */
     ss_scope_t                  scope=SS_SCOPE_NULL;    /* Scope containing REL */
     int                         scope_size;             /* Size of the communicator for `scope' */
     hid_t                       ftype=-1, mtype=-1;     /* File and memory datatypes */
     size_t                      mtype_size;             /* Size in bytes of the memory datatype */
     double                      timer_start=0;
     ss_set_t                    sub=SS_SET_NULL, sup=SS_SET_NULL, Dstitching_set=SS_SET_NULL, Dusing_set=SS_SET_NULL;
     ss_cat_t                    storage_decomp=SS_CAT_NULL, Dstitching_cat=SS_CAT_NULL, Dusing_cat=SS_CAT_NULL;
     ss_collection_t             storage_coll=SS_COLLECTION_NULL;
     ss_relrep_t                 relrep=SS_RELREP_NULL, thisRelRep=SS_RELREP_NULL;
     ss_blob_t                   rblob=SS_BLOB_NULL;     /* range blob */
     ss_blob_t                   dblob=SS_BLOB_NULL;     /* domain blob */
     hsize_t                     d_nelmts, r_nelmts;     /* number of elements in domain and range blobs */
     ss_cat_t                    sub_cat=SS_CAT_NULL;
     ss_cat_t                    sup_cat=SS_CAT_NULL;
     ss_collection_t             sub_coll=SS_COLLECTION_NULL;
     hbool_t                     desireHandles;
     size_t                      bufferSize, IAcount, Acount, *Abuffer=NULL, *Bbuffer=NULL, Bcount, Nstitched, mapped_u;
     size_t                      SS_stitching_Acount, NusingPerStitched, mapped_s;
     size_t                      d, i, j, k, s, u;
     int                         tmp_i, numberOfSubsetRelations, jj, *p, start, count, stride;
     SAF_RelRep                  theRep, subsetRelationType;
     SAF_Rel                     *IAbuf=NULL, *subsetRelationList=NULL;
     hid_t                       IAtype=-1, Atype=-1, Btype=-1, SS_stitching_Atype=-1, SS_using_Atype=-1;
     ss_file_t                   db=SS_FILE_NULL;        /* File to which REL belongs and to which searches are limited. */
     void                        *SS_stitching_Abuf=NULL, *SS_using_Abuf=NULL, *Abuf=NULL, *Bbuf=NULL;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);
     ss_pers_scope((ss_pers_t*)rel, &scope);
     ss_scope_comm(&scope, NULL, NULL, &scope_size);
     if (!target) target = &rt_zero;

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle"));
     SAF_REQUIRE(abuf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ABUF must be non-null"));
     SAF_REQUIRE(!bbuf || !SAF_XOR(*abuf,*bbuf), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("either both ABUF and BBUF point to NULL or both ABUF and BBUF do not point to NULL"));
     SAF_REQUIRE((target->is_set && (SS_PERS_ISNULL(&target->decomp) || pmode==SAF_ALL || 1==scope_size)) || !target->is_set,
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if targeting of storage decomposition is used, the read must be a SAF_ALL mode read "
                             "or the database must be opened on only a single processor"));

     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(false);

     /* Cache some things for convenience */
     ss_pers_file((ss_pers_t*)rel, &db);
     sub = SS_REL(rel)->sub;
     sup = SS_REL(rel)->sup;
     sub_cat = SS_REL(rel)->sub_cat;
     sup_cat = SS_REL(rel)->sup_cat;
     storage_decomp = SS_REL(rel)->sub_decomp_cat;
     relrep = SS_REL(rel)->rep_type;
     rblob = SS_REL(rel)->r_blob;
     dblob = SS_REL(rel)->d_blob;

     /* Reading a topological relation that is stored on self is quite a bit different that one that is stored on a
      * decomposition... */
     if (_saf_is_self_decomp(&storage_decomp)) {
         /* In this case the topological relation is stored on self.  The number of items stored at A- and B-buffer data depends
          * in the nature of the relation: structured, unstructured, or arbitrary. First of all structured topology has no
          * buffers to read at all. */
         if (SAF_STRUCTURED_ID==SS_RELREP(&relrep)->id)
             goto theExit;

         /* Range blob */
         ss_blob_bound_f1(&rblob, NULL, NULL, &r_nelmts, &ftype);
         mtype = H5Tget_native_type(ftype, H5T_DIR_DEFAULT);
         mtype_size = H5Tget_size(mtype);
         H5Tclose(ftype); ftype=-1;

         /* As previosly noted, depending if the topological relation is unstructured or arbitrary we'll be needing either 1 or
          * 2 buffers to receive the data.  Which we then fill with data of the datatype found above. */
         switch (SS_RELREP(&relrep)->id) {
         case SAF_UNSTRUCTURED_ID:
             /* Allocate space if necessary */
             if (!*abuf && NULL==(*abuf=malloc(mtype_size)))
                 SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable to allocate space to read topological relation"));
             if (bbuf && !*bbuf && r_nelmts && NULL==(*bbuf=malloc((size_t)r_nelmts*mtype_size)))
                 SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable to allocate space to read topological relation"));

             /* Read the range (bbuf) data */
             if (bbuf) {
                 if (ss_blob_bind_m1(&rblob, *bbuf, mtype, r_nelmts)<0 ||
                     NULL==ss_blob_read1(&rblob, (hsize_t)0, r_nelmts, SS_BLOB_UNBIND, NULL))
                     SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("unable to read relation data"));
             }

             /* Compute the # of range refs per member of collection */
             if (NULL==_saf_getCollection_set(&sub, &sub_cat, &sub_coll))
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("unable to obtain collection for subset"));
             tmp_i = SS_COLLECTION(&sub_coll)->count ? r_nelmts / SS_COLLECTION(&sub_coll)->count : 0;
             if (NULL==_saf_convert(H5T_NATIVE_INT, &tmp_i, mtype, *abuf))
                 SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("data type is not appropriate for a relation"));
             break;
         case SAF_ARBITRARY_ID:
             /* In this case, we need to the domain of the relation too */
             ss_blob_bound_f1(&dblob, NULL, NULL, &d_nelmts, NULL);

             /* Allocate space if necessary */
             if (!*abuf && NULL==(*abuf=malloc((size_t)d_nelmts*mtype_size)))
                 SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable to allocate space to read topological relation"));
             if (bbuf && !*bbuf && NULL==(*bbuf=malloc((size_t)r_nelmts*mtype_size)))
                 SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable to allocate space to read topological relation"));

             /* Read the range data */
             if (bbuf) {
                 if (ss_blob_bind_m1(&rblob, *bbuf, mtype, r_nelmts)<0 ||
                     NULL==ss_blob_read1(&rblob, (hsize_t)0, r_nelmts, SS_BLOB_UNBIND, NULL))
                     SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("unable to read relation data"));
             }

             /* Read the domain data */
             if (ss_blob_bind_m1(&dblob, *abuf, mtype, d_nelmts)<0 ||
                 NULL==ss_blob_read1(&dblob, (hsize_t)0, d_nelmts, SS_BLOB_UNBIND, NULL))
                 SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("unable to read relation data"));

             break;
         default:
             SAF_ERROR(SAF_FILE_ERROR,
                       _saf_errmsg("unknown topology relation type %s (%d)",
                                   ss_string_ptr(SS_RELREP_P(&relrep,name)), SS_RELREP(&relrep)->id));

         }
     } else {
         /* The relation is stored on a decomposition. There are two cases here: the caller wishes to receive the map on self
          * decomposition (remapping the values to "global") or the caller wishes to recieve the (indirect) handles to the
          * relations which actually have the data. The caller informs SAF of which of these two cases is desired by using the
          * saf_target_topo_relation function. */
         if (SS_PERS_ISNULL(&target->decomp)) {
             desireHandles = TRUE;
         } else if (_saf_is_self_decomp(&target->decomp)) {
             desireHandles = FALSE;
         } else {
             desireHandles = TRUE;
         }
         if (desireHandles) {
             /* Case 1: the caller wishes to receive the indirect handles. This is the common case: the caller should expect a
              * single buffer (the A-buffer) of handles, we'll construct a buffer to hold the row numbers picked up from the
              * blob... */
             if (NULL==_saf_getCollection_set(&sup, &storage_decomp, &storage_coll))
                 SAF_ERROR(SAF_CONSTRAINT_ERROR,
                           _saf_errmsg("collection \"%s\" not found on set \"%s\"",
                                       ss_string_ptr(SS_CAT_P(&storage_decomp,name)),
                                       ss_string_ptr(SS_SET_P(&sup,name))));
             bufferSize = SS_COLLECTION(&storage_coll)->count;

             /* Read the relation links */
             if (NULL==(*abuf=ss_array_get(SS_REL_P(rel,indirect_rels), ss_pers_tm, (size_t)0, bufferSize, *abuf)))
                 SAF_ERROR(SAF_MEMORY_ERROR,_saf_errmsg("unable to obtain topological relation data"));
         } else {
             /* Case 2: the caller wishes to receive the maps as though they had been stored on self rather than on a
              * decomposition. The caller should expect the appropriate number of buffers, the number of items stored at A- and
              * B-buffer data depends in the nature of the relation: structured, unstructured, or arbitrary. */

             /* First we'll get the indirect handles using a recursive call. */
             saf_get_count_and_type_for_topo_relation(pmode, rel, target, &theRep, &Acount, &Atype, &Bcount, &Btype);

             switch (SS_RELREP(&theRep)->id) {
             case SAF_ARBITRARY_ID:
                 SAF_ERROR(SAF_NOTIMPL_ERROR, _saf_errmsg("remapping of arbitrary topology not implemented yet"));
             case SAF_STRUCTURED_ID:
                 SAF_ERROR(SAF_NOTIMPL_ERROR, _saf_errmsg("remapping of structured topology not implemented yet"));
             case SAF_UNSTRUCTURED_ID:
                 Abuffer = malloc(sizeof(*Abuffer));
                 Bbuffer = malloc(Bcount*sizeof(*Bbuffer));
                 if (!Abuffer || !Bbuffer)
                     SAF_ERROR(SAF_MEMORY_ERROR, _saf_errmsg("out of memory"));
                 Abuffer[0] = SS_NOSIZE;
                 for (i=0; i<Bcount; i++) Bbuffer[i] = SS_NOSIZE;

                 saf_get_count_and_type_for_topo_relation(pmode, rel, NULL, NULL, &IAcount, &IAtype, NULL, NULL);
                 if (IAcount<1)
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("no indirect topo handles"));
                 if (saf_read_topo_relation(pmode, rel, NULL, (void**)&IAbuf, NULL)!=SAF_SUCCESS || !IAbuf)
                     SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't retrieve indirect topo handles"));

                 for (d=0; d<IAcount; ++d) {
                     SS_stitching_Abuf = SS_using_Abuf = Abuf = Bbuf = NULL;
                     saf_describe_topo_relation(pmode, IAbuf+d, &Dstitching_set, &Dstitching_cat, &Dusing_set, &Dusing_cat,
                                                NULL, NULL, NULL);
                     if (!SAF_EQUIV(&sub_cat,&Dstitching_cat))
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("remaping of boundary relations not supported yet"));
                     if (!SAF_EQUIV(&sup_cat,&Dusing_cat))
                         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("remaping of boundary relations not supported yet"));

                     if (!SAF_EQUIV(&sub,&Dstitching_set)) {
                         subsetRelationList=NULL;
                         saf_find_subset_relations(pmode, &db, &sub, &Dstitching_set, &sub_cat, &Dstitching_cat,
                                                   SAF_BOUNDARY_FALSE, SAF_BOUNDARY_FALSE, &numberOfSubsetRelations,
                                                   &subsetRelationList);
                         saf_describe_subset_relation(pmode, subsetRelationList+0, NULL, NULL, NULL, NULL, NULL, NULL,
                                                      &subsetRelationType, NULL);
                         if (numberOfSubsetRelations!=1 || !subsetRelationList)
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't retrieve subset relations"));
                         saf_get_count_and_type_for_subset_relation(pmode, subsetRelationList+0, NULL, &SS_stitching_Acount,
                                                                    &SS_stitching_Atype, NULL, NULL);
                         saf_read_subset_relation(pmode, subsetRelationList+0, NULL, &SS_stitching_Abuf, NULL);
                         if (SAF_HSLAB_ID==SS_RELREP(&subsetRelationType)->id) {
                             if (SS_stitching_Acount!=3)
                                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid hyper slab relation"));
                             if (H5Tequal(SS_stitching_Atype,H5T_NATIVE_INT)) {
                                 start  = ((int *)SS_stitching_Abuf)[0];
                                 count  = ((int *)SS_stitching_Abuf)[1];
                                 stride = ((int *)SS_stitching_Abuf)[2];
                                 SS_stitching_Abuf = SS_FREE(SS_stitching_Abuf);
                                 p = malloc(count*sizeof(int));
                                 for (jj=0; jj<count; jj++)
                                     p[jj] = start + jj * stride;
                                 SS_stitching_Acount = count;
                                 SS_stitching_Abuf = p;
                             } else {
                                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("invalid hyper slab type"));
                             }
                         }
                         subsetRelationList = SS_FREE(subsetRelationList);
                     }
                     if (!SAF_EQUIV(&sup, &Dusing_set)) {
                         subsetRelationList=NULL;
                         saf_find_subset_relations(pmode, &db, &sup, &Dusing_set, &sup_cat, &Dusing_cat, SAF_BOUNDARY_FALSE,
                                                   SAF_BOUNDARY_FALSE, &numberOfSubsetRelations, &subsetRelationList);
                         if (numberOfSubsetRelations!=1 || !subsetRelationList)
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't retrieve subset relations"));
                         saf_get_count_and_type_for_subset_relation(pmode, subsetRelationList+0, NULL, NULL, &SS_using_Atype,
                                                                    NULL, NULL);
                         saf_read_subset_relation(pmode, subsetRelationList+0, NULL, &SS_using_Abuf, NULL);
                         subsetRelationList = SS_FREE(subsetRelationList);
                     }
                     saf_get_count_and_type_for_topo_relation(pmode, IAbuf+d, NULL, &thisRelRep, &Acount, &Atype, &Bcount, &Btype);
                     if (Acount > 0 && Bcount > 0) {
                         switch (SS_RELREP(&thisRelRep)->id) {
                         case SAF_ARBITRARY_ID:
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't remap arbitrary topo relation"));
                         case SAF_STRUCTURED_ID:
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't remap structured topo relation"));
                         case SAF_UNSTRUCTURED_ID:
                             saf_read_topo_relation(pmode, IAbuf+d, NULL, &Abuf, &Bbuf);
                             /* At this point we have every thing we need to add the contribution of this "domain" to the global
                              * map: one or more subset maps which show how a local member of a collection (such as a node or a
                              * zone), and the "local" topo maps. And all we must do is the actual composition and insertion
                              * into the map being assembled. */

                             /* Retrieve the number of "usings" per "stitched" (Abuf[0]). In a typical case "using" is "nodes"
                              * and "stitched" is "zones" (but it is not limited to this)... */
                             _saf_convert(Atype, Abuf, H5T_NATIVE_SIZE, &NusingPerStitched);
                             if (SS_NOSIZE==Abuffer[0]) {
                                 Abuffer[0] = NusingPerStitched;
                             } else if (Abuffer[0]!=NusingPerStitched) {
                                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("inconsistant mapping factor"));
                             }
                             Nstitched = Bcount / NusingPerStitched;

                             /* Now we'll run through each of the members being "stitched" and for each of these we'll run
                              * though the N relations associated where N is number of "usings" per "stitched" (ie. nodes per
                              * zone). */
                             for (s=0; s<Nstitched; s++) {
                                 if (SS_stitching_Abuf) {
                                     _saf_convert(SS_stitching_Atype, (char*)SS_stitching_Abuf + s*H5Tget_size(SS_stitching_Atype),
                                                  H5T_NATIVE_SIZE, &mapped_s);
                                 } else {
                                     mapped_s = s;
                                 }
                                 for (i=0; i<NusingPerStitched; i++) {
                                     /* Within each "stitched" (ie. zone) we'll run through its list of "usings" (ie. nodes). */
                                     j  = s * NusingPerStitched + i;
                                     _saf_convert(Btype, (char*)Bbuf + j*H5Tget_size(Btype), H5T_NATIVE_SIZE, &u);
                                     if (SS_using_Abuf) {
                                         _saf_convert(SS_using_Atype, (char*)SS_using_Abuf + u*H5Tget_size(SS_using_Atype),
                                                      H5T_NATIVE_SIZE, &mapped_u);
                                     } else {
                                         mapped_u = u;
                                     }
                                     k = mapped_s * NusingPerStitched + i;
                                     Bbuffer[k] = mapped_u;
                                 }
                             }
                             break;
                         default:
                             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("can't remap topo relation of unsupported type"));
                         }

                         Abuf = SS_FREE(Abuf);
                         Bbuf = SS_FREE(Bbuf);
                         SS_stitching_Abuf = SS_FREE(SS_stitching_Abuf);
                         SS_using_Abuf = SS_FREE(SS_using_Abuf);
                     }
                 }
                 if (abuf) {
                     *abuf = Abuffer;
                     Abuffer = NULL;
                 }
                 if (bbuf) {
                     *bbuf = Bbuffer;
                     Bbuffer = NULL;
                 }
                 break;
             default:
                 SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("unsupported relation representation type"));
             }

             Abuffer = SS_FREE(IAbuf);
             Abuffer = SS_FREE(Abuffer);
             Bbuffer = SS_FREE(Bbuffer);
         }
     }

 theExit:

     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummReadTime += (_saf_wall_clock(false) - timer_start);

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 hbool_t
 saf_same_collections(SAF_Set *Sa,       /* The set component of the first or left operand of the equality comparison operator. */
                      SAF_Cat *Ca,       /* The category component of the first or left operand of the equality comparison
                                          * operator. */
                      SAF_Set *Sb,       /* The set component of the second or right operand of the equality comparison operator. */
                      SAF_Cat *Cb        /* The category component of the second or right operand of the equality comparison
                                          * operator. */
                      )
 {
   SAF_ENTER(saf_same_collections,false);
   hbool_t retval = SAF_EQUIV(Sa, Sb) && SAF_EQUIV(Ca, Cb);
   SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 int
 saf_setProps_Clobber(SAF_DbProps *properties    /* The database property list which will be modified by this function
                                                   (See Properties). */
                      )
 {
     SAF_ENTER(saf_setProps_Clobber, SAF_PRECONDITION_ERROR);
     SAF_DbProps *p = properties;

     SAF_REQUIRE(p, SAF_HIGH_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must not be null"));

     p->Clobber = true;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 int
 saf_setProps_DbComm(SAF_DbProps *properties,    /* The database property list which will be modified by this function
                                                    (See Properties). */
                     MPI_Comm communicator       /* The MPI communicator. */
                     )
 {
     SAF_ENTER(saf_setProps_DbComm, SAF_PRECONDITION_ERROR);
     SAF_DbProps         *p = properties;

     SAF_REQUIRE(p, SAF_HIGH_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must not be null"));

     p->DbComm = communicator;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 int
 saf_setProps_DontAbort(SAF_LibProps *properties   /* The library property list which will be modified by this function */)
 {
     SAF_ENTER_NOINIT(saf_setProps_DontAbort, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     p->DoAbort = false;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 int
 saf_setProps_ErrFunc(SAF_LibProps *properties,   /* The library property list which will be modified by this function
                                                    (See Properties). */
                      SAF_ErrFunc func           /* The callback to invoke when an error occurs. */
                      )
 {
     SAF_ENTER_NOINIT(saf_setProps_ErrFunc, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     /* Not implemented */
     if (false) SAF_ERROR(SAF_NOTIMPL_ERROR, _saf_errmsg("not implemented yet"));
     SAF_LEAVE(SAF_NOTIMPL_ERROR);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 int
 saf_setProps_ErrorLogging(SAF_LibProps *properties,     /* The library property list which will be modified by this function
                                                            (See Properties). */
                           const char *mode              /* The error logging mode. */
                           )
 {
     SAF_ENTER_NOINIT(saf_setProps_ErrorLogging, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     _saf_set_error_logging(mode, p);
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 int
 saf_setProps_ErrorMode(SAF_LibProps *properties, /* The library property list which will be modified by this function
                                                    (See Properties). */
                        SAF_ErrMode mode         /* The new error handling mode. Valid values are SAF_ERRMODE_RETURN (the
                                                  * default) and SAF_ERRMODE_THROW. */
                        )
 {
     SAF_ENTER_NOINIT(saf_setProps_ErrorMode, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     p->ErrorMode = mode;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 int
 saf_setProps_LibComm(SAF_LibProps *properties,   /* The library property list which will be modified by this function
                                                    (See Properties). */
                      MPI_Comm communicator      /*The new MPI communicator.*/
                      )
 {
     SAF_ENTER_NOINIT(saf_setProps_LibComm, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     p->LibComm = communicator;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 int
 saf_setProps_MemoryResident(SAF_DbProps *properties)
 {
     SAF_ENTER(saf_setProps_MemoryResident, SAF_PRECONDITION_ERROR);
     SAF_DbProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
       _saf_errmsg("PROPERTIES must not be null"));

     p->MemoryResident = true;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 int
 saf_setProps_ReadOnly(SAF_DbProps *properties   /* The database property list which will be modified by this function
                                                    (See Properties). */
                       )
 {
     SAF_ENTER(saf_setProps_ReadOnly, SAF_PRECONDITION_ERROR);
     SAF_DbProps *p = properties;

     SAF_REQUIRE(p, SAF_HIGH_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must not be null"));

     p->ReadOnly = true;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 int
 saf_setProps_Registry(SAF_LibProps *properties,            /* Library properties (See Properties) */
                       const char *name                    /* Name of object registry file */
                       )
 {
     SAF_ENTER_NOINIT(saf_setProps_Registry, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;
     size_t i;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));
     SAF_REQUIRE(name && *name, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("NAME is required to be non-empty"));

     /* An easy-to-fool check that we're not adding the same thing more than once */
     for (i=0; i<p->reg.nused; i++) {
         if (!strcmp(name, p->reg.name[i]))
             SAF_RETURN(0);
     }

     /* Allocate more space for table */
     if (p->reg.nused>=p->reg.nalloc) {
         p->reg.nalloc = MAX(16, 2*p->reg.nalloc);
         p->reg.name = realloc(p->reg.name, p->reg.nalloc*sizeof(char*));
         p->reg.nowarn = realloc(p->reg.nowarn, p->reg.nalloc*sizeof(p->reg.nowarn[0]));
     }

     /* Add the name to the end of the list */
     p->reg.name[p->reg.nused] = _saf_strdup(name);
     p->reg.nowarn[p->reg.nused] = SAF_TRISTATE_FALSE;
     p->reg.nused++;

     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 int
 saf_setProps_StrMode(SAF_LibProps *properties,   /* The library property list which will be modified by this function
                                                    (See Properties). */
                      SAF_StrMode mode           /* The string allocation mode, one of SAF_STRMODE_LIB, SAF_STRMODE_CLIENT, or
                                                  * SAF_STRMODE_POOL. */
                      )
 {
     SAF_ENTER_NOINIT(saf_setProps_StrMode, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     p->StrMode = mode;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 int
 saf_setProps_StrPoolSize(SAF_LibProps *properties,       /* The library property list which will be modified by this function (See
                                                            Properties). */
                          int size                       /*The new pool size.*/
                          )
 {
     SAF_ENTER_NOINIT(saf_setProps_StrPoolSize, SAF_PRECONDITION_ERROR);

     SAF_LibProps *p = properties;

     SAF_REQUIRE(p, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PROPERTIES must be a valid library properties handle"));

     p->StrPoolSize = size;
     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	 int
 saf_target_field(SAF_FieldTarget *target,       /* [OUT] The target information that will be initialized by this call. */
                  SAF_Unit *targ_units,          /* The new units. This parameter is ignored at this time. */
                  SAF_Cat *targ_storage_decomp,  /* The new storage decomposition. */
                  SAF_Cat *targ_coeff_assoc,     /* This parameter is ignored at this time. */
                  int targ_assoc_ratio,          /* This parameter is ignored at this time. */
                  SAF_Cat *targ_eval_coll,       /* This parameter is ignored at this time. */
                  SAF_Eval *targ_func,           /* This parameter is ignored at this time. */
                  hid_t targ_data_type,          /* The new destination data type. When the saf_write_field() function is called
                                                  * the datatype of the dataset produced is determined by this parameter.  When
                                                  * the saf_read_field() function is called, the datatype of the values placed in
                                                  * the caller's memory is determined by this parameter. If a value of
                                                  * H5I_INVALID_HID is passed for this parameter then datatype targeting is
                                                  * turned off and the default mechanism for determining the destination
                                                  * datatype is used. */
                  SAF_Interleave comp_intlv,     /* The particular fashion in which components are interleaved.  Currently
                                                  * there are really only two: SAF_INTERLEAVE_VECTOR and SAF_INTERLEAVE_COMPONENT.
                                                  * These represent the XYZXYZ...XYZ and the XXX...XYYY...YZZZ...Z cases.  Note that
                                                  * interleave really only deals with a single blob of storage.  In the case of a
                                                  * composite field whose coefficients are stored independently on the component
                                                  * fields then interleave really has no meaning (use SAF_INTERLEAVE_INDEPENDENT).
                                                  * Interleave only has meaning on fields with storage.  In the case of a scalar
                                                  * field interleave is also meaningless, both cases degenerate to the same layout:
                                                  * XXX...X (use SAF_INTERLEAVE_NONE). This parameter is ignored at this time. */
                  int *comp_order                /* Only relevant for fields with component fields.  This value indicates the order
                                                  * of the field IDs in the COMP_FLDS relative to the registered order. Pass NULL
                                                  * if the permutation is the identity. This parameter is ignored at this time. */

                  )
 {
    SAF_ENTER(saf_target_field, SAF_PRECONDITION_ERROR);

    SAF_REQUIRE(!targ_storage_decomp || SS_CAT(targ_storage_decomp), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("STORAGE_DECOMP must be either NOT_SET, SELF_DECOMP or a valid cat handle"));
    SAF_REQUIRE(target, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("TARGET must be non-null"));

    memset(target, 0, sizeof *target);
    target->is_set = TRUE;
    if (targ_units) target->units = *targ_units;
    if (targ_storage_decomp) target->decomp = *targ_storage_decomp;
    if (targ_coeff_assoc) target->coeff_assoc = *targ_coeff_assoc;
    target->assoc_ratio = targ_assoc_ratio;
    if (targ_eval_coll) target->eval_coll = *targ_eval_coll;
    if (targ_func) target->func = *targ_func;
    target->data_type = targ_data_type;
    target->comp_intlv = comp_intlv;
    target->comp_order = comp_order;

    SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 int
 saf_target_subset_relation(SAF_RelTarget *target,       /* [OUT] Relation targeting information to be initialize herein. */
                            SAF_RelRep *srtype,          /* Target subset relation types. */
                            hid_t type                   /* Target data types. */
                            )
 {
    SAF_ENTER(saf_target_subset_relation, SAF_PRECONDITION_ERROR);

    memset(target, 0, sizeof *target);
    target->is_set = TRUE;
    target->data_type = type;

    SAF_ERROR(SAF_NOTIMPL_ERROR, _saf_errmsg("not implemented yet"));
    SAF_LEAVE(SAF_NOTIMPL_ERROR);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	 int
 saf_target_topo_relation(SAF_RelTarget *target,         /* [OUT] Relation targeting information to be initialized by this
                                                          * function. */
                          SAF_Set *range_set,            /* Optional set. */
                          SAF_Cat *range_cat,            /* Together the RANGE_SET this identifies the target collection to be
                                                          * used to glue the pieces together. Currently both of these
                                                          * parameters are ignored.  */
                          SAF_Cat *decomp,               /* The optional target decomposition. */
                          SAF_RelRep *trtype,            /* The optional target relation types. Currently this parameter is
                                                          * ignored. */
                          hid_t data_type                /* The optional target data type. */
                         )
 {
    SAF_ENTER(saf_target_topo_relation, SAF_PRECONDITION_ERROR);
    SAF_REQUIRE(target, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("must pass non-null target information"));
    SAF_REQUIRE(SS_CAT(decomp), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                _saf_errmsg("DECOMP must be either NOT_SET, SELF_DECOMP or a valid cat handle"));

    target->is_set = TRUE;
 /*
    Sun compiler had a problem with the following three lines. noconst: vs. const
    target->range_set = range_set ? *range_set : SS_SET_NULL;
    target->range_cat = range_cat ? *range_cat : SS_CAT_NULL;
    target->decomp = decomp ? *decomp : SS_CAT_NULL;
 */
    target->range_set    = SS_SET_NULL;
    if (range_set)
       target->range_set = SS_SET_NULL;
    target->range_cat    = SS_CAT_NULL;
    if (range_cat)
      target->range_cat  = *range_cat;
    target->decomp       = SS_CAT_NULL;
    if (decomp)
      target->decomp     =  *decomp;

    target->data_type = data_type;
 #ifdef SSLIB_SUPPORT_PENDING /* This shouldn't be necessary since we have the type in the SAF_RelTarget struct*/
    Ptrel->abuf_type = targ_data_type;
    Ptrel->bbuf_type = targ_data_type;
 #endif /*SSLIB_SUPPORT_PENDING*/

    SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 int
 saf_ungrab_hdf5(hid_t __UNUSED__ h5f_id /*HDF5 file handle previously obtained from a call to saf_grab_hdf5()*/)
 {
     SAF_ENTER_GRABBED(saf_ungrab_hdf5, SAF_FAILURE);
     SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 int
 saf_update_database(SAF_Db *database/*The database to update*/)
 {
     SAF_ENTER(saf_update_database, SAF_PRECONDITION_ERROR);
     ss_scope_t          topscope=SS_SCOPE_NULL;

     SAF_REQUIRE(SS_MAGIC(ss_file_t)==SS_MAGIC_OF(database), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DATABASE must be a database handle"));
     SAF_REQUIRE(!_saf_database_is_read_only(database), SAF_NO_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("DATABASE must not be open for read-only access"));

     /* Synchronize all scopes of the file, then flush all scopes of the file */
     if (ss_file_synchronize(database, NULL)<0)
         SAF_ERROR(-1, _saf_errmsg("ss_file_synchronize() failed"));
     if (ss_file_flush(database, NULL)<0)
         SAF_ERROR(-1, _saf_errmsg("ss_file_flush() failed"));

     /* Flush raw data to the file */
     if (NULL==ss_pers_topscope((ss_pers_t*)database, &topscope))
         SAF_ERROR(-1, _saf_errmsg("ss_pers_topscope() failed"));
     if (ss_blob_flush(&topscope, NULL, SS_STRICT, NULL)<0)
         SAF_ERROR(-1, _saf_errmsg("ss_blob_flush() failed"));

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 int
 saf_use_written_subset_relation(SAF_ParMode pmode,      /* the parallel mode. */
                                 SAF_Rel *rel,           /* The handle for the relation to be updated. */
                                 SAF_Rel *oldrel,        /* The handle for the relation pointing to the data to be re-used. */
                                 hid_t A_buf_type,       /* The type of data that would be written for the A buffer (see
                                                          * saf_write_subset_relation()) if this call was actually doing any
                                                          * writing. */
                                 hid_t B_buf_type,       /* The type of data that would be written for the B buffer (see
                                                          * saf_write_subset_relation()) if this call was actually doing any
                                                          * writing. */
                                 SAF_Db *file            /* The file the data would be written to if this call was actually
                                                          * doing any writing. */
 )
 {
     SAF_ENTER(saf_use_written_subset_relation, SAF_PRECONDITION_ERROR);
     int         retval;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle"));
     SAF_REQUIRE(SS_REL(oldrel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("OLDREL must be a valid relation handle"));

     /* Confirm relevant parts of relation records are identical */
     SAF_REQUIRE(SAF_EQUIV(SS_REL_P(rel,sup_cat),SS_REL_P(oldrel,sup_cat)), SAF_NO_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("OLDREL must be same as REL to re-use data written to it"));
     SAF_REQUIRE(SS_REL(rel)->kind==SS_REL(oldrel)->kind, SAF_NO_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("OLDREL must be same as REL to re-use data written to it"));

     /* Make the actual call to write/update the relation data */
     retval = _saf_write_subset_relation(pmode, rel, oldrel, A_buf_type, NULL, B_buf_type, NULL, file);
     SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 char *
 saf_version_string(int verbose, char *buffer, size_t bufsize)
 {
     SAF_ENTER(saf_version_string,NULL);

     char        tmp[64];
     const char  *fmt, *pre, *suf, *annot = SAF_VERSION_ANNOT;

     /* setup */
     if (verbose) {
         fmt = "version %d.%d release %d";
         pre = " (";
         suf = ")";
     } else {

         fmt = "%d.%d.%d";
         pre = "-";
         suf = "";
     }

     /* version and release numbers */
     sprintf(tmp, fmt, SAF_VERSION_MAJOR, SAF_VERSION_MINOR, SAF_VERSION_RELEASE);
     strncpy(buffer, tmp, bufsize);

     /* version annotation */
     if (annot) {
         size_t len = strlen(tmp);
         strncpy(buffer+len, pre, len<bufsize?bufsize-len:0);
         len += strlen(pre);
         strncpy(buffer+len, annot, len<bufsize?bufsize-len:0);
         len += strlen(annot);
         strncpy(buffer+len, suf, len<bufsize?bufsize-len:0);
     }
     SAF_LEAVE(buffer);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	 int
 saf_write_alternate_indexspec(SAF_ParMode pmode,        /* The parallel mode. */
                               SAF_AltIndexSpec *aspec,  /* The alternate index spec to write. */
                               hid_t data_type,          /* The datatype used to identify members of the collection, if not
                                                          * already supplied with saf_declare_alternate_indexspec(). */
                               void *buf,                /* The buffer of data to write. */
                               SAF_Db *file              /* The optional destination file to which to write the data. If this
                                                          * is a null pointer then the data is written to the same file as
                                                          * ASPEC. */
                               )
 {
     SAF_ENTER(saf_write_alternate_indexspec, SAF_PRECONDITION_ERROR);
     double              timer_start=0;
     hsize_t             offset;
     ss_collection_t     coll=SS_COLLECTION_NULL;
     ss_scope_t          scope=SS_SCOPE_NULL;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);


     SAF_REQUIRE(SS_INDEXSPEC(aspec), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("ASPEC must be a valid alternate index spec handle"));
     SAF_REQUIRE(buf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BUF must not be null"));
     SAF_REQUIRE(SS_INDEXSPEC(aspec)->m.data_type>0 || data_type>0, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("You must pass a datatype either in the call to saf_declare_alternate_indexspec() or here"));

     /* Start the timer */
     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(false);

     /* Get the collection record */
     ss_pers_scope(file?(ss_pers_t*)file:(ss_pers_t*)aspec, &scope);
     if (data_type<=0) data_type = SS_INDEXSPEC(aspec)->m.data_type;
     coll = SS_INDEXSPEC(aspec)->coll;

     /* Disallow overwrites to alt index specs */
     if (!SS_PERS_ISNULL(SS_INDEXSPEC_P(aspec,blob)))
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot overwrite an alt index spec"));

     /* Write the BUF data */
     SAF_DIRTY(aspec, pmode);
     if (NULL==ss_blob_new(&scope, SAF_ALL==pmode?SS_ALLSAME:0U, SS_INDEXSPEC_P(aspec,blob)) ||
         ss_blob_bind_m1(SS_INDEXSPEC_P(aspec,blob), buf, data_type, (hsize_t)SS_COLLECTION(&coll)->count)<0 ||
         ss_blob_mkstorage(SS_INDEXSPEC_P(aspec,blob), &offset, SAF_ALL==pmode?SS_ALLSAME:0U, NULL)<0)
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot allocate file space for the data"));
     if (ss_blob_write1(SS_INDEXSPEC_P(aspec,blob), offset, (hsize_t)SS_COLLECTION(&coll)->count,
                        SS_BLOB_COLLECTIVE|SS_BLOB_UNBIND|(SAF_ALL==pmode?SS_ALLSAME:0U), NULL)<0)
         SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot write data"));

     /* Accumulate times */
     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummWriteTime += (_saf_wall_clock(false) - timer_start);

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

	 int
 saf_write_field(SAF_ParMode pmode,      /* The parallel mode. */
                 SAF_Field *field,       /* The field to write. */
                 int member_count,       /* A count of the number of members of the collection in which the field's dofs are
                                          * n:1 associated that are actually being written in this call. This value is
                                          * ignored if you are writing the entire field's dofs in this call (i.e., REQ_TYPE is
                                          * SAF_TOTALITY). Also note that as a convenience, we provide the macro
                                          * SAF_WHOLE_FIELD which expands to a comma separated list of appropriate values for
                                          * this argument and the next two, for the case in which the whole field is being
                                          * written in this call. */
                 SAF_RelRep *req_type,   /* The type of I/O request. We use a relation representation type here to specify the
                                          * type of the partial request because it captures the necessary information. Pass
                                          * SAF_HSLAB if you are writing the dofs of a partial hyperslab of the members of the
                                          * associated collection. In this case, MEMBER_IDS points to 3 N-tuples of starts,
                                          * counts and strides of the hyperslab (hypersample) request. Pass SAF_TUPLES, if you
                                          * are writing the dofs for an arbitrary list of members of the associated collection.
                                          * In this case, the MEMBER_IDS points to a list of N-tuples. In both cases, 'N' is
                                          * the number of indexing dimensions in the associated collection. Finally, pass
                                          * SAF_TOTALITY if you are writing the entire field's set of dofs. */
                 int *member_ids,        /* Depending on the value of REQ_TYPE, this argument points to 3 N-tuples storing,
                                          * respectively, the starts, counts and strides *in*each*dimension* of the associated
                                          * collection or to a list of MEMBER_COUNT N-tuples, each one identifying a single
                                          * member of the associated collection or to NULL in the case of a SAF_TOTALITY
                                          * request. */
                 int nbufs,              /* The number of buffers. Valid values are either 1 or a value equal to the number of
                                          * components of the field. A value greater than 1 indicates that the field is stored
                                          * component by component, one buffer for each component. Note, however, that current
                                          * limitations of partial requests support only fields that are interleaved by
                                          * SAF_INTERLEAVE_VECTOR. This, in turn, means that in a partial I/O request, NBUFS
                                          * can only ever be one. */
                 hid_t buf_type,         /* The type of the objects in the buffer(s). If the buffer datatype was provided in
                                          * the saf_declare_field() call that produced the field handle then this parameter
                                          * should have a negative value. If however the datatype was not provided in the
                                          * saf_declare_field() or if the handle was the result of a find operation then the
                                          * datatype must be provided in this call. */
                 void **bufs,            /* The buffers. */
                 SAF_Db *file            /* Optional file into which the data is written. If none is supplied then the data is
                                          * written to the same file as the FIELD. */
                 )
 {
     SAF_ENTER(saf_write_field, SAF_PRECONDITION_ERROR);
     double              timer_start=0;
     SAF_FieldTmpl       ftmpl=SS_FIELDTMPL_NULL;
     SAF_Set             base=SS_SET_NULL;
     SAF_Algebraic       algebraic=SS_ALGEBRAIC_NULL;
     int                 buf_size;
     ss_collection_t     coll=SS_COLLECTION_NULL;
     ss_blob_t           dof_blob;       /* The blob that holds the dofs being written. */
     hsize_t             ndofs=1;        /* Total number of dofs to be written. Start at one and multiply it up. */
     hsize_t             my_blob_offset; /* Offset of first item of this task's data in the dof blob. */
     hsize_t             offset;         /* Offset of this task's data in the dof blob for each buffer in turn. */
     SAF_Field           *fields=NULL;   /* One-dimensional array of fields representing all fields from BUFS arrays. */
     hsize_t             my_blob_size;   /* Current size of blob based on what elements tasks are writing (used for creation). */
     hbool_t             should_write;   /* True if this task should call ss_blob_write(). */
     int                 bufno;          /* Counter over the BUFS. */
     ss_scope_t          scope;          /* The scope in which to create the new blob. */
     MPI_Comm            scope_comm;     /* The communicator for `scope' */
     int                 scope_self;     /* MPI task rank of calling task in scope_comm. */
     unsigned            flags;          /* Bit flags for blob operations */
     size_t              cur_ndofs;      /* Number of dofs currently in the indirect_fields array */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_FIELD(field), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("FIELD must be a valid field handle"));
     SAF_REQUIRE(SAF_XOR(SS_FIELD(field)->m.bufs, bufs), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("BUFS must be specified here or in the saf_declare_field() call (not both)"));
     SAF_REQUIRE(!SAF_XOR(nbufs, bufs), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("pass either valid BUFS and NBUFS>0 or NULL and NBUFS==0"));
     SAF_REQUIRE(_saf_is_valid_io_request(pmode, field, member_count, req_type, member_ids, nbufs),
                 SAF_HIGH_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("if partial I/O request, collection must be 1D indexed, REQ_TYPE must be SAF_HSLAB "
                             "or a single (e.g. MEMBER_COUNT=1) SAF_TUPLE and field's interleave, if multi-component, "
                             "must be SAF_INTERLEAVE_VECTOR"));
     SAF_REQUIRE((SS_FIELD(field)->m.data_type>0 || buf_type>0), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("buffer datatype must be specified in field declaration or write"));
     SAF_REQUIRE(SS_FIELD(field)->m.data_type<=0 || buf_type<=0 || H5Tequal(SS_FIELD(field)->m.data_type, buf_type),
                 SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("buffer datatype must be consistent between field declaration and write"));

     /* Start the timer */
     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(FALSE);

     /* Where sould a new blob be created if we have to do that? */
     ss_pers_scope(file?(ss_pers_t*)file:(ss_pers_t*)field, &scope);
     ss_scope_comm(&scope, &scope_comm, &scope_self, NULL);

     /* Copy links to local variables for convenience. */
     ftmpl = SS_FIELD(field)->ftmpl;
     base = SS_FIELD(field)->base_space;
     algebraic = SS_FIELDTMPL(&ftmpl)->algebraic;

     /* If data was supplied in the saf_declare_field() call then use that data instead */
     if (SS_FIELD(field)->m.bufs) {
         bufs = SS_FIELD(field)->m.bufs;
         nbufs = SS_FIELD(field)->m.nbufs;
     }
     if (SS_FIELD(field)->m.data_type>0)
         buf_type = SS_FIELD(field)->m.data_type;
     SAF_ASSERT(nbufs==1 || nbufs==SS_FIELDTMPL(&ftmpl)->num_comps, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                _saf_errmsg("NBUFS %i and ftmpl.num_comps %i not consistent", nbufs, SS_FIELDTMPL(&ftmpl)->num_comps));

     /* Check that all supplied buffer pointers in BUF are non-null */
     SAF_ASSERT_BEGIN(SAF_LOW_CHK_COST) {
         int i;
         ok = TRUE;
         if (bufs && nbufs>1) {
             for (i=0; i<nbufs && ok; i++) {
                 if (!bufs[i]) ok = FALSE;
             }
         }
     } SAF_ASSERT_END(SAF_ASSERTION_ERROR, _saf_errmsg("BUFS must point to NBUFS valid (e.g. non-NULL) pointers"));

     /* The only cases in which the data can be links to other fields is when the storage decomposition is not self or when the
      * algebraic type is indirect (i.e., SAF_FIELD) */
     SAF_ASSERT_BEGIN(SAF_LOW_CHK_COST) {
         if (H5Tequal(buf_type, ss_pers_tm)) {
             ok = (SS_ALGEBRAIC(&algebraic)->indirect || !_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat)));
         } else {
             ok = (!SS_ALGEBRAIC(&algebraic)->indirect && _saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat)));
         }
     } SAF_ASSERT_END(SAF_ASSERTION_ERROR,
                      _saf_errmsg("Data can be field links only if the algebraic type is indirect (SAF_FIELD) or the storage "
                                  "decomponsition is not SAF_SELF."));

     /* If we're writing the whole field then ignore what the user passed in for MEMBER_COUNT and instead look at either the
      * field's dof_assoc_cat or, for an indirect field, its storage_decomp_cat. */
     if (SS_RELREP(req_type)->id==SAF_TOTALITY_ID) {
         if (!_saf_is_self_decomp(SS_FIELD_P(field,dof_assoc_cat))) {
             if (_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat))) {
                 _saf_getCollection_set(&base, SS_FIELD_P(field,dof_assoc_cat), &coll);
             } else {
                 _saf_getCollection_set(&base, SS_FIELD_P(field,storage_decomp_cat), &coll);
             }
             SAF_ASSERT(!SS_PERS_ISNULL(&coll), SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                        _saf_errmsg("_saf_getCollection_set failed"));
             member_count = SS_COLLECTION(&coll)->count;
         } else {
             member_count = 1;
         }
     }
     ndofs *= member_count;

     /* Multiply by the field's association ratio */
     ndofs *= SS_FIELD(field)->assoc_ratio;

     /* Now multiply by the field template's number of components. */
     if (_saf_is_primitive_type(buf_type)) {
         assert(SS_FIELDTMPL(&ftmpl)->num_comps>=0);
         ndofs *= SS_FIELDTMPL(&ftmpl)->num_comps;
     } else if (H5Tequal(buf_type, ss_pers_tm)) {
         if (_saf_is_self_decomp(SS_FIELD_P(field,storage_decomp_cat))) {
             assert(SS_FIELDTMPL(&ftmpl)->num_comps>=0);
             ndofs *= SS_FIELDTMPL(&ftmpl)->num_comps;
         }
     } else {
 #ifdef SSLIB_SUPPORT_PENDING
         SAF_ASSERT((ftmplr.num_comps == DSL_rankOf_type(buf_type)), SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                    _saf_errmsg("for a non-primitive datatype, the type must have a rank equal to the number of components "
                                "of the field"));
 #endif /*SSLIB_SUPPORT_PENDING*/
         SAF_ASSERT(nbufs==1, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                    _saf_errmsg("for a non-primitive datatype, their must be only one buffer"));
         SAF_ASSERT(SS_FIELD(field)->comp_intlv == SAF_INTERLEAVE_VECTOR, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                    _saf_errmsg("for a non-primitive datatype, the interleave must be SAF_INTERLEAVE_VECTOR"));
     }

     /* Number of dofs per buffer */
     SAF_ASSERT(0==ndofs % nbufs, SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                _saf_errmsg("NBUFS, %d, must evenly divide into size, %d", nbufs, ndofs));
     buf_size = (int)ndofs / nbufs;



     /* If the data is field handles (i.e., the algebric type is indirect (SAF_FIELD) or the storage decomponsition is not
      * SAF_SELF), then store those field handles in a variable length array in the field. We use a variable length array
      * because it's able to handle the conversion from memory to file representation of persistent object links and is well
      * suited for the small array of field links. */
     if (H5Tequal(buf_type, ss_pers_tm)) {
         /* Make sure that we haven't already stored data that isn't field links. */
         SAF_ASSERT(SS_PERS_ISNULL(SS_FIELD_P(field,dof_blob)), SAF_LOW_CHK_COST, SAF_ASSERTION_ERROR,
                    _saf_errmsg("field already has data written in a DOF blob"));

         /* Convert the separate field arrays into a single array */
         if (NULL==(fields=_saf_field_handles_1d(nbufs, (SAF_Field**)bufs, buf_size)))
             SAF_ERROR(-1, _saf_errmsg("unable to convert handles to 1d array"));

         /* Where does the data land in the variable length array? */
         offset = SAF_TOTALITY_ID==SS_RELREP(req_type)->id ? 0 : member_ids[0];

         /* We adjust the offset for the case of a state field because all component handles are compressed into one buf, not
          * NBUFS blobs. */
         assert(0==offset || SS_FIELDTMPL(&ftmpl)->num_comps>=0);
         offset *= SS_FIELDTMPL(&ftmpl)->num_comps;

         /* ISSUE: Is it possible that a SAF_EACH call will have a different offset and data for each task? If so we'll have to
          *        do some communicating first otherwise ss_file_synchronize() will see that each task made incompatible
          *        modifications to this object. This code just checks that for now. [rpm 2004-06-07] */
         {
             int taskno, ntasks=ss_mpi_comm_size(scope_comm);
             unsigned long *all_offsets = malloc(ntasks*sizeof(*all_offsets));
             all_offsets[scope_self] = offset;
             ss_mpi_allgather(all_offsets, 1, MPI_UNSIGNED_LONG, scope_comm);
             for (taskno=0; taskno<ntasks; taskno++) {
                 if (all_offsets[taskno]!=all_offsets[scope_self]) {
                     SAF_ERROR(-1, _saf_errmsg("offset[task=%d]=%lu; offset[task=%d]=%lu\n",
                                               taskno, all_offsets[taskno], scope_self, all_offsets[scope_self]));
                 }
             }
             SS_FREE(all_offsets);
         }

         /* Insert the field handles into the array and free the buffer, extending the array if necessary */
         SAF_DIRTY(field, pmode);
         cur_ndofs = ss_array_nelmts(SS_FIELD_P(field,indirect_fields));
         if (cur_ndofs<offset+ndofs)
             ss_array_resize(SS_FIELD_P(field,indirect_fields), (size_t)(offset+ndofs));
         ss_array_put(SS_FIELD_P(field,indirect_fields), ss_pers_tm, (size_t)offset, (size_t)ndofs, fields);
         fields = SS_FREE(fields);

         goto done;
     }

     /* We can't get here without passing the valid_io_request pre-condition and all the limitations it currently imposes. So,
      * we know member_ids is either an array of 3 ints {start, count, stride} where stride is constrained to 1 for SAF_HSLAB or
      * an array of 1 int {index} for SAF_TUPLES. Regardless, member_ids[0] is the starting position and member_count is the
      * size of the request. */

     /* Where will each task's contribution land in the blob? We call this `my_blob_offset'. */
     if (SAF_ALL==pmode) {
         if (SAF_TOTALITY_ID==SS_RELREP(req_type)->id) {
             /* Every task is providing all the data. member_ids is probably null. */
             my_blob_size = ndofs;
             my_blob_offset = 0;
             should_write = (0==scope_self);
         } else {
             /* All tasks are providing identical data destined for identical locations in the blob. */
             my_blob_size = member_ids[0] + ndofs;
             my_blob_offset = member_ids[0];
             should_write = (0==scope_self);
         }
     } else {
         if (SAF_TOTALITY_ID==SS_RELREP(req_type)->id) {
             my_blob_size = ndofs;
             my_blob_offset = 0;
             should_write = TRUE;
         } else {
             /* Each task is providing some data (possibly none) at it's own base offset. */
             my_blob_size = member_ids[0] + ndofs;
             my_blob_offset = member_ids[0];
             should_write = TRUE;
         }
     }

     /* Create or extend the blob(s) and underlying dataset. */
     dof_blob = SS_FIELD(field)->dof_blob;
     if (SS_PERS_ISNULL(&dof_blob)) {
         /* Create the blobs if they don't exist yet. */
         if (NULL==ss_blob_new(&scope, SAF_ALL==pmode?SS_ALLSAME:0U, &dof_blob))
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create field dof blob"));

         /* Temporarily bind some memory just so we can create the dataset */
         if (ss_blob_bind_m1(&dof_blob, (void*)1, buf_type, my_blob_size)<0)
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot bind memory to field dof blob"));
         flags = (SAF_ALL==pmode?SS_ALLSAME:SS_BLOB_EACH) |
                 (SS_SET(&base)->is_extendible?SS_BLOB_EXTEND:0U);
         if (ss_blob_mkstorage(&dof_blob, NULL, flags, NULL)<0)
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create field dof blob dataset"));
         if (ss_blob_bind_m1(&dof_blob, NULL, -1, (hsize_t)0)<0)
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot unbind memory from field dof blob"));

         /* Save the new blob pointer in the field */
         SAF_DIRTY(field,pmode);
         SS_FIELD(field)->dof_blob = dof_blob;
     } else if (SS_SET(SS_FIELD_P(field,base_space))->is_extendible) {
         /* The ss_blob_write1() below is independent so we need to extend the dataset here if necessary */
         if (SAF_ALL!=pmode)
             SAF_ERROR(SAF_NOTIMPL_ERROR, _saf_errmsg("extending in SAF_EACH mode is not implemented yet"));
         ss_blob_extend1(&dof_blob, my_blob_size, SS_ALLSAME, NULL);
     }

     /* Write all buffers to the blob. Since each task may have a different number of buffers we have to use independent I/O */
     if (should_write) {
         for (bufno=0; bufno<nbufs; bufno++) {
             ss_blob_bind_m1(&dof_blob, bufs[bufno], buf_type, (hsize_t)buf_size);
             offset = my_blob_offset + bufno*buf_size;
             ss_blob_write1(&dof_blob, offset, (hsize_t)buf_size, SS_BLOB_UNBIND, NULL);
         }
     }

 done:
     SS_FIELD(field)->m.bufs = NULL;
     SS_FIELD(field)->m.nbufs = 0;
     SS_FIELD(field)->m.buf_size = 0;
 #if 0 /* Do not clear this one: the declared datatype should stick around */
     SS_FIELD(field)->m.data_type = 0;
 #endif

     /* Time accounting */
     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummWriteTime += (_saf_wall_clock(false) - timer_start);

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

	 int
 saf_write_state(SAF_ParMode  pmode,             /* The parallel mode. */
                 SAF_StateGrp *state_grp,        /* The state group into which this state will be inserted. */
                 int          state_index,       /* The index within the state group at which this state will be written.
                                                  * This index is 0-based. */
                 SAF_Set      *mesh_space,       /* The ID of the mesh associated with this state. */
                 hid_t        coord_data_type,   /* The data type of COORD */
                 void         *coord_data,       /* The coordinate of STATE_INDEX within the state group.  For instance, this
                                                  * is typically the time value of the state. */
                 SAF_Field    *fields            /* The fields (the dependent variables) to be written to this state. */
                 )
 {
   SAF_ENTER(saf_write_state, SAF_PRECONDITION_ERROR);

   SAF_Db db=SS_FILE_NULL;
   SAF_Cat *param_cats = NULL, *space_cats = NULL, *stategrp_cats = NULL, *mesh_space_cats = NULL;
   int num_param_cats = 0, num_space_cats = 0, /*num_stategrp_cats = 0,*/ num_mesh_space_cats = 0;
   int coll_count = 0, param_count = 0;
   int i, add_count;
   int rel_buf[1];
   int index[1];
   SAF_Set suite; /* the suite "associated" with this stategroup */
   SAF_FieldTmpl stategrp_tmpl;

   SAF_Rel /* *space_rels = NULL,*/ *suite_space_rels = NULL;

   SAF_Field *stategrp_state = NULL;
   hid_t group_type;
   size_t group_size;
   SAF_Field *stategrp_contents = NULL;
   SAF_Field *coords = NULL;
   SAF_Field *coord = NULL;
   SAF_Field *mesh_coord = NULL, *param_coord = NULL;
   SAF_Field *mesh_default_coord = NULL;


   /* find the suite associated with this stategroup */
   saf_describe_field(pmode, state_grp, &stategrp_tmpl, NULL, &suite,
                      NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                      NULL, NULL, NULL, NULL);

   saf_get_count_and_type_for_field(pmode, state_grp, NULL, &group_size, &group_type );


   /* get and set the database and db handles */
   ss_pers_file((ss_pers_t*)&suite, &db);


   {
     /* If necessary, extend the SAF_SPACE_SLICE collection with which the states are associated */

     /* Find the SAF_SPACE_SLICE category defined on this set (suite) */
     space_cats = NULL;
     /* saf_find_categories (suite, "space_slice_cat" , SAF_ANY_ROLE, SAF_ANY_TOPODIM, &num_space_cats, (SAF_Cat **)&space_cats); */
     saf_find_collections(pmode, &suite, SAF_SPACE_SLICE, SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM,
                          SAF_DECOMP_TORF, &num_space_cats, &space_cats);
     param_cats = NULL;
     /* saf_find_categories( suite, "param_slice_cat", SAF_ANY_ROLE, SAF_ANY_TOPODIM, &num_param_cats, (SAF_Cat **)&param_cats); */
     saf_find_collections(pmode, &suite, SAF_PARAM_SLICE, SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM,
                          SAF_DECOMP_TORF, &num_param_cats, &param_cats);


     saf_find_collections(pmode, mesh_space, SAF_SPACE_SLICE, SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM, SAF_DECOMP_TORF, \
                          &num_mesh_space_cats, NULL);



     if( num_mesh_space_cats < 1 ) {
       saf_declare_collection(pmode, mesh_space, space_cats+0, SAF_CELLTYPE_POINT, 1, SAF_1DC(1), SAF_DECOMP_FALSE);
     }
     mesh_space_cats = NULL;
     saf_find_collections(pmode, mesh_space, SAF_SPACE_SLICE, SAF_CELLTYPE_ANY, SAF_ANY_TOPODIM, SAF_DECOMP_TORF, \
                          &num_mesh_space_cats, &mesh_space_cats);



     /* stategrp_role = saf_find_one_role( database, "stategroup_role"); */
 /*
     stategrp_cats = NULL;
     saf_find_categories( suite, "stategroups", SAF_ANY_ROLE, SAF_ANY_TOPODIM, &num_stategrp_cats, (SAF_Cat **)&stategrp_cats);
 */


     saf_describe_collection (pmode, &suite, space_cats+0, NULL, &coll_count, NULL, NULL, NULL);
     saf_describe_collection (pmode, &suite, param_cats+0, NULL, &param_count, NULL, NULL, NULL);

     add_count = 0;
     if (coll_count < state_index+1) {  /* assume just 1-d suite for this first implementation */
       add_count = state_index - coll_count + 1;
       saf_extend_collection (pmode, &suite, space_cats+0, add_count, SAF_1DC(add_count));

       if ( add_count > 1 )
         printf("WARNING: saf_write_state: extending space collection by more than 1\n");

     }

 /*
     space_rels = NULL;
     saf_find_subset_relations(pmode, suite,  mesh_space, SAF_COMMON(space_cats[0]), &num_space_rels, &space_rels);
 */


 /*
     if( state_index > num_space_rels ) {
       printf("state_index is greater than number of subset relations: %i,%i",state_index, num_space_rels);
     }
 */


     if( add_count > 0 ){
       suite_space_rels = (SAF_Rel *)malloc( add_count * sizeof(SAF_Rel));
       for( i = 0 ; i < add_count ; i++ ) {

           saf_declare_subset_relation(pmode, &db, &suite, mesh_space, SAF_COMMON(space_cats+0), SAF_TUPLES, SAF_INT, NULL,
                                       H5I_INVALID_HID, NULL, &(suite_space_rels[i]));

         rel_buf[0] = coll_count + i; /* write the state_index to the subset relation */
         saf_write_subset_relation(pmode, suite_space_rels+i, H5T_NATIVE_INT, rel_buf, H5I_INVALID_HID, NULL, &db);
       }
     }


   }

   {

     /* the stategrp blob should contain two field handles:
          the first is the indirect coord field containing the mesh_coords, and param_coord
          the second is the state field containing the fields stored at this suite_index
     */
     index[0] = 0;
     stategrp_contents = NULL;
     saf_read_field (pmode, state_grp, NULL, 1, SAF_TUPLES, index, (void **)(&stategrp_contents));
     coord = &(stategrp_contents[0]);
     stategrp_state = &(stategrp_contents[1]);

     /* now read the coord field and get the mesh coord and the param coord (dump times) */
     coords = NULL;
     saf_read_field (pmode, coord, NULL, 1, SAF_TUPLES, index, (void **)(&coords));
     mesh_coord = &(coords[1]);
     param_coord = &(coords[0]);

     /* write the handle from the mesh_space default coord field to the mesh_coord indirect field */
     mesh_default_coord = (SAF_Field *)malloc(sizeof(SAF_Field));
     saf_find_default_coords(pmode, mesh_space, mesh_default_coord);
     if (SS_PERS_ISNULL(mesh_default_coord))
         SAF_ERROR(-1,_saf_errmsg("default coords are not defined on the mesh set"));
     index[0] = state_index;
     saf_write_field( pmode, mesh_coord, 1, SAF_TUPLES, index, 1, SAF_HANDLE, (void **)(&mesh_default_coord), &db);
     _saf_free(mesh_default_coord);

     /* write the param coord value (typically a dump time) to the param_coord field */
     /*
       coord contains the value of type coord_data_type.  coord and coord_data_type are supplied by the user
        in this functions parameters
     */
     while( param_count < (state_index+1) ) {
       add_count = (state_index+1) - param_count;
       saf_extend_collection (pmode, &suite, param_cats+0, add_count, SAF_1DC(add_count));
       saf_describe_collection (pmode, &suite, param_cats+0, NULL, &param_count, NULL, NULL, NULL);
     }
     index[0] = state_index;
     saf_write_field( pmode, param_coord, 1, SAF_TUPLES, index, 1, coord_data_type, (void **)&coord_data, &db);

     /* write the field IDs for the dependent variables to the state */
     saf_write_field( pmode, stategrp_state, 1, SAF_TUPLES, index, 1, SAF_HANDLE, (void **)&fields, &db);

     /*
       that should be it, no need to write anything to the stategrp field itself since it simply contains
        the ids of the fields we're writing to.
     */
   }


         if( param_cats != NULL )
                 free(param_cats);

         if( space_cats != NULL )
                 free(space_cats);

         if( mesh_space_cats != NULL )
                 free(mesh_space_cats);

         if( stategrp_cats != NULL )
                 free(stategrp_cats);

         if( suite_space_rels != NULL )
                 free( suite_space_rels );

         if( stategrp_contents != NULL )
                 free( stategrp_contents);

         if( coords != NULL )
                 free(coords);

         SAF_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 int
 saf_write_subset_relation(SAF_ParMode pmode,    /* The parallel mode. */
                           SAF_Rel *rel,         /* The relation whose data is to be written. */
                           hid_t A_type,         /* The type of A_BUF (if not already supplied through the
                                                  * saf_declare_subset_relation() call). */
                           void *A_buf,          /* The data (if not already supplied through the
                                                  * saf_declare_subset_relation() call). */
                           hid_t B_type,         /* The type of B_BUF (if not already supplied through the
                                                  * saf_declare_subset_relation() call. */
                           void *B_buf,          /* The data (if not already supplied through the
                                                  * saf_declare_subset_relation() call). */
                           SAF_Db *file          /* The optional destination file to write the data to. A null pointer for this
                                                  * argument indicates that the data is to be written to the same file as REL. */
                           )
 {
     SAF_ENTER(saf_write_subset_relation, SAF_PRECONDITION_ERROR);
     double              timer_start=0.0;        /* Start time for calculating total write time. */
     int                 retval;

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid relation handle"));
     SAF_REQUIRE(SAF_XOR(SS_REL(rel)->m.abuf, A_buf), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("A_BUF should be specified either here or in the saf_declare_subset_relation() "
                             "call but not both"));
     SAF_REQUIRE(!B_buf || !SS_REL(rel)->m.bbuf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("B_BUF, if present, should be specified either here or in the "
                             "saf_declare_subset_relation() call but not both"));

     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(FALSE);

     /* ok now make the actual call to write/update the relation data */
     retval = _saf_write_subset_relation(pmode, rel, NULL, A_type, A_buf, B_type, B_buf, file);

     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummWriteTime += _saf_wall_clock(false) - timer_start;

     SAF_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

	 int
 saf_write_topo_relation(SAF_ParMode pmode,      /* The parallel mode. */
                         SAF_Rel *rel,           /* The relation handle. */
                         hid_t A_type,           /* See saf_declare_topo_relation(). */
                         void *A_buf,            /* See saf_declare_topo_relation(). */
                         hid_t B_type,           /* See saf_declare_topo_relation(). */
                         void *B_buf,            /* See saf_declare_topo_relation(). */
                         SAF_Db *file            /* The optional destination file. By default (if null) the data is written to
                                                  * the same file to which REL belongs. */
                         )
 {
     SAF_ENTER(saf_write_topo_relation, SAF_PRECONDITION_ERROR);
     double              timer_start=0;          /* Start time for keeping track of how long it takes to write data. */
     ss_scope_t          scope;                  /* Scope where relation's blob will be created. */
     ss_cat_t            storage_decomp;         /* The sub_decomp_cat or storage_decomp cached from REL for convenience. */
     ss_collection_t     storage_coll;           /* The collection associated with the storage_decomp category of REL. */
     size_t              bufferSize;             /* Number of elements in a buffer. */
     ss_set_t            sup;                    /* Cached superset from REL. */

     SAF_REQUIRE(_saf_valid_pmode(pmode), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("PMODE must be valid"));
     if (!_saf_is_participating_proc(pmode)) SAF_RETURN(-1);

     SAF_REQUIRE(SS_REL(rel), SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("REL must be a valid rel handle"));
     SAF_REQUIRE(A_type || !A_buf, SAF_LOW_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("A_TYPE must be supplied if A_BUF is supplied"));
     SAF_REQUIRE(_saf_valid_topo_write_buffers(pmode, rel, A_type, A_buf, B_type, B_buf),
                 SAF_HIGH_CHK_COST, SAF_PRECONDITION_ERROR,
                 _saf_errmsg("A- and B-buffers and types must be set appropriately"));

     if (_SAF_GLOBALS.p.TraceTimes)
         timer_start = _saf_wall_clock(false);

     /* Cache some stuff for convenience */
     sup = SS_REL(rel)->sup;
     storage_decomp = SS_REL(rel)->sub_decomp_cat;

     /* Where sould a new blob be created if we have to do that? */
     ss_pers_scope(file?(ss_pers_t*)file:(ss_pers_t*)rel, &scope);

     /* Pick up the A- and B-buffer pointers and types, note that these may be found either in the relation handle (when they
      * were supplied to the saf_declare_topo_relation() function) or as parameters passed to this function. */
     if (!A_buf) A_buf = SS_REL(rel)->m.abuf;
     if (A_type<=0) A_type = SS_REL(rel)->m.abuf_type;
     if (!B_buf) B_buf = SS_REL(rel)->m.bbuf;
     if (B_type<=0) B_type = SS_REL(rel)->m.bbuf_type;

     /* If the relation is stored on a decomposition, then the category is stored as the "sub_decomp_cat", we'll use this cat */
     if (_saf_is_self_decomp(&storage_decomp)) {
         /* Compute the B-buffer size... */
         switch (SS_RELREP(SS_REL_P(rel,rep_type))->id) {
         case SAF_STRUCTURED_ID:
             /* We assume rectangular structure and, thus, there is no data to write. */
             goto theExit;
         case SAF_UNSTRUCTURED_ID:
             /* In this case the size of the B-buffer depends on the contents of the A-buffer. If an A-buffer was provided in
              * the declare then the B-buffer size would already be known.  But if the A-buffer was deferred by the declare and
              * provided here then the B-buffer buffer size only refkects the size of the collection and must be computed with
              * the number provided as the single element of the A-buffer. */
             if (SS_REL(rel)->m.abuf) {
                 bufferSize = SS_REL(rel)->m.bbuf_size;
             } else {
                 int A_buf_int;
                 _saf_convert(A_type, A_buf, H5T_NATIVE_INT, &A_buf_int);
                 bufferSize = SS_REL(rel)->m.bbuf_size * A_buf_int;
             }

             /* Now it is time to write the B-buffer (range) contents out and record it as a blob.  First write out the B-buffer
              * data. Disallow overwrite of topology relation */
             if (!SS_PERS_ISNULL(SS_REL_P(rel,r_blob)))
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot overwrite topology relation"));

             /* Meaning of pmode...
              *   SAF_ALL:  Collective call where all tasks have identical data and therefore only one of them needs to write
              *             to the file.
              *   SAF_EACH: Collective call where the N tasks create N blobs but those blobs all point into a single common
              *             dataset where the data is stored in task rank order. */
             SAF_DIRTY(rel,pmode);
             if (NULL==ss_blob_new(&scope, SAF_ALL==pmode?SS_ALLSAME:0U, SS_REL_P(rel,r_blob)) ||
                 ss_blob_bind_m1(SS_REL_P(rel,r_blob), B_buf, B_type, (hsize_t)bufferSize)<0 ||
                 ss_blob_mkstorage(SS_REL_P(rel,r_blob), NULL, SAF_ALL==pmode?SS_ALLSAME:SS_BLOB_EACH, NULL)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create range blob"));
             if (ss_blob_write1(SS_REL_P(rel,r_blob), (hsize_t)0, (hsize_t)bufferSize,
                                SS_BLOB_UNBIND|SS_BLOB_COLLECTIVE|(SAF_ALL==pmode?SS_ALLSAME:0U), NULL)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot write to range blob"));
             break;
         case SAF_ARBITRARY_ID:
             /* In this case the size of the B-buffer depends on the contents of the A-buffer.  If an A-buffer was provided in
              * the declare then the B-buffer size would already be known.  But the A-buffer was not provided in the declare so
              * we'll now compute the size of the B-buffer by summing the contents of the A-buffer.  Note that the A-buffer
              * "size" was known (and is the collection size). */
             if (SS_REL(rel)->m.bbuf_size!=SS_NOSIZE) {
                 bufferSize = SS_REL(rel)->m.bbuf_size;
             } else {
                 int A_buf_int;
                 size_t i, A_type_size=H5Tget_size(A_type);
                 for (i=0, bufferSize=0; i<SS_REL(rel)->m.abuf_size; i++) {
                     _saf_convert(A_type, (char*)A_buf+i*A_type_size, H5T_NATIVE_INT, &A_buf_int);
                     bufferSize += A_buf_int;
                 }
             }

             /* First write out the A-buffer data. Disallow overwrite of topology relation. */
             if (!SS_PERS_ISNULL(SS_REL_P(rel,d_blob)))
                 SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("cannot overwrite topology relation"));
             /* Meaning of pmode...
              *   SAF_ALL:  Collective call where all tasks have identical data and therefore only one of them needs to write
              *             to the file.
              *   SAF_EACH: Collective call where the N tasks create N blobs but those blobs all point into a single common
              *             dataset where the data is stored in task rank order. */
             SAF_DIRTY(rel,pmode);
             if (NULL==ss_blob_new(&scope, SAF_ALL==pmode?SS_ALLSAME:0U, SS_REL_P(rel,d_blob)))
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create domain blob"));
             if (ss_blob_bind_m1(SS_REL_P(rel,d_blob), A_buf, A_type, (hsize_t)SS_REL(rel)->m.abuf_size)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot bind memory to domain blob"));
             if (ss_blob_mkstorage(SS_REL_P(rel,d_blob), NULL, SAF_ALL==pmode?SS_ALLSAME:SS_BLOB_EACH, NULL)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create domain blob dataset"));
             if (ss_blob_write1(SS_REL_P(rel,d_blob), (hsize_t)0, (hsize_t)SS_REL(rel)->m.abuf_size,
                                SS_BLOB_UNBIND|SS_BLOB_COLLECTIVE|(SAF_ALL==pmode?SS_ALLSAME:0U), NULL)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot write to domain blob"));

             /* Now write out the B-buffer data. Disallow overwrite of topology relation. */
             if (!SS_PERS_ISNULL(SS_REL_P(rel,r_blob)))
                 SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("cannot overwrite topology relation"));
             /* Meaning of pmode...
              *   SAF_ALL:  Collective call where all tasks have identical data and therefore only one of them needs to write
              *             to the file.
              *   SAF_EACH: Collective call where the N tasks create N blobs but those blobs all point into a single common
              *             dataset where the data is stored in task rank order. */
             SAF_DIRTY(rel,pmode);
             if (NULL==ss_blob_new(&scope, SAF_ALL==pmode?SS_ALLSAME:0U, SS_REL_P(rel,r_blob)))
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create range blob"));
             if (ss_blob_bind_m1(SS_REL_P(rel,r_blob), B_buf, B_type, (hsize_t)bufferSize)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot bind memory to range blob"));
             if (ss_blob_mkstorage(SS_REL_P(rel,r_blob), NULL, SAF_ALL==pmode?SS_ALLSAME:SS_BLOB_EACH, NULL)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot create range blob dataset"));
             if (ss_blob_write1(SS_REL_P(rel,r_blob), (hsize_t)0, (hsize_t)bufferSize,
                                SS_BLOB_UNBIND|SS_BLOB_COLLECTIVE|(SAF_ALL==pmode?SS_ALLSAME:0U), NULL)<0)
                 SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot write to range blob"));
             break;
         default:
             SAF_ERROR(SAF_FILE_ERROR,_saf_errmsg("invalid topological relation rep-type in database"));
         }
     } else {
         /* The relation is stored on a decomposition. The caller should have passed a single buffer (A-buffer) of handles. */
         if (NULL==_saf_getCollection_set(&sup, &storage_decomp, &storage_coll))
             SAF_ERROR(SAF_CONSTRAINT_ERROR,
                       _saf_errmsg("collection \"%s\" not found on set \"%s\"",
                                   ss_string_ptr(SS_CAT_P(&storage_decomp,name)), ss_string_ptr(SS_SET_P(&sup,name))));
         bufferSize = SS_COLLECTION(&storage_coll)->count;

         /* Disallow overwrites of topology */
         if (ss_array_nelmts(SS_REL_P(rel,indirect_rels))>0 || !SS_PERS_ISNULL(SS_REL_P(rel,d_blob)))
             SAF_ERROR(SAF_FILE_ERROR, _saf_errmsg("cannot overwrite topology relation"));

         /* Copy relation links from A_buf into the indirect_rels variable length array. */
 #ifdef SSLIB_SUPPORT_PENDING
         /* Does SAF_EACH mode mean that each task is providing data to be stored in task rank order? */
 #endif /*SSLIB_SUPPORT_PENDING*/
         SAF_DIRTY(rel, pmode);
         ss_array_resize(SS_REL_P(rel,indirect_rels), bufferSize);
         ss_array_put(SS_REL_P(rel,indirect_rels), ss_pers_tm, (size_t)0, bufferSize, A_buf);
     }

 theExit:

     if (_SAF_GLOBALS.p.TraceTimes)
         _SAF_GLOBALS.CummWriteTime += (_saf_wall_clock(false) - timer_start);

     SAF_LEAVE(SAF_SUCCESS);
 }









          

      

      

    

  

    
      
          
            
  
Acknowledgements

Developers:


	Peter K. Espen (SNL)


	Eric A. Illescas (SNL)


	Jake S. Jones (SNL)


	Robb P. Matzke (LLNL)


	Mark C. Miller (LLNL)


	Gregory D. Sjaardema (SNL)


	Larry A. Schoof (SNL)


	William J. Arrighi (LLNL)


	James F. Reus (LLNL)


	Matthew J. O’Brien (LLNL)


	Ray T. Hitt (SNL)




Acknowledgements:


	Marty L. Barnaby (SNL) - parallel perf. study/tuning


	David M. Butler (LPS) - Data model design/implementation Spec.


	Albert K. Cheng (NCSA) - Parallel HDF5 support


	Nancy Collins (IBM) - Alpha/Beta user


	Linnea M. Cook (LLNL) - Management advocate


	Michael J. Folk (NCSA) - Management advocate


	Richard M. Hedges (LLNL) - parallel perf. study/tuning


	Shirley R. Jennings (LLNL) - Occasional Release Management


	Wilbur W. Johnson (SNL) - Early Developer


	Quincey A. Koziol (NCSA) - Serial HDF5 Support


	Celeste M. Matarazzo (LLNL) - Management advocate


	Tyce T. Mclarty (LLNL) - parallel perf. study/tuning


	Tom H. Robey (SNL) - Early Developer


	Greg D. Sjaardema (SNL) - Alpha/Beta user


	Reinhard W. Stotzer (SNL) - Early Developer


	Judy Sturtevant (SNL) - parallel perf. study/tuning


	Robert K. Yates (LLNL) - parallel perf. study/tuning




Copyright 1999-2005. The Regents of the University of California.

All Rights Reserved. This document has been authored by The Regents of
the University of California under Contract No. W-7405-ENG-48 with the
U.S.  Government.

Copyright 1999-2005. Sandia National Laboratories.

All rights reserved.

Disclaimer:

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California.  The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California
and shall not be used for advertising or product endorsement purposes.





          

      

      

    

  

    
      
          
            
  
Grab HDF5 I/O library

saf_grab_hdf5 is a function defined in utils.c.

Synopsis:


	
hid_t saf_grab_hdf5(SAF_Db *file)

	



Description: This function is used to grab the HDF5 lower level I/O library to then interact with
a file in the database using that library.

Once HDF5 is grabbed for a given file in the database (supplemental or master), all
SAF [https://github.com/markcmiller86/SAF] operations on the database are suspended until HDF5 is ungrabbed. Any SAF [https://github.com/markcmiller86/SAF] operation that
is attempted involving a database whose lower levels have been grabbed will fail. The lower level interfaces
to the database must be ungrabbed before normal SAF [https://github.com/markcmiller86/SAF] operations can resume.

For documentation on the HDF5 API, please see hdf.ncsa.uiuc.edu/HDF5/doc/RM_H5Front.html [http://hdf.ncsa.uiuc.edu/HDF5/doc/RM_H5Front.html]

Presently, a lower level interface can be grabbed for only one file in the database at a time.

Return Value: (See *Return Values*)

Parallel Notes: This call is collective in the communicator of the database containing the specified file.

See Also:


	Raw Data I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Ungrab HDF5 I/O library

saf_ungrab_hdf5 is a function defined in utils.c.

Synopsis:


	
int saf_ungrab_hdf5(hid_t __UNUSED__ h5f_id)

	



Formal Arguments:


	h5f_id: HDF5 file handle previously obtained from a call to saf_grab_hdf5




Description: This function is used to ungrab the HDF5 lower level I/O library.

Return Value: (See *Return Values*)

Parallel Notes: This call is collective in the communicator of the database containing the file whose handle was grabbed
by saf_grab_hdf5

See Also:


	saf_grab_hdf5: 22.1:  Grab HDF5 I/O library


	Raw Data I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 void
 CloseDatabase(DbInfo_t dbInfo /* database info object */)
 {
    saf_close_database(dbInfo.db);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

	 void
 GetAddDelSequence(
    const char *inFileName,      /* [IN] name of input file or NULL if no input file specified */
    int *numDims,                /* [OUT] the number of spatial and topological dimensions of the mesh */
    int *numSteps,               /* [OUT] the number of addition/deletion steps */
    int **theOps,                /* [OUT] array of length numSteps indicating the operation (add=+1,delete=-1) */
    ElemSlab_t **theSlabs        /* [OUT] array of element slabs, one for each step */
 )
 {
    int rank = 0;

 #ifdef HAVE_PARALLEL
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 #endif

    /* only processor 0 reads the file */
    if (rank == 0)
    {
       if (inFileName[0] == '\0')
       {
          int n = 0;

          /* generate and return the default data */
          *numDims = 2;
          *numSteps = 4;
          *theSlabs = (ElemSlab_t *) malloc((*numSteps) * sizeof(ElemSlab_t));
          *theOps = (int *) malloc((*numSteps) * sizeof(int));

          /* first step (add) */
          (*theOps)[n] = 1; (*theSlabs)[n].idx[0] = 2; (*theSlabs)[n].idx[1] = 3; n += 1;

          /* second step (add) */
          (*theOps)[n] = 1; (*theSlabs)[n].idx[0] = 2; (*theSlabs)[n].idx[1] = 0; n += 1;

          /* third step (delete) */
          (*theOps)[n] = -1; (*theSlabs)[n].idx[0] = 0; (*theSlabs)[n].idx[1] = -1; n += 1;

          /* fourth step (delete) */
          (*theOps)[n] = -1; (*theSlabs)[n].idx[0] = -1; (*theSlabs)[n].idx[1] = 0; n += 1;

       }
       else
       {
          int count;
          char line[128];
          const char *fmtStr[3] = {"step %c %c%d\n","step %c %c%d, %c%d\n","step %c %c%d, %c%d, %c%d\n"};
          FILE *f;

          /* open and read the input file */
          if ((f = fopen(inFileName, "r")) == NULL)
             AbortThisMess("unable to open input file");

          /* get the number of dimensions */
          if (fscanf(f,"ndims=%d\n", numDims) != 1)
             AbortThisMess("cannot read \"ndims\" line");

          if (*numDims < 1 || *numDims > 3)
             AbortThisMess("ndims out of range [1,3]");

          /* count number of "step" lines */
          count = 0;
          while (fgets(line, sizeof(line), f) != NULL)
             count++;
          *numSteps = count;

          if (*numSteps < 1)
             AbortThisMess("must have at least one step in the birth/death sequence");

          /* allocate the steps output array */
          *theOps = (int *) malloc(count * sizeof(int));
          *theSlabs = (ElemSlab_t *) calloc((size_t)count,sizeof(ElemSlab_t));

          /* rewind back to beginning and skip past first line */
          rewind(f);
          fgets(line, sizeof(line), f);

          /* now, read the step lines into the steps array */
          {
             char op, s1, s2, s3; int n1, n2, n3;
             int reCount = 0;
             int *thisOp = *theOps;
             ElemSlab_t *thisSlab = *theSlabs;

             switch (*numDims)
             {
                case 1:
                   while (fscanf(f, fmtStr[0], &op, &s1, &n1) == 3)
                   {
                      *thisOp++ = (op == '+' ? 1 : -1);
                      (*thisSlab++).idx[0] = (s1 == '+' ? n1 : -n1);
                      reCount++;
                   }
                   break;
                case 2:
                   while (fscanf(f, fmtStr[1], &op, &s1, &n1, &s2, &n2) == 5)
                   {
                      *thisOp++ = (op == '+' ? 1 : -1);
                      (*thisSlab  ).idx[0] = (s1 == '+' ? n1 : -n1);
                      (*thisSlab++).idx[1] = (s2 == '+' ? n2 : -n2);
                      reCount++;
                   }
                   break;
                case 3:
                   while (fscanf(f, fmtStr[2], &op, &s1, &n1, &s2, &n2, &s3, &n3) == 7)
                   {
                      *thisOp++ = (op == '+' ? 1 : -1);
                      (*thisSlab  ).idx[0] = (s1 == '+' ? n1 : -n1);
                      (*thisSlab  ).idx[1] = (s2 == '+' ? n2 : -n2);
                      (*thisSlab++).idx[2] = (s3 == '+' ? n3 : -n3);
                      reCount++;
                   }
                   break;
                default:
                   break;
             }

             if (reCount != count)
             {
                char tmpMsg[1024];
                sprintf(tmpMsg, "input file error, perhaps on line %d", reCount+1);
                AbortThisMess(tmpMsg);
             }
          }

          /* close the file */
          fclose(f);

       }
    }

 #ifdef HAVE_PARALLEL
    MPI_Bcast(numDims, 1, MPI_INT, 0, MPI_COMM_WORLD);
    MPI_Bcast(numSteps, 1, MPI_INT, 0, MPI_COMM_WORLD);
    if (rank != 0)
    {
       *theOps = (int *) malloc(*numSteps * sizeof(int));
       *theSlabs = (ElemSlab_t *) malloc(*numSteps * sizeof(ElemSlab_t));
    }
    MPI_Bcast(*theOps, *numSteps, MPI_INT, 0, MPI_COMM_WORLD);
    MPI_Bcast(*theSlabs, *numSteps * MAX_DIMS, MPI_INT, 0, MPI_COMM_WORLD);
 #endif

 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 void
 OpenDatabase(
    char *dbname,                /* [IN] name of the database */
    hbool_t do_multifile,        /* [IN] boolean to indicate if each step will go to a different supplemental file */
    DbInfo_t *dbInfo             /* [OUT] database info object */
 )
 {
    SAF_DbProps *dbprops=NULL;
    SAF_Db *db=NULL;
    SAF_Cat nodes, elems, procs;
    SAF_Set invariantMesh;
    SAF_Db *theFile;

    /* create the database */
    dbprops = saf_createProps_database();
    saf_setProps_Clobber(dbprops);
    db = saf_open_database(dbname,dbprops);
    dbInfo->db = db;

    /* declare nodes, elems and blocks categories */
    saf_declare_category(SAF_ALL, db,  "nodes", SAF_TOPOLOGY, 0, &nodes);
    dbInfo->nodes = nodes;
    saf_declare_category(SAF_ALL, db,  "elems", SAF_TOPOLOGY, 2, &elems);
    dbInfo->elems = elems;
    saf_declare_category(SAF_ALL, db,  "procs", SAF_PROCESSOR, 2, &procs);
    dbInfo->blocks = procs;

    /* create the invariant set */
    saf_declare_set(SAF_ALL, db, "whole", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &invariantMesh);
    dbInfo->mainMesh = invariantMesh;

    /* if necessary, create the first supplemental file */
    if (do_multifile)
       theFile = saf_open_database("step_000", dbprops);
    else
       theFile = db;
    dbInfo->currentFile = theFile;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 void
 OpenDatabase(
    char *dbname,                /* [IN] name of the database */
    hbool_t do_multifile,        /* [IN] boolean to indicate if each step will go to a different supplemental file */
    int numDims,                 /* [IN] number of topological and geometric dimensions in the mesh */
    int numProcs,                /* [IN] number of processors */
    DbInfo_t *dbInfo             /* [OUT] database info object */
 )
 {
    SAF_DbProps *dbprops=NULL;
    SAF_Db *db;
    SAF_Cat nodes, elems, procs;
    SAF_Set invariantMesh;
    SAF_Db *theFile;

    numProcs = numProcs; /* quiet the compiler */

    /* create the database */
    dbprops = saf_createProps_database();
    saf_setProps_Clobber(dbprops);
    db = saf_open_database(dbname,dbprops);
    dbInfo->db = db;

    /* declare nodes, elems and blocks categories */
    saf_declare_category(SAF_ALL, db,  "nodes", SAF_TOPOLOGY, 0, &nodes);
    dbInfo->nodes = nodes;
    saf_declare_category(SAF_ALL, db,  "elems", SAF_TOPOLOGY, numDims, &elems);
    dbInfo->elems = elems;
    saf_declare_category(SAF_ALL, db,  "procs", SAF_PROCESSOR, numDims, &procs);
    dbInfo->blocks = procs;

    /* create the invariant set */
    saf_declare_set(SAF_ALL, db, "whole", numDims, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &invariantMesh);
    dbInfo->mainMesh = invariantMesh;

    /* if necessary, create the first supplemental file */
    if (do_multifile)
       theFile = saf_open_database("step_000", dbprops);

    else
       theFile = db;
    dbInfo->currentFile = theFile;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	 void
 OpenDatabase(
    char *dbname,                /* [IN] name of the database */
    hbool_t do_multifile,        /* [IN] boolean to indicate if each step will go to a different supplemental file */
    int numDims,                 /* [IN] number of topological and geometric dimensions in the mesh */
    DbInfo_t *dbInfo             /* [OUT] database info object */
 )
 {
    SAF_DbProps *dbprops=NULL;
    /* SAF_Db db; */
    SAF_Cat nodes, elems, blocks;
    SAF_Set aggregateMesh;
    SAF_Db *theFile;

    /* create the database */
    dbprops = saf_createProps_database();
    saf_setProps_Clobber(dbprops);
    db = saf_open_database(dbname,dbprops);
    dbInfo->db = db;

    /* declare nodes, elems and blocks categories */
    saf_declare_category(SAF_ALL, db, "nodes", SAF_TOPOLOGY, 0, &nodes);
    dbInfo->nodes = nodes;
    saf_declare_category(SAF_ALL, db, "elems", SAF_TOPOLOGY, numDims, &elems);
    dbInfo->elems = elems;
    saf_declare_category(SAF_ALL, db, "blocks", SAF_BLOCK, numDims, &blocks);
    dbInfo->blocks = blocks;

    /* create the aggregate set */
    saf_declare_set(SAF_ALL, db, "max-whole", numDims, SAF_SPACE, SAF_EXTENDIBLE_TRUE, &aggregateMesh);
    dbInfo->mainMesh = aggregateMesh;

    /* if necessary, create the first supplemental file */
    if (do_multifile)
       theFile = saf_open_database("step_000",dbprops);
    else
       theFile = db;
    dbInfo->currentFile = theFile;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	 void
 ReadBackElementHistory(
    DbInfo_t *dbInfo,    /* database info object */
    int myProcNum,       /* processor rank in MPI_COMM_WORLD */
    int histElem,        /* the element for which history */
    int *numReadBack,    /* number of dump for which history was read back */
    ElementHistory_t **hist /* the resulting history buffer */
 )
 {
    int i, numHist;
    ElementHistory_t *histBuf;

    SAF_Db *db = dbInfo->db;
    SAF_Cat procs = dbInfo->blocks;
    SAF_Cat elems = dbInfo->elems;
    SAF_Set invariantSet = dbInfo->mainMesh;
    SAF_Set *dumpSets = NULL;

    /* describe the self collection on the aggregate set */
    saf_describe_collection(SAF_ALL, &invariantSet, SAF_SELF(db), NULL, &numHist, NULL, NULL, &dumpSets);

    /* allocate some space for the history buffer */
    histBuf = (ElementHistory_t *) malloc(numHist * sizeof(ElementHistory_t));

    /* for each member of this collection, describe the set and the proc's collection on that set */
    for (i = 0; i < numHist; i++)
    {
       int numPieces, numRels, numFields, numElems, localElemID;
       float dofVal, *dofVals=&dofVal;
       SAF_Set *procSets = NULL;
       SAF_Set myPiece;
       SAF_Rel *ssRels=NULL;
       SAF_Field *theFields = NULL;
       RelIndex_t *elemList = NULL;

       /* get the processor collection at this dump */
       saf_describe_collection(SAF_ALL, &(dumpSets[i]), &procs, NULL, &numPieces, NULL, NULL, &procSets);

       /* this processor will take responsibility for the member of this collection whose index in the collection is the
          same as its rank */
       myPiece = procSets[myProcNum];

       /* how many elements are on this processor's piece? */
       saf_describe_collection(SAF_EACH, &myPiece, &elems, NULL, &numElems, NULL, NULL, NULL);

       /* everybody reads their respective subset relations */
       saf_find_subset_relations(SAF_EACH, db, &(dumpSets[i]), &myPiece, &elems, &elems, SAF_BOUNDARY_FALSE, SAF_BOUNDARY_FALSE,
          &numRels, &ssRels);
       if (numRels != 1)
          AbortThisMess("found more than 1 dumpSet to procSet subset relation on elems");

       /* read the subset relation data */
       saf_read_subset_relation(SAF_EACH, &(ssRels[0]), NULL, (void**) &elemList, NULL);

       /* everybody finds the pressure field on thier respective pieces */
       saf_find_fields(SAF_EACH, db, &myPiece, "pressure", SAF_ANY_QUANTITY, SAF_ALGTYPE_ANY, SAF_ANY_BASIS,
          SAF_ANY_UNIT, SAF_ANY_CAT, SAF_ANY_RATIO, SAF_ANY_CAT, SAF_ANY_EFUNC, &numFields, &theFields);
       if (numFields != 1)
          AbortThisMess("found more than 1 field named \"pressure\" on myPiece set");

       /* everybody checks to see if they own the hist elem. This assumes elemList is sorted in ascending order. */
       localElemID = IndexOfValue(elemList, numElems, (RelIndex_t) histElem);

       /* everybody reads (partially) the field (most procs attempt to read 0 dofs) */
       saf_read_field(SAF_EACH, &(theFields[0]), NULL, localElemID==-1?0:1, SAF_TUPLES, &localElemID, (void**) &dofVals);

       AccumulateElementHistory(myProcNum, localElemID, dofVals[0], &histBuf[i]);

       free(theFields); theFields = NULL;
       free(elemList); elemList = NULL;
       free(ssRels); ssRels = NULL;
       free(procSets); procSets = NULL;
    }

    free(dumpSets);

    /* setup return values */
    *numReadBack = numHist;
    *hist = histBuf;

    return;

 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

	 void
 UpdateDatabase(
    DbInfo_t *dbInfo,            /* [IN/OUT] database info object (currentFile member can be modified) */
    int stepNum,                 /* [IN] the current step number in the sequence starting from zero */
    int numSteps,                /* [IN] total number of steps to be output (>=1) */
    hbool_t do_multifile,        /* [IN] boolean to indicate if each step will go to a different supplemental file */
    int numFields,               /* [IN] the number of fields on the mesh */
    SAF_Field *theFields         /* [IN] array of length numFields of the field handles */
 )
 {
   char tmpName[32];
   static int stepZero = 0;
   int i;
   float stepVal;
   SAF_FieldTmpl *fieldTmpls;
   SAF_StateGrp currentStateGrp;
   SAF_StateTmpl currentStateTmpl;
   SAF_Suite currentSuite;
   SAF_Rel rel;
   SAF_Unit usec;

   /* local vars obtained from dbinfo object */
   SAF_Db *db = dbInfo->db;
   SAF_Set aggregateMesh = dbInfo->mainMesh;
   SAF_Set currentMesh = dbInfo->currentMesh;
   SAF_Db *stepFile = dbInfo->currentFile;

   /* link currentMesh into aggregate at the current position */
   saf_declare_subset_relation(SAF_ALL, db, &aggregateMesh, &currentMesh, SAF_COMMON(SAF_SELF(db)), SAF_TUPLES,
                               H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
   saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &stepNum, H5I_INVALID_HID, NULL, stepFile);

   /* get the handle for the seconds unit */
   saf_find_one_unit(db, "second", &usec);

   /* obtain all the field templates for all the fields */
   fieldTmpls = calloc((size_t)numFields, sizeof *fieldTmpls);
   for (i = 0; i < numFields; i++)
     saf_describe_field(SAF_ALL, theFields+i, fieldTmpls+i, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, NULL, NULL, NULL);

   /* get the handle for the seconds unit */
   saf_find_one_unit(db, "second", &usec);

   /* create the suite */
   sprintf(tmpName, "stateSuite_%03d", stepNum);
   saf_declare_suite(SAF_ALL, db, tmpName, &currentMesh, NULL, &currentSuite);

   /* create a new state template */
   sprintf(tmpName, "stateTmpl_%03d", stepNum);
   saf_declare_state_tmpl(SAF_ALL, db, tmpName, numFields, fieldTmpls, &currentStateTmpl);
   free(fieldTmpls);

   /* create a new state group */
   sprintf(tmpName, "stateGrp_%03d", stepNum);
   saf_declare_state_group(SAF_ALL, db, tmpName, &currentSuite, &currentMesh, &currentStateTmpl, SAF_QTIME,
                           &usec, SAF_FLOAT, &currentStateGrp);

   /* Issue: we always write to the 0'th index of this new suite */
   stepVal = (float) stepNum;
   saf_write_state(SAF_ALL, &currentStateGrp, stepZero, &currentMesh, SAF_FLOAT, (void*) &stepVal, theFields);


   /* work to do for the next step if there is a next step */
   if (stepNum + 1 < numSteps)
     {
         dbInfo->lastMesh = dbInfo->currentMesh;

       /* create a new supplemental file */
       if (do_multifile) {
           SAF_DbProps *dbprops = saf_createProps_database();
           saf_setProps_Clobber(dbprops);
           sprintf(tmpName,"step_%03d", stepNum+1);
           stepFile = saf_open_database(tmpName, dbprops);
           saf_freeProps_database(dbprops);

           /* update the currentFile handle in the dbinfo object */
           dbInfo->currentFile = stepFile;
         }
     }

   /* flush the database */
   saf_update_database(db);

   /* keep track of the last mesh */
   dbInfo->lastMesh = dbInfo->currentMesh;
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

	 void
 WriteCurrentMesh(
    DbInfo_t *dbInfo,            /* [IN/OUT] database info object */
    int theStep,                 /* current step number */
    int numDims,                 /* [IN] number of dimensions in mesh */
    CurrentMeshParams_t theMesh, /* [IN] current mesh parameters */
    SAF_Field *fieldList,        /* [IN/OUT] list of fields we'll append new fields too */
    int *fieldListSize           /* [IN/OUT] On input, the current size of the field list. On output, its new size */
 )
 {
    SAF_Unit ugram;
    SAF_Unit upascal;
    char tmpName[MAX_OBJNAME];
    int i, nonEmptySpaces;
    float *coordBuf = theMesh.coordBuf;
    float *pressureBuf = theMesh.pressureBuf;
    float *nodalMassBuf = theMesh.nodalMassBuf;
    RelIndex_t *elemIDs = theMesh.elemIDs;
    RelIndex_t *nodeIDs = theMesh.nodeIDs;
    int numNcubes = theMesh.numNcubes;
    int numElems = theMesh.numElems;
    int numNodes = theMesh.numNodes;
    SAF_CellType cellType;
    SAF_Set currentMesh;
    SAF_FieldTmpl coords_ctmpl, coords_ftmpl, pressureFtmpl, nodalMassFtmpl;
    SAF_Field coordField, coordComponent[MAX_DIMS], pressureField, nodalMassField;
    SAF_Rel trel;
    SAF_AltIndexSpec aspec;

    SAF_Db *db = dbInfo->db;
    SAF_Unit umeter;
    SAF_Cat nodes = dbInfo->nodes;
    SAF_Cat elems = dbInfo->elems;
    SAF_Cat blocks = dbInfo->blocks;
    SAF_Db *stepFile = dbInfo->currentFile;

    saf_find_one_unit(db, "meter", &umeter);
    /* count number of non-empty half-spaces (for blocks) */
    nonEmptySpaces = 0;
    for (i = 0; i < (1<<numDims); i++)
    {
       if (theMesh.halfSpaces[i].count)
          nonEmptySpaces++;
    }

    /***********************************************
     ******* this step's mesh (base-space) *********
     ***********************************************/
    sprintf(tmpName, "mesh_step_%03d", theStep);
    saf_declare_set(SAF_ALL, db, tmpName, numDims, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &currentMesh);
    dbInfo->currentMesh = currentMesh;

    /*******************************************************************
     ******* collections on the mesh (nodes, elems, and blocks *********
     *******************************************************************/
    /* nodes and elems collections on the current mesh */
    saf_declare_collection(SAF_ALL, &currentMesh, &nodes, SAF_CELLTYPE_POINT, numNodes, SAF_1DC(numNodes), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &currentMesh, &elems, SAF_CELLTYPE_MIXED, numNcubes, SAF_1DC(numNcubes), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &currentMesh, &blocks, SAF_CELLTYPE_SET, nonEmptySpaces, SAF_1DC(nonEmptySpaces), SAF_DECOMP_TRUE);

    /************************************************************************************
     ******* subset relations on elems and blocks for each non-empty half-space *********
     ************************************************************************************/
    nonEmptySpaces = 0;
    for (i = 0; i < (1<<numDims); i++)
    {
       int nodesPerElem;
       int count = theMesh.halfSpaces[i].count;
       RelIndex_t *elemList = theMesh.halfSpaces[i].elemList;
       RelIndex_t *theTopoBuf = theMesh.blockTopoBufs[i];
       SAF_Set aBlock;
       SAF_Rel rel;

       if (count)
       {
          int parity = i & 0x3; /* use lower order 2 bits to decide which half-spaces get refined */

          switch (numDims)
          {
          case 1:
             {
                cellType = SAF_CELLTYPE_LINE;
                nodesPerElem = 2;
                break;
             }
          case 2:
             {
                if ((numElems > numNcubes) && ((parity == 1) || (parity == 2)))
                {
                   nodesPerElem = 3;
                   cellType = SAF_CELLTYPE_TRI;
                }
                else
                {
                   nodesPerElem = 4;
                   cellType = SAF_CELLTYPE_QUAD;
                }
                break;
             }
          case 3:
             {
                if ((numElems > numNcubes) && ((parity == 1) || (parity == 2)))
                {
                   nodesPerElem = 4;
                   cellType = SAF_CELLTYPE_TET;
                }
                else
                {
                   nodesPerElem = 8;
                   cellType = SAF_CELLTYPE_HEX;
                }
                break;
             }
          }

          sprintf(tmpName, "block_(%s)_%03d", HalfSpaceIndexStr(numDims, (HalfSpaceIndex_t) i), theStep);
          saf_declare_set(SAF_ALL, db, tmpName, numDims, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &aBlock);

          /* elems collection on this block */
          saf_declare_collection(SAF_ALL, &aBlock, &elems, cellType, count, SAF_1DC(count), SAF_DECOMP_TRUE);

          /* blocks collection on this block (always of size 1) */
          saf_declare_collection(SAF_ALL, &aBlock, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

          /* subset relation on elems */
          saf_declare_subset_relation(SAF_ALL, db, &currentMesh, &aBlock, SAF_COMMON(&elems), SAF_TUPLES,
             H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
          saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, elemList, H5I_INVALID_HID, NULL, stepFile);

          /* subset relation on the blocks */
          saf_declare_subset_relation(SAF_ALL, db, &currentMesh, &aBlock, SAF_COMMON(&blocks), SAF_TUPLES,
             H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
          saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &nonEmptySpaces, H5I_INVALID_HID, NULL, stepFile);

          /*****************************************************************************************
           ******* topology relation for this block (elems on block to nodes on the whole) *********
           *****************************************************************************************/
          /* declare and write topology relation */
          saf_declare_topo_relation(SAF_ALL, db, &aBlock, &elems, &currentMesh, &nodes, SAF_SELF(db), &currentMesh,
             SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
          saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, &nodesPerElem, SAF_INT, theTopoBuf, stepFile);

          nonEmptySpaces++;
       }
    }

    /**********************************
     ******* coordinate field *********
     **********************************/
    /* declare scalar coordinate field template for components */
    saf_declare_field_tmpl(SAF_ALL, db, "coordinate_ctmpl", SAF_ALGTYPE_SCALAR,
       SAF_CARTESIAN, SAF_QLENGTH, 1, NULL, &coords_ctmpl);

    /* declare vector composite field template */
    if (numDims > 1)
    {
       SAF_FieldTmpl cftmpls[MAX_DIMS];

       for (i = 0; i < numDims; i++)
          cftmpls[i] = coords_ctmpl;
       saf_declare_field_tmpl(SAF_ALL, db, "coordinate_ftmpl", SAF_ALGTYPE_VECTOR,
          SAF_CARTESIAN, SAF_QLENGTH, numDims, cftmpls, &coords_ftmpl);
    }

    /* declare the scalar, component fields */
    for (i = 0; i < numDims; i++)
    {
       sprintf(tmpName,"coord%1d",i);
       saf_declare_field(SAF_ALL, db, &coords_ctmpl, tmpName, &currentMesh, &umeter, SAF_SELF(db), SAF_NODAL(&nodes, &elems), SAF_FLOAT,
          NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &coordComponent[i]);
    }

    /* declare the vector, composite field */
    if (numDims > 1)
       saf_declare_field(SAF_ALL, db, &coords_ftmpl, "coords", &currentMesh, &umeter, SAF_SELF(db), SAF_NODAL(&nodes, &elems), SAF_FLOAT,
          coordComponent, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, &coordField);

    /* write the coordinate field data on the composite field */
    saf_write_field(SAF_ALL, &coordField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (void**) &coordBuf, stepFile);


    /*jake 02/03/2003 note: if you dont do this, saf_declare_state_group will fail*/
   saf_declare_coords(SAF_ALL, &coordField );
   saf_declare_default_coords(SAF_ALL,&currentMesh,&coordField);


    /* put the coordinate field in the output field list */
    fieldList[(*fieldListSize)++] = coordField;

    /**********************************
     ******** pressure field **********
     **********************************/
    saf_find_one_unit(db,"pascal",&upascal);
    /* declare and write pressure field */
    saf_declare_field_tmpl(SAF_ALL, db, "pressure_ftmpl", SAF_ALGTYPE_SCALAR,
       SAF_CARTESIAN, saf_find_one_quantity(db,"pressure",NULL), 1, NULL, &pressureFtmpl);
    saf_declare_field(SAF_ALL, db, &pressureFtmpl, "pressure", &currentMesh, &upascal, SAF_SELF(db),
       SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &pressureField);
    saf_write_field(SAF_ALL, &pressureField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (void**) &pressureBuf, stepFile);

    /* put the pressure field in the output field list */
    fieldList[(*fieldListSize)++] = pressureField;

    /**********************************
     ******* nodal mass field *********
     **********************************/
    saf_find_one_unit(db,"gram",&ugram);
    /* declare and write nodal mass field */
    saf_declare_field_tmpl(SAF_ALL, db, "nodal_mass_ftmpl", SAF_ALGTYPE_SCALAR,
       SAF_CARTESIAN, saf_find_one_quantity(db,"mass",NULL), 1, NULL, &nodalMassFtmpl);
    saf_declare_field(SAF_ALL, db, &nodalMassFtmpl, "nodal mass", &currentMesh, &ugram, SAF_SELF(db),
       SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &nodalMassField);
    saf_write_field(SAF_ALL, &nodalMassField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (void**) &nodalMassBuf, stepFile);

    /* put the pressure field in the output field list */
    fieldList[(*fieldListSize)++] = nodalMassField;

    /***************************
     ***** alternate IDs *******
     ***************************/
    saf_declare_alternate_indexspec(SAF_ALL, db, &currentMesh, &nodes, "node IDs", SAF_INT, true, SAF_NA_INDEXSPEC,
       false, false, &aspec);
    saf_write_alternate_indexspec(SAF_ALL, &aspec, SAF_INT, (void*) nodeIDs, stepFile);

    saf_declare_alternate_indexspec(SAF_ALL, db, &currentMesh, &elems, "elem IDs", SAF_INT, true, SAF_NA_INDEXSPEC,
       false, false, &aspec);
    saf_write_alternate_indexspec(SAF_ALL, &aspec, SAF_INT, (void*) elemIDs, stepFile);

 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

	 void
 WriteCurrentMesh(
    DbInfo_t *dbInfo,            /* [IN/OUT] database info object */
    int theStep,                 /* [IN] current step number */
    int numProcs,                /* [IN] number of processors */
    int myProcNum,               /* [IN] the rank of calling processor */
    CurrentMeshParams_t theMesh, /* [IN] current mesh parameters */
    SAF_Field *fieldList,        /* [IN/OUT] list of fields we'll append newly written fields too */
    int *fieldListSize           /* [IN/OUT] On input, the current size of the field list. On output, its new size */
 )
 {
    char tmpName[MAX_OBJNAME];
    int i;
    LRCIndex_t *elemLRCs = theMesh.elemLRCs;
    int *topoBuf = theMesh.topoBuf;
    float *coordBuf = theMesh.coordBuf;
    int *elemList = theMesh.elemList;
    int *nodeList = theMesh.nodeList;
    int numElems = theMesh.numElems;
    int numNodes = theMesh.numNodes;
    int numRefs = theMesh.numRefs;
    int *refList = theMesh.refList;
    int *parentList = theMesh.parentList;
    int numUnrefs = theMesh.numUnrefs;
    int *unrefList = theMesh.unrefList;
    int numSame = theMesh.numSame;
    int *sameList = theMesh.sameList;
    int numKeeps = theMesh.numKeeps;
    int *keepList = theMesh.keepList;
    int numTakes = theMesh.numTakes;
    int *takeList = theMesh.takeList;
    int *takeProc = theMesh.takeProc;
    int numElemsIown = theMesh.numElemsIown;
    int numNodesIown = theMesh.numNodesIown;
    int nodesPerElem = 4;
    int numHandles;
    int theCount;
    SAF_Set currentMesh, myProcSet;
    SAF_FieldTmpl coords_ctmpl, coords_ftmpl, mesh_coord_ftmpl;
    SAF_Field coordField, coordComponent[MAX_DIMS], *fields=NULL, coords;
    SAF_Rel rel, trel, *rels = NULL;
    SAF_AltIndexSpec aspec;

    SAF_Db *db = dbInfo->db;
    SAF_Unit umeter;
    SAF_Cat nodes = dbInfo->nodes;
    SAF_Cat elems = dbInfo->elems;
    SAF_Cat procs = dbInfo->blocks;
    SAF_Set lastMesh = dbInfo->lastMesh;
    SAF_Set myKeeps, myTakes;
    SAF_Db *stepFile = dbInfo->currentFile;

    saf_find_one_unit(db, "meter", &umeter);

    /******************************************************
     ******* this step's global mesh (base-space) *********
     ******************************************************/
    sprintf(tmpName, "mesh_step_%03d", theStep);
    saf_declare_set(SAF_ALL, db, tmpName, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &currentMesh);
    dbInfo->currentMesh = currentMesh;

    /************************************************************************
     ******* collections on the global mesh (nodes, elems and procs *********
     ************************************************************************/
    /* nodes and elems collections on the current mesh */
    saf_declare_collection(SAF_ALL, &currentMesh, &nodes, SAF_CELLTYPE_POINT, numNodes, SAF_1DC(numNodes), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &currentMesh, &elems, SAF_CELLTYPE_QUAD, numElems, SAF_1DC(numElems), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &currentMesh, &procs, SAF_CELLTYPE_SET, numProcs, SAF_1DC(numProcs), SAF_DECOMP_TRUE);

    /****************************************
     ******* refinement information *********
     ****************************************/
    if (numRefs)
    {
       SAF_Set theSet;

       saf_declare_set(SAF_ALL, db, "refinements", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &theSet);
       saf_declare_collection(SAF_ALL, &theSet, &elems, SAF_CELLTYPE_QUAD, numRefs, SAF_1DC(numRefs), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &currentMesh, &theSet, SAF_COMMON(&elems), SAF_TUPLES,
          H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, refList, H5I_INVALID_HID, NULL, stepFile);
       if (theStep > 0)
       {
          saf_declare_subset_relation(SAF_ALL, db, &lastMesh, &theSet, SAF_COMMON(&elems), SAF_TUPLES,
             H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
          saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, parentList, H5I_INVALID_HID, NULL, stepFile);
       }
    }
    if (numUnrefs)
    {
       SAF_Set theSet;

       saf_declare_set(SAF_ALL, db, "UNrefinements", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &theSet);
       saf_declare_collection(SAF_ALL, &theSet, &elems, SAF_CELLTYPE_QUAD, numUnrefs, SAF_1DC(numUnrefs), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &currentMesh, &theSet, SAF_COMMON(&elems), SAF_TUPLES,
          H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, unrefList, H5I_INVALID_HID, NULL, stepFile);
    }
    if (numSame)
    {
       SAF_Set theSet;

       saf_declare_set(SAF_ALL, db, "same", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &theSet);
       saf_declare_collection(SAF_ALL, &theSet, &elems, SAF_CELLTYPE_QUAD, numSame, SAF_1DC(numSame), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &currentMesh, &theSet, SAF_COMMON(&elems), SAF_TUPLES,
          H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, sameList, H5I_INVALID_HID, NULL, stepFile);
    }

    /************************************
     ******* the processor sets *********
     ************************************/
    sprintf(tmpName, "proc_%03d", myProcNum);
    saf_declare_set(SAF_EACH, db, tmpName, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &myProcSet);

    /***************************************************************************
     ******* collections on the processor sets (nodes, elems and procs *********
     ***************************************************************************/
    saf_declare_collection(SAF_EACH, &myProcSet, &nodes, SAF_CELLTYPE_POINT, numNodesIown, SAF_1DC(numNodesIown), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_EACH, &myProcSet, &elems, SAF_CELLTYPE_QUAD, numElemsIown, SAF_1DC(numElemsIown), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_EACH, &myProcSet, &procs, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

    /******************************************************************************
     ******* processor to top subsets relations on elems, nodes and procs *********
     ******************************************************************************/
     saf_declare_subset_relation(SAF_EACH, db, &currentMesh, &myProcSet, SAF_COMMON(&procs), SAF_TUPLES,
        H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &myProcNum, H5I_INVALID_HID, NULL, stepFile);
     saf_declare_subset_relation(SAF_EACH, db, &currentMesh, &myProcSet, SAF_COMMON(&elems), SAF_TUPLES,
        H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, elemList, H5I_INVALID_HID, NULL, stepFile);
     saf_declare_subset_relation(SAF_EACH, db, &currentMesh, &myProcSet, SAF_COMMON(&nodes), SAF_TUPLES,
        H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, nodeList, H5I_INVALID_HID, NULL, stepFile);

    /******************************************
     ******* load balance information *********
     ******************************************/
     MPI_Allreduce(&numKeeps,&theCount,1,MPI_INT,MPI_MAX,MPI_COMM_WORLD);
     if (theCount)
     {  int bogusData = 1;
        void *bogusBuf = (void*) &bogusData;
        saf_declare_set(SAF_EACH, db, "keeps", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &myKeeps);
        saf_declare_collection(SAF_EACH, &myKeeps, &elems, SAF_CELLTYPE_QUAD, numKeeps, SAF_1DC(numKeeps), SAF_DECOMP_TRUE);
        saf_declare_subset_relation(SAF_EACH, db, &myProcSet, &myKeeps, SAF_COMMON(&elems), SAF_TUPLES,
           H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
        saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, keepList?(void*)keepList:bogusBuf, H5I_INVALID_HID, NULL, stepFile);
     }
     MPI_Allreduce(&numTakes,&theCount,1,MPI_INT,MPI_MAX,MPI_COMM_WORLD);
     if (theCount)
     {  int bogusData = 1;
        void *bogusBuf = (void*) &bogusData;
        SAF_FieldTmpl theFtmpl;
        SAF_Field theField;

        saf_declare_set(SAF_EACH, db, "takes", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &myTakes);
        saf_declare_collection(SAF_EACH, &myTakes, &elems, SAF_CELLTYPE_QUAD, numTakes, SAF_1DC(numTakes), SAF_DECOMP_TRUE);
        saf_declare_subset_relation(SAF_EACH, db, &myProcSet, &myTakes, SAF_COMMON(&elems), SAF_TUPLES,
           H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
        saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, takeList?(void*)takeList:bogusBuf, H5I_INVALID_HID, NULL, stepFile);
        saf_declare_field_tmpl(SAF_EACH, db, "givingProc_tmpl", SAF_ALGTYPE_SCALAR,
           SAF_CARTESIAN, SAF_NOT_APPLICABLE_QUANTITY, 1, NULL, &theFtmpl);
        saf_declare_field(SAF_EACH, db, &theFtmpl, "givingProc", &myProcSet, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(db), SAF_ZONAL(&elems),
           SAF_INT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &theField);
        saf_write_field(SAF_EACH, &theField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (takeProc?(void**)&takeProc:&bogusBuf), stepFile);
     }


    /**************************************************************************
     ******* topology relation (elems to nodes) on the processor sets *********
     **************************************************************************/
    /* declare and write topology relation */
    saf_declare_topo_relation(SAF_EACH, db, &myProcSet, &elems, &myProcSet, &nodes, SAF_SELF(db), &myProcSet,
       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_EACH, &trel, SAF_INT, &nodesPerElem, SAF_INT, topoBuf, stepFile);

    /**********************************************************************
     ******* topology relation (elems to nodes) on the global set *********
     **********************************************************************/
    rels = (SAF_Rel *)saf_allgather_handles((ss_pers_t*) &trel, &numHandles, NULL);
    saf_declare_topo_relation(SAF_ALL, db, &currentMesh, &elems, &currentMesh, &nodes, &procs, &currentMesh,
       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_HANDLE, rels, H5I_INVALID_HID, NULL, db);
    free(rels);

    /********************************************************
     ******* coordinate field on the processor sets *********
     ********************************************************/
    /* declare scalar coordinate field template for components */
    saf_declare_field_tmpl(SAF_EACH, db, "proc_coordinate_ctmpl", SAF_ALGTYPE_SCALAR,
       SAF_CARTESIAN, SAF_QLENGTH, 1, NULL, &coords_ctmpl);

    /* declare vector composite field template */
    {
       SAF_FieldTmpl cftmpls[MAX_DIMS];

       for (i = 0; i < 2; i++)
          cftmpls[i] = coords_ctmpl;
       saf_declare_field_tmpl(SAF_EACH, db, "proc_coordinate_ftmpl", SAF_ALGTYPE_VECTOR,
          SAF_CARTESIAN, SAF_QLENGTH, 2, cftmpls, &coords_ftmpl);
    }

    /* declare the scalar, component fields */
    for (i = 0; i < 2; i++)
    {
       sprintf(tmpName,"coord%1d",i);
       saf_declare_field(SAF_EACH, db, &coords_ctmpl, tmpName, &myProcSet, &umeter, SAF_SELF(db), SAF_NODAL(&nodes, &elems), SAF_FLOAT,
          NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &coordComponent[i]);
    }

    /* declare the vector, composite field */
    {
       saf_declare_field(SAF_EACH, db, &coords_ftmpl, "coords", &myProcSet, &umeter, SAF_SELF(db), SAF_NODAL(&nodes, &elems), SAF_FLOAT,
          coordComponent, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, &coordField);
    }

    saf_declare_coords(SAF_EACH, &coordField);
    saf_declare_default_coords(SAF_EACH, &myProcSet, &coordField);

    /* write the coordinate field data on the composite field */
    saf_write_field(SAF_EACH, &coordField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (void**) &coordBuf, stepFile);

    /****************************************************
     ******* coordinate field on the global set *********
     ****************************************************/
    fields = (SAF_Field *)saf_allgather_handles((ss_pers_t*)&coordField, &numHandles, NULL);
    saf_declare_field_tmpl(SAF_ALL, db, "mesh_coord_ftmpl", SAF_ALGTYPE_FIELD, NULL,
       SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &mesh_coord_ftmpl);
    saf_declare_field(SAF_ALL, db, &mesh_coord_ftmpl, "coords", &currentMesh, SAF_NOT_APPLICABLE_UNIT, &procs, SAF_NODAL(&nodes, &elems),
       H5I_INVALID_HID, NULL, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, &coords);
    saf_declare_coords(SAF_ALL, &coords);
    saf_declare_default_coords(SAF_ALL, &currentMesh, &coords);
    saf_write_field(SAF_ALL, &coords, SAF_WHOLE_FIELD, 1, SAF_HANDLE, (void**) &fields, db);
    free(fields);

    /* append the field(s) written here to the list of fields */
    fieldList[(*fieldListSize)++] = coords;

    /***************************
     ***** alternate IDs *******
     ***************************/
    saf_declare_alternate_indexspec(SAF_EACH, db, &myProcSet, &elems, "elem LRCs", LRCIndex_h5, true, SAF_NA_INDEXSPEC,
       false, false, &aspec);
    saf_write_alternate_indexspec(SAF_EACH, &aspec, SAF_INT, (void*) elemLRCs, stepFile);

 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

	 void
 WriteCurrentMesh(
    DbInfo_t *dbInfo,            /* [IN/OUT] database info object */
    int theStep,                 /* [IN] current step number */
    int numDims,                 /* [IN] number of dimensions in mesh */
    int numProcs,                /* [IN] number of processors */
    int myProcNum,               /* [IN] the rank of calling processor */
    CurrentMeshParams_t *theMesh,/* [IN/OUT] current mesh parameters (relation and file handle updated) */
    SAF_Field *fieldList,        /* [IN/OUT] list of fields we'll append newly written fields too */
    int *fieldListSize           /* [IN/OUT] On input, the current size of the field list. On output, its new size */
 )
 {
    char tmpName[MAX_OBJNAME];
    int i;
    RelIndex_t *topoBuf = theMesh->localRangeTopoBuf;
    float *coordBuf = theMesh->coordBuf;
    float *pressureBuf = theMesh->pressureBuf;
    hbool_t isLongList = theMesh->isLongList;
    RelIndex_t *elemList = theMesh->elemList;
    RelIndex_t *nodeList = theMesh->uniqueNodesList;
    int numElems = theMesh->numElems;
    int numNodes = theMesh->numNodes;
    int numElemsIown = theMesh->numElemsIown;
    int numNodesIown = theMesh->numNodesIown;
    int nodesPerElem = (1 << numDims);
    int numHandles;
    SAF_Rel shortListRel = theMesh->shortListRel;
    /*SAF_File shortListFile = theMesh->shortListFile;*/
    SAF_CellType cellType;
    SAF_Set currentMesh, myProcSet;
    SAF_FieldTmpl coords_ctmpl, coords_ftmpl, mesh_coord_ftmpl;
    SAF_FieldTmpl procPressureFtmpl, meshPressureFtmpl;
    SAF_Field coordField, coordComponent[MAX_DIMS], *fields=NULL, coords;
    SAF_Field procPressureField, meshPressureField;
    SAF_Rel rel, trel, *rels = NULL;

    SAF_Db *db = dbInfo->db;
    SAF_Unit umeter;
    SAF_Unit uPascal;
    SAF_Quantity *qPressure;
    SAF_Cat nodes = dbInfo->nodes;
    SAF_Cat elems = dbInfo->elems;
    SAF_Cat procs = dbInfo->blocks;
    SAF_Db *stepFile = dbInfo->currentFile;

    saf_find_one_unit(db, "meter", &umeter);
    saf_find_one_unit(db, "pascal", &uPascal);
    qPressure = saf_find_one_quantity(db, "pressure",NULL);


    /******************************************************
     ******* this step's global mesh (base-space) *********
     ******************************************************/
    sprintf(tmpName, "mesh_step_%03d", theStep);
    saf_declare_set(SAF_ALL, db, tmpName, numDims, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &currentMesh);
    dbInfo->currentMesh = currentMesh;

    /************************************************************************
     ******* collections on the global mesh (nodes, elems and procs *********
     ************************************************************************/
    /* nodes and elems collections on the current mesh */
    saf_declare_collection(SAF_ALL, &currentMesh, &nodes, SAF_CELLTYPE_POINT, numNodes, SAF_1DC(numNodes), SAF_DECOMP_FALSE);
    switch (numDims)
    {
       case 1: cellType = SAF_CELLTYPE_LINE; break;
       case 2: cellType = SAF_CELLTYPE_QUAD; break;
       case 3: cellType = SAF_CELLTYPE_HEX;  break;
    }
    saf_declare_collection(SAF_ALL, &currentMesh, &elems, cellType, numElems, SAF_1DC(numElems), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &currentMesh, &procs, SAF_CELLTYPE_SET, numProcs, SAF_1DC(numProcs), SAF_DECOMP_TRUE);


    /************************************
     ******* the processor sets *********
     ************************************/
    sprintf(tmpName, "proc_%03d", myProcNum);
    saf_declare_set(SAF_EACH, db, tmpName, numDims, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &myProcSet);

    /***************************************************************************
     ******* collections on the processor sets (nodes, elems and procs *********
     ***************************************************************************/
    saf_declare_collection(SAF_EACH, &myProcSet, &nodes, SAF_CELLTYPE_POINT, numNodesIown, SAF_1DC(numNodesIown), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_EACH, &myProcSet, &elems, cellType, numElemsIown, SAF_1DC(numElemsIown), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_EACH, &myProcSet, &procs, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

    /******************************************************************************
     ******* processor to top subsets relations on elems, nodes and procs *********
     ******************************************************************************/
     saf_declare_subset_relation(SAF_EACH, db, &currentMesh, &myProcSet, SAF_COMMON(&procs), SAF_TUPLES,
        H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &myProcNum, H5I_INVALID_HID, NULL, stepFile);
     saf_declare_subset_relation(SAF_EACH, db, &currentMesh, &myProcSet, SAF_COMMON(&elems), SAF_TUPLES,
        H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
     if (isLongList)
        saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, elemList, H5I_INVALID_HID, NULL, stepFile);
     else
     {
        if (SAF_EQUIV(&(shortListRel),NULL))
        {
           saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, elemList, H5I_INVALID_HID, NULL, stepFile);
           theMesh->shortListRel = rel;
           theMesh->shortListFile = stepFile;
        }
        else
           saf_use_written_subset_relation(SAF_EACH, &rel, &shortListRel, SAF_INT, H5I_INVALID_HID, stepFile);
     }
     saf_declare_subset_relation(SAF_EACH, db, &currentMesh, &myProcSet, SAF_COMMON(&nodes), SAF_TUPLES,
        H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &rel);
     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, nodeList, H5I_INVALID_HID, NULL, stepFile);

    /**************************************************************************
     ******* topology relation (elems to nodes) on the processor sets *********
     **************************************************************************/
    /* declare and write topology relation */
    saf_declare_topo_relation(SAF_EACH, db, &myProcSet, &elems, &myProcSet, &nodes, SAF_SELF(db), &myProcSet,
       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_EACH, &trel, SAF_INT, &nodesPerElem, SAF_INT, topoBuf, stepFile);

    /**********************************************************************
     ******* topology relation (elems to nodes) on the global set *********
     **********************************************************************/
    rels = (SAF_Rel *)saf_allgather_handles((ss_pers_t*)&trel, &numHandles, NULL);
    saf_declare_topo_relation(SAF_ALL, db, &currentMesh, &elems, &currentMesh, &nodes, &procs, &currentMesh,
       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_HANDLE, rels, H5I_INVALID_HID, NULL, db);
    free(rels);

    /********************************************************
     ******* coordinate field on the processor sets *********
     ********************************************************/
    /* declare scalar coordinate field template for components */
    saf_declare_field_tmpl(SAF_EACH, db, "proc_coordinate_ctmpl", SAF_ALGTYPE_SCALAR,
       SAF_CARTESIAN, SAF_QLENGTH, 1, NULL, &coords_ctmpl);

    /* declare vector composite field template */
    if (numDims > 1)
    {
       SAF_FieldTmpl cftmpls[MAX_DIMS];

       for (i = 0; i < numDims; i++)
          cftmpls[i] = coords_ctmpl;
       saf_declare_field_tmpl(SAF_EACH, db, "proc_coordinate_ftmpl", SAF_ALGTYPE_VECTOR,
          SAF_CARTESIAN, SAF_QLENGTH, numDims, cftmpls, &coords_ftmpl);
    }

    /* declare the scalar, component fields */
    for (i = 0; i < numDims; i++)
    {
       sprintf(tmpName,"coord%1d",i);
       saf_declare_field(SAF_EACH, db, &coords_ctmpl, tmpName, &myProcSet, &umeter, SAF_SELF(db), SAF_NODAL(&nodes, &elems), SAF_FLOAT,
          NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &coordComponent[i]);
    }

    /* declare the vector, composite field */
    if (numDims > 1)
    {
       saf_declare_field(SAF_EACH, db, &coords_ftmpl, "coords", &myProcSet, &umeter, SAF_SELF(db), SAF_NODAL(&nodes, &elems), SAF_FLOAT,
          coordComponent, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, &coordField);
    }
    else
       coordField = coordComponent[0];

    saf_declare_coords(SAF_EACH, &coordField);
    saf_declare_default_coords(SAF_EACH, &myProcSet, &coordField);

    /* write the coordinate field data on the composite field */
    saf_write_field(SAF_EACH, &coordField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (void**) &coordBuf, stepFile);

    /****************************************************
     ******* coordinate field on the global set *********
     ****************************************************/
    fields = (SAF_Field *)saf_allgather_handles((ss_pers_t*)&coordField, &numHandles, NULL);
    saf_declare_field_tmpl(SAF_ALL, db, "mesh_coord_ftmpl", SAF_ALGTYPE_FIELD, NULL,
       SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &mesh_coord_ftmpl);
    saf_declare_field(SAF_ALL, db, &mesh_coord_ftmpl, "coords", &currentMesh, SAF_NOT_APPLICABLE_UNIT, &procs, SAF_NODAL(&nodes, &elems),
       H5I_INVALID_HID, NULL, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL, &coords);
    saf_declare_coords(SAF_ALL, &coords);
    saf_declare_default_coords(SAF_ALL, &currentMesh, &coords);
    saf_write_field(SAF_ALL, &coords, SAF_WHOLE_FIELD, 1, SAF_HANDLE, (void**) &fields, db);
    free(fields);

    /* append the field(s) written here to the list of fields */
    fieldList[(*fieldListSize)++] = coords;

    /******************************************************
     ******* pressure field on the processor sets *********
     ******************************************************/
    /* declare scalar pressure field template */
    saf_declare_field_tmpl(SAF_EACH, db, "Analytic Pressures", SAF_ALGTYPE_SCALAR,
       SAF_CARTESIAN, qPressure, 1, NULL, &procPressureFtmpl);
    saf_declare_field(SAF_EACH, db, &procPressureFtmpl, "pressure", &myProcSet, &uPascal, SAF_SELF(db), SAF_ZONAL(&elems), SAF_FLOAT,
       NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &procPressureField);
    saf_write_field(SAF_EACH, &procPressureField, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, (void**) &pressureBuf, stepFile);

    /***************************************************
     ******* pressure field on the global sets *********
     ***************************************************/
    fields = (SAF_Field *) saf_allgather_handles((ss_pers_t*) &procPressureField, &numHandles, NULL);
    saf_declare_field_tmpl(SAF_ALL, db, "Analytic Pressures", SAF_ALGTYPE_FIELD, NULL,
       SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &meshPressureFtmpl);
    saf_declare_field(SAF_ALL, db, &meshPressureFtmpl, "pressure", &currentMesh, SAF_NOT_APPLICABLE_UNIT, &procs, SAF_ZONAL(&elems),
       H5I_INVALID_HID, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &meshPressureField);
    saf_write_field(SAF_ALL, &meshPressureField, SAF_WHOLE_FIELD, 1, SAF_HANDLE, (void**) &fields, db);
    free(fields);

    /* append the field(s) written here to the list of fields */
    fieldList[(*fieldListSize)++] = meshPressureField;

 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

	 int
 main(int argc,
      char **argv)
 {
   char dbname[1024]; /* Name of the SAF database file to be created. */
   int rank=0;        /* Rank of this process for parallel. */
   SAF_DbProps *dbprops;/* Handle to the SAF databsae properties. */
   int failed = 0;

 #ifdef HAVE_PARALLEL
   /* the MPI_init comes first because on some platforms MPICH's mpirun
    * doesn't pass the same argc, argv to all processors. However, the MPI
    * spec says nothing about what it does or might do to argc or argv. In
    * fact, there is no "const" in the function prototypes for either the
    * pointers or the things they're pointing too.  I would rather pass NULL
    * here and the spec says this is perfectly acceptable.  However, that too
    * has caused MPICH to core on certain platforms.  */
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 #endif

   if (rank == 0)
     {
       /* since we want to see whats happening make sure stdout and stderr
        * are unbuffered */
       setbuf(stdout, NULL);
       setbuf(stderr, NULL);
     }

   /* for convenience, set working directory to the test file directory */
   chdir(TEST_FILE_PATH);
 #ifdef HAVE_PARALLEL
   MPI_Barrier(MPI_COMM_WORLD);
 #endif

   /* Initialize the library. */
   saf_init(SAF_DEFAULT_LIBPROPS);

   /* Get the name of the SAF database. */
   strcpy(dbname, "larry1.saf");

   SAF_TRY_BEGIN
     {
       /* Because we are in a try block here, all failures will send us to
        * the one and only catch block at the end of this test */

       /* Create the database properties. */
       dbprops = saf_createProps_database();

       /* Set the clobber database property so any existing file
        * will be overwritten. */
       saf_setProps_Clobber(dbprops);

       /* Open the SAF database. Give it name dbname, properties p and
        * set db to be a handle to this database. */
       db = saf_open_database(dbname,dbprops);

       /* Get the handle to the master file. */
       saf_file = db;

       /* Construct the base space. */
       make_base_space();

       /* Extend the collection of nodes on the time_base set by 10 so there
        * now is a collection of 11 nodes in this set. */
       saf_extend_collection(SAF_ALL, &time_base, &nodes, 10, SAF_1DC(10));

       /* Construct the coordinate field on the mesh. */
       make_global_coord_field();

       /* Construct the displacement field on the mesh. */
       make_displacement_field();

       /* Construct the distribution factors field on side set 2. */
       make_distribution_factors_on_ss2_field();

       /* Construct the temperature field on node set 1. */
       make_temperature_on_ns1_field();

       /* Construct the temperature field on cell 2. */
       make_temperature_on_cell_2_field();

       /* Construct the stress field on cell 1. */
       make_stress_on_cell_1_field();

       /* Construct the pressure field on side set 1. */
       make_pressure_on_ss1_field();

       /* Construct the time base field. */
       make_time_base_field();

       /* Construct suite to store initial state; store (references to) fields in initial state */
       /*
         make_init_suite();
       */

       /* Construct suite to store (references to) fields through time; store the fields */
       make_time_suite();

       /* Close the SAF database. */
       saf_close_database(db);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           failed = 1;
         }
     }
   SAF_TRY_END

     /* Finalize access to the library. */
     saf_final();

   if (failed)
     FAILED;
   else
     PASSED;

 #ifdef HAVE_PARALLEL
   /* make sure everyone returns the same error status */
   MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();
 #endif

   return failed;
 }









          

      

      

    

  

    
      
          
            
  	   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541

	 int
 main(int argc, char **argv)
 {
     SAF_Db *db=NULL;
     char dbname[1024];
     SAF_DbProps *dbprops=NULL;
     SAF_Role saf_ss_role, saf_ns_role, saf_node_comm_role, saf_side_comm_role;
     SAF_Cat nodes, elems, blocks, side_sets, node_sets, domain_cat, node_comm, side_comm;
     SAF_Set top, block_1, block_2, block_3, block_4, block_5;
     SAF_Set domain_set, domain_block_1, domain_block_2, domain_block_3, domain_block_4, domain_block_5;
     SAF_Set block_set[5], dom_block_set[5];
     SAF_Set side_set_a, side_set_b, node_set_a;
     SAF_Set side_set_a_q, side_set_a_t;
     SAF_Set node_comm_set, side_comm_set;
     SAF_Set domain_ssa, domain_ssa_q, domain_ssa_t, domain_ssb, domain_nsa;

     SAF_Rel rel, dom_blk_trel;

     SAF_FieldTmpl coords_ctmpl, coords_ftmpl, tmp_ftmpl[6], coords_on_top_ftmpl;
     SAF_FieldTmpl dom_ssa_elem_ctmpl, dom_ssa_elem_ftmpl;
     SAF_FieldTmpl blk_1_elem_ftmpl, blk_3_elem_ftmpl, ssaq_elem_ftmpl, ssat_elem_ftmpl;
     SAF_FieldTmpl nsa_node_ftmpl;
     SAF_FieldTmpl top_elem_ftmpl, top_constant_ftmpl;
     SAF_FieldTmpl domain_node_ctmpl, domain_node_ftmpl;
     SAF_FieldTmpl domain_elem_ftmpl;
     SAF_FieldTmpl disp_on_top_ftmpl;
     SAF_FieldTmpl vel_on_top_ftmpl;
     SAF_FieldTmpl dom_block_2_elem_ctmpl, dom_block_2_elem_ftmpl;
     SAF_FieldTmpl stress_on_blk2_ftmpl, stress_on_blk5_ftmpl;
     SAF_FieldTmpl strain_on_blk1_ftmpl, strain_on_blk3_ftmpl;
     SAF_FieldTmpl press_on_blk1_ftmpl, press_on_blk2_ftmpl;
     SAF_FieldTmpl dom_block_elem_ctmpl, dom_block_elem_ftmpl;
     SAF_FieldTmpl dom_block_node_ctmpl, dom_block_node_ftmpl;
     SAF_FieldTmpl cent_on_top_ftmpl;
     SAF_FieldTmpl nodes_on_blk_ftmpl;
     SAF_FieldTmpl node_comm_ftmpl, side_comm_ftmpl;

     SAF_Field x_coords, y_coords, z_coords, coords, coords_on_top;
     SAF_Field thickness, dist_fact;
     SAF_Field x_disp, y_disp, z_disp, disp, disp_on_top;
     SAF_Field x_vel, y_vel, z_vel, vel, vel_on_top;
     SAF_Field sigxx, sigyy, sigzz, sigxy, sigyz, sigzx;
     SAF_Field stress, stress_on_blk2, stress_on_blk5;
     SAF_Field strain, strain_on_blk1, strain_on_blk3;
     SAF_Field epsxx, epsyy, epszz, epsxy, epsyz, epszx;
     SAF_Field pressure, press_on_blk1, press_on_blk2;
     SAF_Field cent_x, cent_y, cent_z, centroid, cent_on_top;
     SAF_Field centroid_fld_list[5];
     SAF_Field ke, te;
     SAF_Field x_rot, y_rot, z_rot, rot, nodal_rot_in_blk;
     SAF_Field area;
     SAF_Field x_norm, y_norm, z_norm, normal;
     SAF_Field elem_ids_fld, elem_ids_on_top;
     SAF_Field node_comm_procs_fld, side_comm_procs_fld;

     SAF_Field tmp_fields[6], *coord_components;

     SAF_Field field_list[40];
     SAF_FieldTmpl field_tmpl_list[40];

     SAF_Suite suite;
     SAF_StateTmpl stmpl, init_stmpl;
     SAF_StateGrp state_grp, init_state_grp;

     SAF_Quantity *vel_q, *stress_q, *strain_q, *pressure_q, *energy_q, *angle_q, *area_q;
     SAF_Quantity *tmp_q;

     SAF_Unit *meter=NULL, *m_per_s=NULL, *pascal=NULL;

     char tmp_name[255];

     int i, block_index, offset;
     int dom_blk_node_map[12], num_nodes_in_dom_blk;
     int rank, num_domain, num_blocks, num_side_sets, num_node_sets, len_connect, num_nodes, num_sides;
     int glob_num_nodes, glob_num_elems, loc_num_nodes, loc_num_elems;
     int begin_elem_index_in_domain, end_elem_index_in_domain, *begin_elem_index_in_blk, *end_elem_index_in_blk;
     int begin_elem_index_in_dom_blk;
     int num_elem_in_dom_blk;
     int accum_num_elem;
     int *node_map, *elem_map, *domain_connect, *loc_connect;
     int block_num[2];

     float time[10];

     int failed=0;
     int cnt = 0, state;

     /* fill in the global connectivity array; this is padded with -1 so there is a constant stride thru the array; this padding
      * is just for convenience in this client and has nothing to do with SAF */
     int glob_connect[] = { 3,4,7,6,-1,-1,-1,-1, 0,1,4,3,-1,-1,-1,-1,    /* BLOCK 1 */
                            3,4,14,13,6,7,10,9, 0,1,12,11,3,4,14,13,     /* BLOCK 2 */
                            7,5,8,-1,-1,-1,-1,-1, 4,5,7,-1,-1,-1,-1,-1, 4,1,5,-1,-1,-1,-1,-1, 1,2,5,-1,-1,-1,-1,-1, /* BLOCK 3 */
                            4,14,10,7,5,-1,-1,-1, 1,12,14,4,5,-1,-1,-1,  /* BLOCK 4 */
                            7,5,10,8,-1,-1,-1,-1, 1,2,12,5,-1,-1,-1,-1}; /* BLOCK 5 */

     int num_elem_in_blk[] = {2,2,4,2,2};   /* number of elements in each block */

     /* global element IDs */
     int elem_ids[] = {100, 101, 102, 103, 104, 105, 106, 207, 208, 209, 210, 211};

     /* global coordinates */
     /* node ID:  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  */
     float x[] = {0., 1., 2., 0., 1., 2., 0., 1., 2., 0., 1., 0., 1., 0., 1.};
     float y[] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.};
     float z[] = {0., 0., 0., 1., 1., 1., 2., 2., 2., 2., 2., 0., 0., 1., 1.};

     /* global nodal displacements */
     /* node ID:    0    1    2    3    4    5    6    7    8    9    10    11    12    13    14  */
     float dx[] = {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14};
     float dy[] = {2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14};
     float dz[] = {3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14};

     /* global nodal velocities */
     float xvel[] = {10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11, 10.12, 10.13, 10.14};
     float yvel[] = {20.0, 20.1, 20.2, 20.3, 20.4, 20.5, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, 20.12, 20.13, 20.14};
     float zvel[] = {30.0, 30.1, 30.2, 30.3, 30.4, 30.5, 30.6, 30.7, 30.8, 30.9, 30.10, 30.11, 30.12, 30.13, 30.14};

     /* global element centroids */
     /* element ID     0     1     2     3    4     5     6     7     8     9    10    11 */
     float xcent[] = { .5,   .5,   .5,   .5, 1.67, 1.33, 1.33, 1.67, 1.33, 1.33, 1.5 , 1.5};
     float ycent[] = {0. ,  0. ,   .5,   .5, 0.  , 0.  , 0.  , 0.  ,  .33,  .33,  .25,  .25};
     float zcent[] = {1.5,   .5,  1.5,   .5, 1.67, 1.33,  .67,  .33,  .67, 1.33, 1.75, 1.25};

     /* global stresses
      * only elements in blocks 2 (elements 2 and 3) and 5 (elements 10 and 11) should have valid values */
     float sigxx_vals[] = {-1, -1, 100.2, 100.3, -1, -1, -1, -1, -1, -1, 100.10, 100.11};
     float sigyy_vals[] = {-1, -1, 200.2, 200.3, -1, -1, -1, -1, -1, -1, 200.10, 200.11};
     float sigzz_vals[] = {-1, -1, 300.2, 300.3, -1, -1, -1, -1, -1, -1, 300.10, 300.11};
     float sigxy_vals[] = {-1, -1, 400.2, 400.3, -1, -1, -1, -1, -1, -1, 400.10, 400.11};
     float sigyz_vals[] = {-1, -1, 500.2, 500.3, -1, -1, -1, -1, -1, -1, 500.10, 500.11};
     float sigzx_vals[] = {-1, -1, 600.2, 600.3, -1, -1, -1, -1, -1, -1, 600.10, 600.11};

     /* global strains
      * only elements in blocks 1 (elements 0 and 1) and 3 (elements 4,5,6,7) should have valid values */
     float epsxx_vals[] = {10.0, 10.1, -1, -1, 10.4, 10.5, 10.6, 10.7, -1, -1, -1, -1};
     float epsyy_vals[] = {20.0, 20.1, -1, -1, 20.4, 20.5, 20.6, 20.7, -1, -1, -1, -1};
     float epszz_vals[] = {30.0, 30.1, -1, -1, 30.4, 30.5, 30.6, 30.7, -1, -1, -1, -1};
     float epsxy_vals[] = {40.0, 40.1, -1, -1, 40.4, 40.5, 40.6, 40.7, -1, -1, -1, -1};
     float epsyz_vals[] = {50.0, 50.1, -1, -1, 50.4, 50.5, 50.6, 50.7, -1, -1, -1, -1};
     float epszx_vals[] = {60.0, 60.1, -1, -1, 60.4, 60.5, 60.6, 60.7, -1, -1, -1, -1};

     /* global pressures
      * only elements in blocks 1 (elements 0 and 1) and 2 (elements 2 and 3) should have valid values */
     float press_vals[] = {1000., 2000., 3000., 4000., -1, -1, -1, -1, -1, -1, -1, -1};

     void *pbuf;

     /* initialize MPI */
 #ifdef HAVE_PARALLEL
     MPI_Init (&argc, &argv);
     MPI_Comm_rank (MPI_COMM_WORLD, &rank);
     MPI_Comm_size (MPI_COMM_WORLD, &num_domain);
 #else
     rank=0;
     num_domain=1;
 #endif

 #if 0 /*DEBUGGING rpm 2002-07-08 */
     fprintf(stderr, "pid=%d, task=%d stopping\n", getpid(), rank);
     raise(SIGSTOP);
 #endif

     /* initialize the SAF library */
     saf_init(SAF_DEFAULT_LIBPROPS);

     SAF_TRY_BEGIN {
         /* open (create) a database  */
         strcpy(dbname, "exo_par_wt.saf");

         dbprops = saf_createProps_database();
         saf_setProps_Clobber(dbprops);
         db = saf_open_database(dbname,dbprops);

         /* Find units */
         meter = saf_find_one_unit(db, "meter", NULL);
         m_per_s = saf_find_one_unit(db, "meter per second", NULL);
         pascal = saf_find_one_unit(db, "pascal", NULL);

         /* create categories that will be used in creating collections on sets */
         saf_declare_role(SAF_ALL, db, "side sets", NULL, &saf_ss_role);
         saf_declare_role(SAF_ALL, db, "node sets", NULL, &saf_ns_role);
         saf_declare_role(SAF_ALL, db, "node comm maps", NULL, &saf_node_comm_role);
         saf_declare_role(SAF_ALL, db, "side comm maps", NULL, &saf_side_comm_role);

         saf_declare_category(SAF_ALL, db, "nodes", SAF_TOPOLOGY, 0, &nodes);
         saf_declare_category(SAF_ALL, db, "elems", SAF_TOPOLOGY, 3, &elems);
         saf_declare_category(SAF_ALL, db, "blocks", SAF_BLOCK, 3, &blocks);
         saf_declare_category(SAF_ALL, db, "domains", SAF_PROCESSOR, 3, &domain_cat);
         saf_declare_category(SAF_ALL, db, "side_sets", &saf_ss_role, 2, &side_sets);
         saf_declare_category(SAF_ALL, db, "node_sets", &saf_ns_role, 0, &node_sets);
         saf_declare_category(SAF_ALL, db, "node_comm", &saf_node_comm_role, 0, &node_comm);
         saf_declare_category(SAF_ALL, db, "side_comm", &saf_side_comm_role, 2, &side_comm);

         /* get quantities that will be used in various field templates */
         vel_q = saf_find_one_quantity(db,"velocity", NULL);
         stress_q = saf_find_one_quantity(db, "pressure", NULL); /*a.k.a., stress*/

         strain_q = saf_declare_quantity(SAF_ALL,db,"strain", "strain", NULL,NULL);
         tmp_q = SAF_QLENGTH;
         saf_multiply_quantity(SAF_ALL,strain_q, tmp_q, 1);
         saf_multiply_quantity(SAF_ALL,strain_q, tmp_q, -1);

         pressure_q = saf_find_one_quantity (db, "pressure",NULL);
         energy_q = saf_find_one_quantity (db, "energy",NULL);
         angle_q = saf_find_one_quantity(db,"plane angle",NULL);
         area_q = saf_find_one_quantity(db,"area",NULL);

         /* global set information */
         {
             /* create a top set called "TOP_SET" */
             saf_declare_set(SAF_ALL, db, "TOP_SET", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &top);

             /* create collections in "TOP_SET" for:
              * elements;
              * nodes;
              * element blocks;
              * side sets;
              * node sets;
              * domains */
             glob_num_nodes = 15;
             glob_num_elems = 12;
             num_blocks = 5;
             num_side_sets = 2;
             num_node_sets = 1;

             saf_declare_collection(SAF_ALL, &top, &nodes, SAF_CELLTYPE_POINT, glob_num_nodes, SAF_1DC(glob_num_nodes),
                                    SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &top, &elems, SAF_CELLTYPE_MIXED, glob_num_elems, SAF_1DC(glob_num_elems),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &top, &blocks, SAF_CELLTYPE_SET, num_blocks, SAF_1DC(num_blocks), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &top, &side_sets, SAF_CELLTYPE_SET, num_side_sets, SAF_1DC(num_side_sets),
                                    SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &top, &node_sets, SAF_CELLTYPE_SET, num_node_sets, SAF_1DC(num_node_sets),
                                    SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &top, &domain_cat, SAF_CELLTYPE_SET, num_domain, SAF_1DC(num_domain), SAF_DECOMP_TRUE);

             /* create "BLOCK_1" with quad shells */
             saf_declare_set(SAF_ALL, db, "BLOCK_1", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_1);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_ALL, &block_1, "EXO_ELEM_TYPE", H5T_C_S1, 1, "SHELL");

             saf_declare_collection(SAF_ALL, &block_1, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_1, &elems, SAF_CELLTYPE_QUAD, num_elem_in_blk[0], SAF_1DC(num_elem_in_blk[0]),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_1, &nodes, SAF_CELLTYPE_POINT, 6, SAF_1DC(6), SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &block_1, &domain_cat, SAF_CELLTYPE_SET, num_domain, SAF_1DC(num_domain),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_1, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {0,2,1};   /* start, count, stride */
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_1, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* NOTE: this node subset relation is necessary because we are going to define a field on the nodes of BLOCK_1 */
             saf_declare_subset_relation(SAF_ALL, db, &top, &block_1, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {0,1,3,4,6,7};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "BLOCK_2" with hexes */
             saf_declare_set(SAF_ALL, db, "BLOCK_2", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_2);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_ALL, &block_2, "EXO_ELEM_TYPE", H5T_C_S1, 1, "HEX");

             saf_declare_collection(SAF_ALL, &block_2, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_2, &elems, SAF_CELLTYPE_HEX, num_elem_in_blk[1], SAF_1DC(num_elem_in_blk[1]),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_2, &domain_cat, SAF_CELLTYPE_SET, num_domain, SAF_1DC(num_domain),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_2, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {2,2,1};   /* start, count, stride */
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_2, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {1};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "BLOCK_3" with tri shells */
             saf_declare_set(SAF_ALL, db, "BLOCK_3", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_3);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_ALL, &block_3, "EXO_ELEM_TYPE", H5T_C_S1, 1, "SHELL");

             saf_declare_collection(SAF_ALL, &block_3, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_3, &elems, SAF_CELLTYPE_TRI, num_elem_in_blk[2], SAF_1DC(num_elem_in_blk[2]),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_3, &nodes, SAF_CELLTYPE_POINT, 6, SAF_1DC(6), SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &block_3, &domain_cat, SAF_CELLTYPE_SET, num_domain, SAF_1DC(num_domain), SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_3, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {4,4,1};   /* start, count, stride */
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_3, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {2};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* NOTE: this node subset relation is necessary because we are going to define a field on the nodes of BLOCK_3 */
             saf_declare_subset_relation(SAF_ALL, db, &top, &block_3, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {1,2,4,5,7,8};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "BLOCK_4" with pyramids */
             saf_declare_set(SAF_ALL, db, "BLOCK_4", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_4);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_ALL, &block_4, "EXO_ELEM_TYPE", H5T_C_S1, 1, "PYRAMID");

             saf_declare_collection(SAF_ALL, &block_4, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_4, &elems, SAF_CELLTYPE_PYRAMID, num_elem_in_blk[3], SAF_1DC(num_elem_in_blk[3]),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_4, &domain_cat, SAF_CELLTYPE_SET, num_domain, SAF_1DC(num_domain),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_4, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {8,2,1};   /* start, count, stride */
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_4, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {3};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "BLOCK_5" with tets */
             saf_declare_set(SAF_ALL, db, "BLOCK_5", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_5);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_ALL, &block_5, "EXO_ELEM_TYPE", H5T_C_S1, 1, "TET");

             saf_declare_collection(SAF_ALL, &block_5, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_5, &elems, SAF_CELLTYPE_TET, num_elem_in_blk[4], SAF_1DC(num_elem_in_blk[4]),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &block_5, &domain_cat, SAF_CELLTYPE_SET, num_domain, SAF_1DC(num_domain),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_5, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {10,2,1};   /* start, count, stride */
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_ALL, db, &top, &block_5, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             {
                 int buf[] = {4};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "SIDE_SET_A"  */
             saf_declare_set(SAF_ALL, db, "SIDE_SET_A", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_a);

             saf_declare_collection(SAF_ALL, &side_set_a, &side_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &side_set_a, &elems, SAF_CELLTYPE_MIXED, 2, SAF_1DC(2), SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &side_set_a, SAF_COMMON(&side_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create subsets "SIDE_SET_A_QUADS" and "SIDE_SET_A_TRIS" which are sets of homogeneous primitives */
             saf_declare_set(SAF_ALL, db, "SIDE_SET_A_QUADS", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_a_q);

             saf_declare_collection(SAF_ALL, &side_set_a_q, &elems, SAF_CELLTYPE_QUAD, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &side_set_a, &side_set_a_q, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_set(SAF_ALL, db, "SIDE_SET_A_TRIS", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_a_t);

             saf_declare_collection(SAF_ALL, &side_set_a_t, &elems, SAF_CELLTYPE_TRI, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &side_set_a, &side_set_a_t, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {1};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "SIDE_SET_B" */
             saf_declare_set(SAF_ALL, db, "SIDE_SET_B", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_b);

             saf_declare_collection(SAF_ALL, &side_set_b, &side_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_ALL, &side_set_b, &elems, SAF_CELLTYPE_MIXED, 4, SAF_1DC(4), SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &side_set_b, SAF_COMMON(&side_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[] = {1};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "NODE_SET_A" */
             saf_declare_set(SAF_ALL, db, "NODE_SET_A", 0, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &node_set_a);

             saf_declare_collection(SAF_ALL, &node_set_a, &node_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_ALL, &node_set_a, &nodes, SAF_CELLTYPE_POINT, 9, SAF_1DC(9), SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_ALL, db, &top, &node_set_a, SAF_COMMON(&node_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }
         }

         /* Now put out domain-local info.  the "downset" of each domain set (the part of the SRG below a domain set) is similar
          * to the global sets (sets for element blocks, node sets, and side sets) below the top set; the main difference is the
          * values in the subset relations; so here we duplicate the calls that created the global sets and just fill in
          * different subset relations */
         {
             /* Determine local number of elements. Just divide evenly across all domains */
             if (glob_num_elems < num_domain) {
                 printf ("global number of elements is less than number of domains.\n");
                 if (rank < glob_num_elems) loc_num_elems = 1;
                 else loc_num_elems = 0;
             } else {
                 loc_num_elems = glob_num_elems / num_domain;
                 if (rank < (glob_num_elems % num_domain)) loc_num_elems++;
             }

             /* determine start and ending global indices of local elements within this domain MPI_Scan can assist with this */
 #ifdef HAVE_PARALLEL
             MPI_Scan (&loc_num_elems, &end_elem_index_in_domain, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
 #else
             end_elem_index_in_domain = loc_num_elems;
 #endif
             begin_elem_index_in_domain = end_elem_index_in_domain - loc_num_elems;
             end_elem_index_in_domain--;

             /* calculate start and ending global indices of elements within each block */
             begin_elem_index_in_blk = (int *) malloc (num_blocks * sizeof(int));
             end_elem_index_in_blk = (int *) malloc (num_blocks * sizeof(int));

             for (i=0, accum_num_elem=0; i<num_blocks; i++) {
                 begin_elem_index_in_blk[i] = accum_num_elem;
                 end_elem_index_in_blk[i] = begin_elem_index_in_blk[i] + num_elem_in_blk[i] - 1;
                 accum_num_elem += num_elem_in_blk[i];
             }

             /* malloc things we need */
             len_connect = MAX_NUM_NODES_PER_ELEM * loc_num_elems;

             elem_map = (int *) malloc (loc_num_elems * sizeof(int));
             domain_connect = (int *) malloc (len_connect * sizeof(int));
             loc_connect = (int *) malloc (len_connect * sizeof(int));
             node_map = (int *) malloc (len_connect * sizeof(int));

             /* create element local/global map */
             create_elem_map (loc_num_elems, begin_elem_index_in_domain, elem_map);

             /* extract current domain's connectivity, referencing global node ids */
             extract_connect (glob_num_elems, elem_map, glob_connect, domain_connect);

             /* The local/global node map is just the current domain's connectivity, sorted with duplicate entries removed */
             create_node_map (len_connect, domain_connect, node_map, &loc_num_nodes);

             /* Using local/global node map, convert the domain connectivity (referencing global node ids) to local connectivity
              * (referencing local node ids) */
             create_local_connect (node_map, loc_num_nodes, len_connect, domain_connect, loc_connect);

             /* create a set for each domain in the decomposition each processor creates a set in SAF_EACH mode */
             sprintf (tmp_name, "DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_set);

             /* create collections in "DOMAIN_XX" for:
              * elements;
              * nodes;
              * element blocks;
              * side sets;
              * node sets;
              * domains;
              * node comm maps;
              * side comm maps */
             saf_declare_collection(SAF_EACH, &domain_set, &nodes, SAF_CELLTYPE_POINT, loc_num_nodes, SAF_1DC(loc_num_nodes),
                                    SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_EACH, &domain_set, &elems, SAF_CELLTYPE_MIXED, loc_num_elems, SAF_1DC(loc_num_elems),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_set, &blocks, SAF_CELLTYPE_SET, num_blocks, SAF_1DC(num_blocks),
                                    SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_set, &side_sets, SAF_CELLTYPE_SET, num_side_sets, SAF_1DC(num_side_sets),
                                    SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_EACH, &domain_set, &node_sets, SAF_CELLTYPE_SET, num_node_sets, SAF_1DC(num_node_sets),
                                    SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_EACH, &domain_set, &domain_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_set, &node_comm, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);
             saf_declare_collection(SAF_EACH, &domain_set, &side_comm, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);

             /* Declare subset relations of elements, nodes, domains, side sets, and node sets between top set and domain set */
             saf_declare_subset_relation(SAF_EACH, db, &top, &domain_set, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, elem_map, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &top, &domain_set, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, node_map, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &top, &domain_set, SAF_COMMON(&domain_cat), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &rank, H5I_INVALID_HID, NULL, db);

             /* write out the inter-processor node communication map containing:
              *  - a set of nodes that are shared by another processor
              *  - a field associated with each node of that set specifying a processor ID with which it is shared */
             {
                 sprintf (tmp_name, "NODE_COMM_SET_%d", rank);
                 saf_declare_set(SAF_EACH, db, tmp_name, 0, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &node_comm_set);

                 saf_declare_collection(SAF_EACH, &node_comm_set, &node_comm, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);
                 saf_declare_collection(SAF_EACH, &node_comm_set, &nodes, SAF_CELLTYPE_POINT, 2, SAF_1DC(2), SAF_DECOMP_FALSE);

                 saf_declare_subset_relation(SAF_EACH, db, &domain_set, &node_comm_set, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL,
                                             H5I_INVALID_HID, NULL, &rel);
                 {
                     int buf[] = {0,1};   /* node comm map node list; these are just made up */
                     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
                 }

                 saf_declare_subset_relation(SAF_EACH, db, &domain_set, &node_comm_set, SAF_COMMON(&node_comm), SAF_TUPLES, SAF_INT, NULL,
                                             H5I_INVALID_HID, NULL, &rel);
                 {
                     int buf[] = {0};
                     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
                 }

                 sprintf (tmp_name, "node_comm_%d_tmpl", rank);
                 saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                        &node_comm_ftmpl);

                 sprintf (tmp_name, "node_comm_procs_%d", rank);
                 saf_declare_field(SAF_EACH, db, &node_comm_ftmpl, tmp_name, &node_comm_set, meter, SAF_SELF(db), &nodes, 1,
                                   &nodes, SAF_SPACE_PWLINEAR, SAF_INT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                                   &node_comm_procs_fld);
                 {
                     int buf[] = {1,2};  /* make up some proc IDS */
                     void *pbuf = &buf[0];
                     saf_write_field(SAF_EACH, &node_comm_procs_fld, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                 }

             }

             /* write out the inter-processor side communication map containing:
              *  - a set of sides that are shared by another processor; the sides are defined via a boundary relation
              *  - a field associated with each side of that set specifying a processor ID with which it is shared */
             {
                 sprintf (tmp_name, "SIDE_COMM_SET_%d", rank);
                 saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_comm_set);

                 saf_declare_collection(SAF_EACH, &side_comm_set, &side_comm, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);
                 saf_declare_collection(SAF_EACH, &side_comm_set, &elems, SAF_CELLTYPE_MIXED, 2, SAF_1DC(2), SAF_DECOMP_FALSE);

                 saf_declare_subset_relation(SAF_EACH, db, &domain_set, &side_comm_set, SAF_EMBEDBND(&elems,&elems), SAF_TUPLES, SAF_INT,
                                             NULL, H5I_INVALID_HID, NULL, &rel);
                 {
                     int abuf[] = {2,5};   /* side comm map element list */
                     int bbuf[] = {0,0};   /* side comm map side list */
                     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, abuf, SAF_INT, bbuf, db);
                 }

                 saf_declare_subset_relation(SAF_EACH, db, &domain_set, &side_comm_set, SAF_COMMON(&side_comm), SAF_TUPLES, SAF_INT, NULL,
                                             H5I_INVALID_HID, NULL, &rel);
                 {
                     int buf[] = {0};
                     saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
                 }

                 sprintf (tmp_name, "side_comm_%d_tmpl", rank);
                 saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                        &side_comm_ftmpl);

                 sprintf (tmp_name, "side_comm_procs_%d", rank);
                 saf_declare_field(SAF_EACH, db, &side_comm_ftmpl, tmp_name, &side_comm_set, meter, SAF_SELF(db),
                                   SAF_ZONAL(&elems), SAF_INT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &side_comm_procs_fld);
                 {
                     int buf[] = {3,4};  /* make up some proc IDS */
                     void *pbuf = &buf[0];
                     saf_write_field(SAF_EACH, &side_comm_procs_fld, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                 }
             }

             /* For each block in the domain:
              * create a set for the block (a subset of the domain)
              * define collections of elements, blocks, and domains
              * define element maps between block subset and domain set
              * define the mesh topology on the blocks
              * declare subset relations to the domain set (via block collection) and to the block set (via domain collection) */

             /* create "BLOCK_1" with quad shells */
             sprintf (tmp_name, "BLOCK_1_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_block_1);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_EACH, &domain_block_1, "EXO_ELEM_TYPE", H5T_C_S1, 1, "SHELL");

             /* determine whether this block is completely on this processor, not on this proc, or split */
             calc_in_or_out(begin_elem_index_in_blk[0], end_elem_index_in_blk[0],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);

             saf_declare_collection(SAF_EACH, &domain_block_1, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_1, &elems, SAF_CELLTYPE_QUAD, num_elem_in_dom_blk,
                                    SAF_1DC(num_elem_in_dom_blk), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_1, &domain_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

 #if 0
             if (num_elem_in_dom_blk <= 0)  printf ("WARNING: element block 1 in domain %d is empty\n", rank);
 #endif
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_1, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_domain;
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;

                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_1, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &block_1, &domain_block_1, SAF_COMMON(&domain_cat), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &rank, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &block_1, &domain_block_1, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_blk[0];
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;

                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* write out the topo relations (the connectivities of the domain blocks) */
             saf_declare_topo_relation(SAF_EACH, db, &domain_block_1, &elems, &domain_set, &nodes, SAF_SELF(db), &domain_block_1,
                                       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &dom_blk_trel);
             {
                 int stride[] = {4};  /* stride (number of nodes per element) */
                 int dom_blk_connect[8];  /* node list */

                 offset = (begin_elem_index_in_dom_blk - begin_elem_index_in_domain) * MAX_NUM_NODES_PER_ELEM;
                 extract_dom_block_connect(num_elem_in_dom_blk, &(loc_connect[offset]), dom_blk_connect);
                 saf_write_topo_relation(SAF_EACH, &dom_blk_trel, SAF_INT, stride, SAF_INT, dom_blk_connect, db);
                 create_node_map (8, dom_blk_connect, dom_blk_node_map, &num_nodes_in_dom_blk);
             }

             /* create an indirect topo relation on the global block; gather the handles of the topo relations on the domain
              * blocks and put them in the indirect topo relation */
             {
                 int num_handles;
                 SAF_Rel blk_trel, *dom_block_rels;

                 /* gather field handles of topo relations for all domains and write out to (indirect) topo relation on global
                  * block */
                 if (NULL==(dom_block_rels=(SAF_Rel*)saf_allgather_handles((ss_pers_t*)&dom_blk_trel, &num_handles, NULL)))
                     printf ("failed to gather topo relations for block 1\n");

                 saf_declare_topo_relation(SAF_ALL, db, &block_1, &elems, &top, &nodes, &domain_cat, &block_1, SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL,
                                           H5I_INVALID_HID, NULL, &blk_trel);

                 saf_write_topo_relation(SAF_ALL, &blk_trel, SAF_HANDLE, dom_block_rels, H5I_INVALID_HID, NULL, db);
             }

             /* NOTE: this node subset relation is necessary because we are going to define a field on the nodes of BLOCK_1 */
             saf_declare_collection(SAF_EACH, &domain_block_1, &nodes, SAF_CELLTYPE_POINT, num_nodes_in_dom_blk,
                                    SAF_1DC(num_nodes_in_dom_blk), SAF_DECOMP_FALSE);
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_1, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, dom_blk_node_map, H5I_INVALID_HID, NULL, db);

             /* create "BLOCK_2" with hexes */
             sprintf (tmp_name, "BLOCK_2_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_block_2);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_EACH, &domain_block_2, "EXO_ELEM_TYPE", H5T_C_S1, 1, "HEX");

             /* determine whether this block is completely on this processor, not on this proc, or split */
             calc_in_or_out(begin_elem_index_in_blk[1], end_elem_index_in_blk[1],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);

             saf_declare_collection(SAF_EACH, &domain_block_2, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_2, &elems, SAF_CELLTYPE_HEX, num_elem_in_dom_blk,
                                    SAF_1DC(num_elem_in_dom_blk), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_2, &domain_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

             /* if (num_elem_in_dom_blk <= 0) printf ("WARNING: element block 2 in domain %d is empty\n", rank); */
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_2, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_domain;
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;
                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_2, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {1};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &block_2, &domain_block_2, SAF_COMMON(&domain_cat), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &rank, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &block_2, &domain_block_2, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_blk[1];
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;

                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* write out the topo relations (the connectivities of the domain blocks) */
             saf_declare_topo_relation(SAF_EACH, db, &domain_block_2, &elems, &domain_set, &nodes, SAF_SELF(db), &domain_block_2,
                                       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &dom_blk_trel);
             {
                 int stride[] = {8};  /* stride (number of nodes per element) */
                 int dom_blk_connect[16];  /* node list */

                 offset = (begin_elem_index_in_dom_blk - begin_elem_index_in_domain) * MAX_NUM_NODES_PER_ELEM;
                 extract_dom_block_connect(num_elem_in_dom_blk, &(loc_connect[offset]), dom_blk_connect);
                 saf_write_topo_relation(SAF_EACH, &dom_blk_trel, SAF_INT, stride, SAF_INT, dom_blk_connect, db);
             }

             /* create an indirect topo relation on the global block; gather the handles of the topo relations on the domain
              * blocks and put them in the indirect topo relation */
             {
                 int num_handles;
                 SAF_Rel blk_trel, *dom_block_rels;

                 /* gather field handles of topo relations for all domains and write out to (indirect) topo relation on global
                  * block */
                 if (NULL==(dom_block_rels=(SAF_Rel*)saf_allgather_handles((ss_pers_t*)&dom_blk_trel, &num_handles, NULL)))
                     printf ("failed to gather topo relations for block 2\n");

                 saf_declare_topo_relation(SAF_ALL, db, &block_2, &elems, &top, &nodes, &domain_cat, &block_2, SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL,
                                           H5I_INVALID_HID, NULL, &blk_trel);

                 saf_write_topo_relation(SAF_ALL, &blk_trel, SAF_HANDLE, dom_block_rels, H5I_INVALID_HID, NULL, db);
             }

             /* create "BLOCK_3" with tri shells */
             sprintf (tmp_name, "BLOCK_3_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_block_3);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_EACH, &domain_block_3, "EXO_ELEM_TYPE", H5T_C_S1, 1, "SHELL");

             /* determine whether this block is completely on this processor, not on this proc, or split */
             calc_in_or_out(begin_elem_index_in_blk[2], end_elem_index_in_blk[2],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);

             saf_declare_collection(SAF_EACH, &domain_block_3, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_3, &elems, SAF_CELLTYPE_TRI, num_elem_in_dom_blk,
                                    SAF_1DC(num_elem_in_dom_blk), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_3, &domain_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

             /* if (num_elem_in_dom_blk <= 0)  printf ("WARNING: element block 3 in domain %d is empty\n", rank); */
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_3, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_domain;
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;
                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_3, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {2};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &block_3, &domain_block_3, SAF_COMMON(&domain_cat), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &rank, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &block_3, &domain_block_3, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_blk[2];
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;

                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* write out the topo relations (the connectivities of the domain blocks) */
             saf_declare_topo_relation(SAF_EACH, db, &domain_block_3, &elems, &domain_set, &nodes, SAF_SELF(db), &domain_block_3,
                                       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &dom_blk_trel);
             {
                 int stride[] = {3};  /* stride (number of nodes per element) */
                 int dom_blk_connect[12];  /* node list */

                 offset = (begin_elem_index_in_dom_blk - begin_elem_index_in_domain) * MAX_NUM_NODES_PER_ELEM;
                 extract_dom_block_connect(num_elem_in_dom_blk, &(loc_connect[offset]), dom_blk_connect);
                 saf_write_topo_relation(SAF_EACH, &dom_blk_trel, SAF_INT, stride, SAF_INT, dom_blk_connect, db);
                 create_node_map (12, dom_blk_connect, dom_blk_node_map, &num_nodes_in_dom_blk);
             }

             /* create an indirect topo relation on the global block; gather the handles of the topo relations on the domain
              * blocks and put them in the indirect topo relation */
             {
                 int num_handles;
                 SAF_Rel blk_trel, *dom_block_rels;

                 /* gather field handles of topo relations for all domains and write out to (indirect) topo relation on global
                  * block */
                 if (NULL==(dom_block_rels=(SAF_Rel*)saf_allgather_handles((ss_pers_t*)&dom_blk_trel, &num_handles, NULL)))
                     printf ("failed to gather topo relations for block 3\n");

                 saf_declare_topo_relation(SAF_ALL, db, &block_3, &elems, &top, &nodes, &domain_cat, &block_3, SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL,
                                           H5I_INVALID_HID, NULL, &blk_trel);

                 saf_write_topo_relation(SAF_ALL, &blk_trel, SAF_HANDLE, dom_block_rels, H5I_INVALID_HID, NULL, db);
             }

             /* NOTE: this node subset relation is necessary because we are going to define a field on the nodes of BLOCK_3 */
             saf_declare_collection(SAF_EACH, &domain_block_3, &nodes, SAF_CELLTYPE_POINT, num_nodes_in_dom_blk,
                                    SAF_1DC(num_nodes_in_dom_blk), SAF_DECOMP_FALSE);
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_3, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, dom_blk_node_map, H5I_INVALID_HID, NULL, db);

             /* create "BLOCK_4" with pyramids */
             sprintf (tmp_name, "BLOCK_4_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_block_4);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_EACH, &domain_block_4, "EXO_ELEM_TYPE", H5T_C_S1, 1, "PYRAMID");

             /* determine whether this block is completely on this processor, not on this proc, or split */
             calc_in_or_out(begin_elem_index_in_blk[3], end_elem_index_in_blk[3],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);

             saf_declare_collection(SAF_EACH, &domain_block_4, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_4, &elems, SAF_CELLTYPE_PYRAMID, num_elem_in_dom_blk,
                                    SAF_1DC(num_elem_in_dom_blk), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_4, &domain_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

 #if 0
             if (num_elem_in_dom_blk <= 0) printf ("WARNING: element block 4 in domain %d is empty\n", rank);
 #endif
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_4, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_domain;
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;
                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_4, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {3};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &block_4, &domain_block_4, SAF_COMMON(&domain_cat), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &rank, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &block_4, &domain_block_4, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_blk[3];
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;

                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* write out the topo relations (the connectivities of the domain blocks) */
             saf_declare_topo_relation(SAF_EACH, db, &domain_block_4, &elems, &domain_set, &nodes, SAF_SELF(db), &domain_block_4,
                                       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &dom_blk_trel);
             {
                 int stride[] = {5};  /* stride (number of nodes per element) */
                 int dom_blk_connect[10];  /* node list */

                 offset = (begin_elem_index_in_dom_blk - begin_elem_index_in_domain) * MAX_NUM_NODES_PER_ELEM;
                 extract_dom_block_connect(num_elem_in_dom_blk, &(loc_connect[offset]), dom_blk_connect);
                 saf_write_topo_relation(SAF_EACH, &dom_blk_trel, SAF_INT, stride, SAF_INT, dom_blk_connect, db);
             }

             /* create an indirect topo relation on the global block; gather the handles of the topo relations on the domain
              * blocks and put them in the indirect topo relation */
             {
                 int num_handles;
                 SAF_Rel blk_trel, *dom_block_rels;

                 /* gather field handles of topo relations for all domains and write out to (indirect) topo relation on global
                  * block */
                 if (NULL==(dom_block_rels=(SAF_Rel*)saf_allgather_handles((ss_pers_t*)&dom_blk_trel, &num_handles, NULL)))
                     printf ("failed to gather topo relations for block 4\n");

                 saf_declare_topo_relation(SAF_ALL, db, &block_4, &elems, &top, &nodes, &domain_cat, &block_4, SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL,
                                           H5I_INVALID_HID, NULL, &blk_trel);

                 saf_write_topo_relation(SAF_ALL, &blk_trel, SAF_HANDLE, dom_block_rels, H5I_INVALID_HID, NULL, db);
             }

             /* create "BLOCK_5" with tets */
             sprintf (tmp_name, "BLOCK_5_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_block_5);

             /* optional attribute that EXODUS clients may want to know */
             saf_put_set_att(SAF_EACH, &domain_block_5, "EXO_ELEM_TYPE", H5T_C_S1, 1, "TET");

             /* determine whether this block is completely on this processor, not on this proc, or split */
             calc_in_or_out(begin_elem_index_in_blk[4], end_elem_index_in_blk[4],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);

             saf_declare_collection(SAF_EACH, &domain_block_5, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_5, &elems, SAF_CELLTYPE_TET, num_elem_in_dom_blk,
                                    SAF_1DC(num_elem_in_dom_blk), SAF_DECOMP_TRUE);
             saf_declare_collection(SAF_EACH, &domain_block_5, &domain_cat, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

 #if 0
             if (num_elem_in_dom_blk <= 0) printf ("WARNING: element block 5 in domain %d is empty\n", rank);
 #endif
             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_5, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_domain;
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;
                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_block_5, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {4};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &block_5, &domain_block_5, SAF_COMMON(&domain_cat), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, &rank, H5I_INVALID_HID, NULL, db);

             saf_declare_subset_relation(SAF_EACH, db, &block_5, &domain_block_5, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[3];   /* start, count, stride */
                 buf[0] = begin_elem_index_in_dom_blk - begin_elem_index_in_blk[4];
                 buf[1] = num_elem_in_dom_blk;
                 buf[2] = 1;

                 if (begin_elem_index_in_dom_blk < 0) buf[0] = 0;
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* write out the topo relations (the connectivities of the domain blocks) */
             saf_declare_topo_relation(SAF_EACH, db, &domain_block_5, &elems, &domain_set, &nodes, SAF_SELF(db), &domain_block_5,
                                       SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &dom_blk_trel);
             {
                 int stride[] = {4};  /* stride (number of nodes per element) */
                 int dom_blk_connect[8];  /* node list */

                 offset = (begin_elem_index_in_dom_blk - begin_elem_index_in_domain) * MAX_NUM_NODES_PER_ELEM;
                 extract_dom_block_connect(num_elem_in_dom_blk, &(loc_connect[offset]), dom_blk_connect);
                 saf_write_topo_relation(SAF_EACH, &dom_blk_trel, SAF_INT, stride, SAF_INT, dom_blk_connect, db);
             }

             /* create an indirect topo relation on the global block; gather the handles of the topo relations on the domain
              * blocks and put them in the indirect topo relation */
             {
                 int num_handles;
                 SAF_Rel blk_trel, *dom_block_rels;

                 /* gather field handles of topo relations for all domains and write out to (indirect) topo relation on global
                  * block */
                 if (NULL==(dom_block_rels=(SAF_Rel*)saf_allgather_handles((ss_pers_t*)&dom_blk_trel, &num_handles, NULL)))
                     printf ("failed to gather topo relations for block 5\n");

                 saf_declare_topo_relation(SAF_ALL, db, &block_5, &elems, &top, &nodes, &domain_cat, &block_5,
                                           SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &blk_trel);

                 saf_write_topo_relation(SAF_ALL, &blk_trel, SAF_HANDLE, dom_block_rels, H5I_INVALID_HID, NULL, db);
             }

             /* create "SIDE_SET_A" */
             sprintf (tmp_name, "SIDE_SET_A_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_ssa);

             saf_declare_collection(SAF_EACH, &domain_ssa, &side_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);

             /* declare SIDE_SET_A on all domains but all will be empty except the one on domain_0; the side set *could* be
              * distributed across processors but just for convenience for this client, we put the whole side set on proc 0;
              * because of this, the side set element list isn't valid because it references global element ID's, not
              * processor-local IDs; an actual client would have the side set decomposition (which may be different from the
              * primary element decomposition) readily available and would use it to determine the element list */
             if (rank == 0)
                 num_sides = 2;
             else
                 num_sides = 0;

             saf_declare_collection(SAF_EACH, &domain_ssa, &elems, SAF_CELLTYPE_MIXED, num_sides, SAF_1DC(num_sides),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_ssa, SAF_EMBEDBND(&elems,&elems), SAF_TUPLES, SAF_INT, NULL,
                                         H5I_INVALID_HID, NULL, &rel);
             {
                 int abuf[] = {2,10};   /* side set element list */
                 int bbuf[] = {5,2};   /* side set side list  */

                 /* even though all procs call this, only proc 0 will write anything because it's the only proc that has
                  * declared a collection with count > 0 */
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, abuf, SAF_INT, bbuf, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_ssa, SAF_COMMON(&side_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create subsets "SIDE_SET_A_QUADS" and "SIDE_SET_A_TRIS" which are sets of homogeneous primitives */
             sprintf (tmp_name, "SIDE_SET_A_QUADS_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_ssa_q);

             if (rank == 0)
                 num_sides = 1;
             else
                 num_sides = 0;

             saf_declare_collection(SAF_EACH, &domain_ssa_q, &elems, SAF_CELLTYPE_QUAD, num_sides, SAF_1DC(num_sides),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_EACH, db, &domain_ssa, &domain_ssa_q, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             sprintf (tmp_name, "SIDE_SET_A_TRIS_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_ssa_t);

             if (rank == 0)
                 num_sides = 1;
             else
                 num_sides = 0;

             saf_declare_collection(SAF_EACH, &domain_ssa_t, &elems, SAF_CELLTYPE_TRI, num_sides, SAF_1DC(num_sides),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_EACH, db, &domain_ssa, &domain_ssa_t, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {1};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "SIDE_SET_B" */
             sprintf (tmp_name, "SIDE_SET_B_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_ssb);

             saf_declare_collection(SAF_EACH, &domain_ssb, &side_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);

             if (rank == 0)
                 num_sides = 4;
             else
                 num_sides = 0;

             saf_declare_collection(SAF_EACH, &domain_ssb, &elems, SAF_CELLTYPE_MIXED, num_sides, SAF_1DC(num_sides),
                                    SAF_DECOMP_TRUE);

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_ssb, SAF_EMBEDBND(&elems,&elems), SAF_TUPLES, SAF_INT, NULL,
                                         H5I_INVALID_HID, NULL, &rel);
             {
                 int abuf[] = {2,5,3,6};   /* side set element list */
                 int bbuf[] = {0,0,0,0};   /* side set side list; yes, all of these are the 0th face of the associated elements  */
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, abuf, SAF_INT, bbuf, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_ssb, SAF_COMMON(&side_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {1};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             /* create "NODE_SET_A" */
             sprintf (tmp_name, "NODE_SET_A_DOMAIN_%d", rank);
             saf_declare_set(SAF_EACH, db, tmp_name, 0, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &domain_nsa);

             saf_declare_collection(SAF_EACH, &domain_nsa, &node_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);

             if (rank == 0)
                 num_nodes = 9;
             else
                 num_nodes = 0;

             saf_declare_collection(SAF_EACH, &domain_nsa, &nodes, SAF_CELLTYPE_POINT, num_nodes, SAF_1DC(num_nodes),
                                    SAF_DECOMP_FALSE);

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_nsa, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL,
                                         &rel);
             {
                 int buf[] = {0,1,2,3,4,5,6,7,8};   /* node set node list */
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }

             saf_declare_subset_relation(SAF_EACH, db, &domain_set, &domain_nsa, SAF_COMMON(&node_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID,
                                         NULL, &rel);
             {
                 int buf[] = {0};
                 saf_write_subset_relation(SAF_EACH, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
             }
         }

         /* OK, all the sets are written out now write out the fields */

         /* put all of the next fields into a single state of a suite named "INIT_SUITE" */
         cnt = 0;

         /* field of coordinates of nodes on TOP_SET; this will be an indirect field containing the IDs of the coordinate fields
          * defined on the domain sets; must first define the fields on the domain sets */

         /* first, declare field templates for the component (X, Y, Z) fields; then declare field templates for the composite
          * (XYZ) field */
         saf_declare_field_tmpl(SAF_EACH, db, "coordinate_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                &coords_ctmpl);

         tmp_ftmpl[0] = coords_ctmpl;
         tmp_ftmpl[1] = coords_ctmpl;
         tmp_ftmpl[2] = coords_ctmpl;

         saf_declare_field_tmpl(SAF_EACH, db, "coordinate_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3, tmp_ftmpl,
                                &coords_ftmpl);

         /* declare the component and composite coordinate fields */
         saf_declare_field(SAF_EACH, db, &coords_ctmpl, "X", &domain_set, meter, SAF_SELF(db),  SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_coords);
         saf_declare_field(SAF_EACH, db, &coords_ctmpl, "Y", &domain_set, meter, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_coords);
         saf_declare_field(SAF_EACH, db, &coords_ctmpl, "Z", &domain_set, meter, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_coords);

         tmp_fields[0] = x_coords;
         tmp_fields[1] = y_coords;
         tmp_fields[2] = z_coords;
         coord_components = tmp_fields;

         saf_declare_field(SAF_EACH, db, &coords_ftmpl, "coords_on_domains", &domain_set, meter, SAF_SELF(db),
                           SAF_NODAL(&nodes, &elems), SAF_FLOAT, coord_components, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL,
                           &coords);
         {
             /* X coordinates */
             float buf[MAX_NUM_NODES];  /* max dimension */
             void *pbuf = &buf[0];

             for (i=0; i<loc_num_nodes; i++) {
                 /* extract from global coordinates */
                 buf[i] = x[node_map[i]];
             }
             saf_write_field(SAF_EACH, &x_coords, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }
         {
             /* Y coordinates */
             float buf[MAX_NUM_NODES];  /* max dimension */
             void *pbuf = &buf[0];

             for (i=0; i<loc_num_nodes; i++) {
                 /* extract from global coordinates */
                 buf[i] = y[node_map[i]];
             }
             saf_write_field(SAF_EACH, &y_coords, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }
         {
             /* Z coordinates */
             float buf[MAX_NUM_NODES];  /* max dimension */
             void *pbuf = &buf[0];

             for (i=0; i<loc_num_nodes; i++) {
                 /* extract from global coordinates */
                 buf[i] = z[node_map[i]];
             }
             saf_write_field(SAF_EACH, &z_coords, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         /* specify that this is a coordinate field */
         saf_declare_coords(SAF_EACH, &coords);
         saf_declare_default_coords(SAF_EACH, &domain_set, &coords);

         /* create indirect field for coordinates on top set */
         {
             int num_handles;
             SAF_Field *dom_coord_fields;
             void *pbuf;

             saf_declare_field_tmpl(SAF_ALL, db, "coords_on_top_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                    SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &coords_on_top_ftmpl);
             saf_declare_field(SAF_ALL, db, &coords_on_top_ftmpl, "coords_on_top", &top, NULL, &domain_cat,
                               SAF_NODAL(&nodes, &elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &coords_on_top);

             /* gather field handles of coordinates for all domains and write out to (indirect) coordinate field on top */
             dom_coord_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&coords, &num_handles, NULL);

             pbuf = &(dom_coord_fields[0]);
             saf_write_field(SAF_ALL, &coords_on_top, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);

             saf_declare_coords(SAF_ALL, &coords_on_top);
             saf_declare_default_coords(SAF_ALL, &top, &coords_on_top);
         }

         field_list[cnt] = coords_on_top;
         field_tmpl_list[cnt] = coords_on_top_ftmpl;
         cnt++;

         /* put the next fields (element thicknesses, distribution factors, etc.) on the global element blocks, side sets, and
          * node sets; they could just as easily be put out on the "domain blocks" */

         /* field of constant shell thicknesses of elements in BLOCK_1 1 thickness will be specified per element (constant thru
          * element) */
         saf_declare_field_tmpl(SAF_ALL, db, "blk_1_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                &blk_1_elem_ftmpl);

         saf_declare_field(SAF_ALL, db, &blk_1_elem_ftmpl, "elem_thickness", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &thickness);
         {
             /* shell thicknesses for BLOCK_1 (1 per element) */
             float buf[] = {0.01, 0.02};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &thickness, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = thickness;
         field_tmpl_list[cnt] = blk_1_elem_ftmpl;
         cnt++;

         /* field of varying shell thicknesses of elements in BLOCK_3
          *
          * 3 thicknesses will be specified per element (1 per node)
          *
          * NOTE: this field is not specified to be associated with a node collection the block, which would enforce thickness
          *       continuity at the nodes;
          *
          * rather the thicknesses are specified associated with the elements (3 per element) which allows for discontinuity at
          * the nodes
          *
          * the locations at which the thicknesses are associated, as well as the ordering, must currently be assumed (at the
          * nodes of the tris, in the order of the nodes in the topo relations) */
         saf_declare_field_tmpl(SAF_ALL, db, "blk_3_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                &blk_3_elem_ftmpl);

         saf_declare_field(SAF_ALL, db, &blk_3_elem_ftmpl, "elem_thickness", &block_3, NULL, SAF_SELF(db), &elems, 3, &elems,
                           SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &thickness);
         {
             /* shell thicknesses for BLOCK_3 (3 per element) */
             float buf[] = {.01, .02, .03,  .01, .02, .03,  .01, .02, .03,  .01, .02, .03};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &thickness, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = thickness;
         field_tmpl_list[cnt] = blk_3_elem_ftmpl;
         cnt++;

         /* field of distribution factors at nodes of SIDE_SET_A these will be fields on the homogeneous subsets of SIDE_SET_A
          * (i.e., SIDE_SET_A_TRIS and SIDE_SET_A_QUADS) */
         saf_declare_field_tmpl(SAF_ALL, db, "ssaq_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                &ssaq_elem_ftmpl);

         saf_declare_field(SAF_ALL, db, &ssaq_elem_ftmpl, "dist_factor", &side_set_a_q, NULL, SAF_SELF(db), &elems, 4, &elems,
                           SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);
         {
             /* distribution factors (4 per element) */
             float buf[] = {.1, .2, .3, .4};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &dist_fact, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = dist_fact;
         field_tmpl_list[cnt] = ssaq_elem_ftmpl;
         cnt++;

         saf_declare_field_tmpl(SAF_ALL, db, "ssat_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                &ssat_elem_ftmpl);

         saf_declare_field(SAF_ALL, db, &ssat_elem_ftmpl, "dist_factor", &side_set_a_t, NULL, SAF_SELF(db), &elems, 3, &elems,
                           SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);
         {
             /* distribution factors (3 per element) */
             float buf[] = {.1, .2, .3};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &dist_fact, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = dist_fact;
         field_tmpl_list[cnt] = ssat_elem_ftmpl;
         cnt++;

         /* field of distribution factors at nodes of NODE_SET_A */
         saf_declare_field_tmpl(SAF_ALL, db, "nsa_node_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                                NULL, &nsa_node_ftmpl);

         /* saf_declare_field(SAF_ALL, db, &nsa_node_ftmpl, "dist_factor", node_set_a, NULL, SAF_SELF(db),
          * SAF_NODAL(nodes,elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact); */
         saf_declare_field(SAF_ALL, db, &nsa_node_ftmpl, "dist_factor", &node_set_a, NULL, SAF_SELF(db), &nodes, 1, &nodes,
                           SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);
         {
             /* distribution factors (1 per node) */
             float buf[] = {.1, .2, .3, .4, .5, .6, .7, .8, .9};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &dist_fact, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = dist_fact;
         field_tmpl_list[cnt] = nsa_node_ftmpl;
         cnt++;

         /* create a suite and state field into which the accumulated field handles will be inserted */
         time[0] = 0.0;
         state=0;
         saf_declare_suite(SAF_ALL,db,"TIME_SUITE",&top,NULL,&suite);
         saf_declare_state_tmpl(SAF_ALL,db, "TIME_SUITE_INIT_TMPL", cnt, field_tmpl_list, &init_stmpl);
         saf_declare_state_group(SAF_ALL,db,"TIME_STATE_INIT_GROUP",&suite,&top,&init_stmpl,SAF_QTIME,SAF_ANY_UNIT,
                                 SAF_FLOAT,&init_state_grp);
         saf_write_state(SAF_ALL, &init_state_grp, state, &top, SAF_FLOAT, &time[0], field_list);

         /* put the next fields into the first state (time = 1.0) and second state (time = 2.0) of a suite named "TIME_SUITE" */
         time[0] = 1.0;
         time[1] = 2.0;

         for (state=0; state<2; state++) {
             cnt=0;

             /* displacement vector field associated with nodes of each domain set.  first, declare field templates for the
             * component (DX, DY, DZ) fields; then declare field templates for the composite (DISP) field */
             saf_declare_field_tmpl(SAF_EACH, db, "domain_node_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                    &domain_node_ctmpl);

             tmp_ftmpl[0] = domain_node_ctmpl;
             tmp_ftmpl[1] = domain_node_ctmpl;
             tmp_ftmpl[2] = domain_node_ctmpl;

             saf_declare_field_tmpl(SAF_EACH, db, "domain_node_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3, tmp_ftmpl,
                                    &domain_node_ftmpl);

             /* declare the component and composite displacement fields */
             saf_declare_field(SAF_EACH, db, &domain_node_ctmpl, "DISP_X", &domain_set, meter, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_disp);
             saf_declare_field(SAF_EACH, db, &domain_node_ctmpl, "DISP_Y", &domain_set, meter, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_disp);
             saf_declare_field(SAF_EACH, db, &domain_node_ctmpl, "DISP_Z", &domain_set, meter, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_disp);

             tmp_fields[0] = x_disp;
             tmp_fields[1] = y_disp;
             tmp_fields[2] = z_disp;

             saf_declare_field(SAF_EACH, db, &domain_node_ftmpl, "displacement", &domain_set, meter, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &disp);
             {
                 /* X displacements */
                 float buf[MAX_NUM_NODES];  /* max dimension */
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_nodes; i++) {
                     /* extract from global displacements; multiply by state to get different field values at each state */
                     buf[i] = dx[node_map[i]] * state;
                 }

                 saf_write_field(SAF_EACH, &x_disp, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* Y displacements */
                 float buf[MAX_NUM_NODES];  /* max dimension */
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_nodes; i++) {
                     /* extract from global displacements; multiply by state to get different field values at each state */
                     buf[i] = dy[node_map[i]] * state;
                 }

                 saf_write_field(SAF_EACH, &y_disp, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* Z displacements */
                 float buf[MAX_NUM_NODES];  /* max dimension */
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_nodes; i++) {
                     /* extract from global displacements; multiply by state to get different field values at each state */
                     buf[i] = dz[node_map[i]] * state;
                 }

                 saf_write_field(SAF_EACH, &z_disp, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for displacements on top set */
             {
                 int num_handles;
                 SAF_Field *dom_disp_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "disp_on_top_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &disp_on_top_ftmpl);
                 saf_declare_field(SAF_ALL, db, &disp_on_top_ftmpl, "disp_on_top", &top, NULL, &domain_cat,
                                   SAF_NODAL(&nodes, &elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &disp_on_top);

                 /* gather field handles of displacements for all domains and write out to (indirect) displacement field on top */
                 dom_disp_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&disp, &num_handles, NULL);

                 pbuf = &(dom_disp_fields[0]);
                 saf_write_field(SAF_ALL, &disp_on_top, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = disp_on_top;
             field_tmpl_list[cnt] = disp_on_top_ftmpl;
             cnt++;

             /* velocity vector field associated with nodes of each domain set */

             /* first, declare field templates for the component (VX, VY, VZ) fields; then declare field templates for the
              * composite (VEL) field */
             saf_declare_field_tmpl(SAF_EACH, db, "domain_node_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, vel_q, 1, NULL,
                                    &domain_node_ctmpl);

             tmp_ftmpl[0] = domain_node_ctmpl;
             tmp_ftmpl[1] = domain_node_ctmpl;
             tmp_ftmpl[2] = domain_node_ctmpl;

             saf_declare_field_tmpl(SAF_EACH, db, "dom_node_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, vel_q, 3, tmp_ftmpl,
                                    &domain_node_ftmpl);

             /* declare the component and composite velocity fields */
             saf_declare_field(SAF_EACH, db, &domain_node_ctmpl, "VEL_X", &domain_set, m_per_s, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_vel);
             saf_declare_field(SAF_EACH, db, &domain_node_ctmpl, "VEL_Y", &domain_set, m_per_s, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_vel);
             saf_declare_field(SAF_EACH, db, &domain_node_ctmpl, "VEL_Z", &domain_set, m_per_s, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_vel);

             tmp_fields[0] = x_vel;
             tmp_fields[1] = y_vel;
             tmp_fields[2] = z_vel;

             saf_declare_field(SAF_EACH, db, &domain_node_ftmpl, "velocity", &domain_set, m_per_s, SAF_SELF(db),
                               SAF_NODAL(&nodes, &elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &vel);
             {
                 /* X velocities */
                 float buf[MAX_NUM_NODES];
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_nodes; i++) {
                     /* extract from global velocities; multiply by state to get different field values at each state */
                     buf[i] = xvel[node_map[i]] * state;
                 }
                 saf_write_field(SAF_EACH, &x_vel, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* Y velocities */
                 float buf[MAX_NUM_NODES];
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_nodes; i++) {
                     /* extract from global velocities; multiply by state to get different field values at each state */
                     buf[i] = yvel[node_map[i]] * state;
                 }
                 saf_write_field(SAF_EACH, &y_vel, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* Z velocities */
                 float buf[MAX_NUM_NODES];
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_nodes; i++) {
                     /* extract from global velocities; multiply by state to get different field values at each state */
                     buf[i] = zvel[node_map[i]] * state;
                 }
                 saf_write_field(SAF_EACH, &z_vel, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for velocities on top set */
             {
                 int num_handles;
                 SAF_Field *dom_vel_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "vel_on_top_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &vel_on_top_ftmpl);
                 saf_declare_field(SAF_ALL, db, &vel_on_top_ftmpl, "vel_on_top", &top, NULL, &domain_cat,
                                   SAF_NODAL(&nodes, &elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &vel_on_top);

                 /* gather field handles of velocities for all domains and write out to (indirect) velocity field on top */
                 dom_vel_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&vel, &num_handles, NULL);

                 pbuf = &(dom_vel_fields[0]);
                 saf_write_field(SAF_ALL, &vel_on_top, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = vel_on_top;
             field_tmpl_list[cnt] = vel_on_top_ftmpl;
             cnt++;

             /*stress symmetric tensor field associated with elements of BLOCK_2 and BLOCK_5
              *
              * even if BLOCK_2 and BLOCK_5 are NULL (have no elements) on a given processor, we will declare and write to a
              * stress field */

             /* first, declare field templates for the component (SIGXX, SIGYY, SIGZZ, SIGXY, SIGYZ, SIGZX) fields; then declare
              * field templates for the composite (SIG) field */

             /* stress on BLOCK_2 */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_2_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, stress_q, 1, NULL,
                                    &dom_block_2_elem_ctmpl);

             tmp_ftmpl[0] = dom_block_2_elem_ctmpl;
             tmp_ftmpl[1] = dom_block_2_elem_ctmpl;
             tmp_ftmpl[2] = dom_block_2_elem_ctmpl;
             tmp_ftmpl[3] = dom_block_2_elem_ctmpl;
             tmp_ftmpl[4] = dom_block_2_elem_ctmpl;
             tmp_ftmpl[5] = dom_block_2_elem_ctmpl;

             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_2_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, stress_q, 6,
                                    tmp_ftmpl, &dom_block_2_elem_ftmpl);

             /* declare the component and composite stress fields */
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ctmpl, "SIGXX", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxx);
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ctmpl, "SIGYY", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyy);
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ctmpl, "SIGZZ", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzz);
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ctmpl, "SIGXY", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxy);
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ctmpl, "SIGYZ", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyz);
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ctmpl, "SIGZX", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzx);

             tmp_fields[0] = sigxx;
             tmp_fields[1] = sigyy;
             tmp_fields[2] = sigzz;
             tmp_fields[3] = sigxy;
             tmp_fields[4] = sigyz;
             tmp_fields[5] = sigzx;

             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ftmpl, "stress", &domain_block_2, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &stress);

             /* determine which elements in the domain are in element block 2 so we can extract values from the global stress
              * field */
             calc_in_or_out(begin_elem_index_in_blk[1], end_elem_index_in_blk[1],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);
             {
                 /* SIGXX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigxx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGYY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigyy_vals[begin_elem_index_in_dom_blk+i];
                 saf_write_field(SAF_EACH, &sigyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGZZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigzz_vals[begin_elem_index_in_dom_blk+i];
                 saf_write_field(SAF_EACH, &sigzz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGXY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigxy_vals[begin_elem_index_in_dom_blk+i];
                 saf_write_field(SAF_EACH, &sigxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGYZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigyz_vals[begin_elem_index_in_dom_blk+i];
                 saf_write_field(SAF_EACH, &sigyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGZX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigzx_vals[begin_elem_index_in_dom_blk+i];
                 saf_write_field(SAF_EACH, &sigzx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for stress on global block 2 */
             {
                 int num_handles;
                 SAF_Field *dom_stress_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "stress_on_blk2_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &stress_on_blk2_ftmpl);
                 saf_declare_field(SAF_ALL, db, &stress_on_blk2_ftmpl, "stress_on_blk2", &block_2, NULL, &domain_cat,
                                   SAF_ZONAL(&elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &stress_on_blk2);

                 /* gather field handles of stress for all block2 domains and write out to (indirect) stress field on block 2 */
                 dom_stress_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&stress, &num_handles, NULL);

                 pbuf = &(dom_stress_fields[0]);
                 saf_write_field(SAF_ALL, &stress_on_blk2, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = stress_on_blk2;
             field_tmpl_list[cnt] = stress_on_blk2_ftmpl;
             cnt++;

             /* stress on BLOCK_5 */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_5_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, stress_q, 1, NULL,
                                    &dom_block_elem_ctmpl);

             tmp_ftmpl[0] = dom_block_elem_ctmpl;
             tmp_ftmpl[1] = dom_block_elem_ctmpl;
             tmp_ftmpl[2] = dom_block_elem_ctmpl;
             tmp_ftmpl[3] = dom_block_elem_ctmpl;
             tmp_ftmpl[4] = dom_block_elem_ctmpl;
             tmp_ftmpl[5] = dom_block_elem_ctmpl;

             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_5_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, stress_q, 6,
                                    tmp_ftmpl, &dom_block_elem_ftmpl);

             /* declare the component and composite stress fields */
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "SIGXX", &domain_block_5, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxx);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "SIGYY", &domain_block_5, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyy);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "SIGZZ", &domain_block_5, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzz);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "SIGXY", &domain_block_5, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxy);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "SIGYZ", &domain_block_5, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyz);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "SIGZX", &domain_block_5, pascal, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzx);

             tmp_fields[0] = sigxx;
             tmp_fields[1] = sigyy;
             tmp_fields[2] = sigzz;
             tmp_fields[3] = sigxy;
             tmp_fields[4] = sigyz;
             tmp_fields[5] = sigzx;

             saf_declare_field(SAF_EACH, db, &dom_block_elem_ftmpl, "stress", &domain_block_5, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &stress);

             /* determine which elements in the domain are in element block 5 so we can extract values from the global stress
              * field */
             calc_in_or_out(begin_elem_index_in_blk[4], end_elem_index_in_blk[4],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);
             {
                 /* SIGXX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigxx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGYY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigyy_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGZZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigzz_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigzz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGXY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigxy_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGYZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigyz_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* SIGZX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = sigzx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &sigzx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for stress on global block 5 */
             {
                 int num_handles;
                 SAF_Field *dom_stress_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "stress_on_blk5_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &stress_on_blk5_ftmpl);
                 saf_declare_field(SAF_ALL, db, &stress_on_blk5_ftmpl, "stress_on_blk5", &block_5, NULL, &domain_cat,
                                   SAF_ZONAL(&elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &stress_on_blk5);

                 /* gather field handles of stress for all block5 domains and write out to (indirect) stress field on block 5 */
                 dom_stress_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&stress, &num_handles, NULL);

                 pbuf = &(dom_stress_fields[0]);
                 saf_write_field(SAF_ALL, &stress_on_blk5, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = stress_on_blk5;
             field_tmpl_list[cnt] = stress_on_blk5_ftmpl;
             cnt++;

             /* strain symmetric tensor field associated with elements of BLOCK_1 and BLOCK_3 */

             /* first, declare field templates for the component (EPSXX, EPSYY, EPSZZ, EPSXY, EPSYZ, EPSZX) fields; then declare
              * field templates for the composite (EPS) field */

             /* strain on BLOCK_1 */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_1_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, strain_q, 1, NULL,
                                    &dom_block_elem_ctmpl);

             tmp_ftmpl[0] = dom_block_elem_ctmpl;
             tmp_ftmpl[1] = dom_block_elem_ctmpl;
             tmp_ftmpl[2] = dom_block_elem_ctmpl;
             tmp_ftmpl[3] = dom_block_elem_ctmpl;
             tmp_ftmpl[4] = dom_block_elem_ctmpl;
             tmp_ftmpl[5] = dom_block_elem_ctmpl;

             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_1_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, strain_q, 6,
                                    tmp_ftmpl, &dom_block_elem_ftmpl);

             /* declare the component and composite strain fields */
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSXX", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxx);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSYY", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyy);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSZZ", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszz);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSXY", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxy);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSYZ", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyz);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSZX", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszx);

             tmp_fields[0] = epsxx;
             tmp_fields[1] = epsyy;
             tmp_fields[2] = epszz;
             tmp_fields[3] = epsxy;
             tmp_fields[4] = epsyz;
             tmp_fields[5] = epszx;

             saf_declare_field(SAF_EACH, db, &dom_block_elem_ftmpl, "strain", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &strain);

             /* determine which elements in the domain are in element block 1 so we can extract values from the global stress
              * field */
             calc_in_or_out(begin_elem_index_in_blk[0], end_elem_index_in_blk[0],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);
             {
                 /* EPSXX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsxx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSYY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsyy_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSZZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epszz_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epszz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSXY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsxy_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSYZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsyz_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSZX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epszx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epszx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for strain on global block 1 */
             {
                 int num_handles;
                 SAF_Field *dom_strain_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "strain_on_blk1_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &strain_on_blk1_ftmpl);
                 saf_declare_field(SAF_ALL, db, &strain_on_blk1_ftmpl, "strain_on_blk1", &block_1, NULL, &domain_cat,
                                   SAF_ZONAL(&elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &strain_on_blk1);

                 /* gather field handles of strain for all block1 domains and write out to (indirect) strain field on block 1 */
                 dom_strain_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&strain, &num_handles, NULL);

                 pbuf = &(dom_strain_fields[0]);
                 saf_write_field(SAF_ALL, &strain_on_blk1, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = strain_on_blk1;
             field_tmpl_list[cnt] = strain_on_blk1_ftmpl;
             cnt++;

             /* strain on BLOCK_3 */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_3_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, strain_q, 1, NULL,
                                    &dom_block_elem_ctmpl);

             tmp_ftmpl[0] = dom_block_elem_ctmpl;
             tmp_ftmpl[1] = dom_block_elem_ctmpl;
             tmp_ftmpl[2] = dom_block_elem_ctmpl;
             tmp_ftmpl[3] = dom_block_elem_ctmpl;
             tmp_ftmpl[4] = dom_block_elem_ctmpl;
             tmp_ftmpl[5] = dom_block_elem_ctmpl;

             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_3_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, strain_q, 6,
                                    tmp_ftmpl, &dom_block_elem_ftmpl);

             /* declare the component and composite strain fields */
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSXX", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxx);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSYY", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyy);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSZZ", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszz);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSXY", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxy);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSYZ", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyz);
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "EPSZX", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszx);

             tmp_fields[0] = epsxx;
             tmp_fields[1] = epsyy;
             tmp_fields[2] = epszz;
             tmp_fields[3] = epsxy;
             tmp_fields[4] = epsyz;
             tmp_fields[5] = epszx;

             saf_declare_field(SAF_EACH, db, &dom_block_elem_ftmpl, "strain", &domain_block_3, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &strain);

             /* determine which elements in the domain are in element block 3 so we can extract values from the global stress
              * field */
             calc_in_or_out(begin_elem_index_in_blk[2], end_elem_index_in_blk[2],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);
             {
                 /* EPSXX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsxx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSYY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsyy_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSZZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epszz_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epszz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSXY */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsxy_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSYZ */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epsyz_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epsyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* EPSZX */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = epszx_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &epszx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for strain on global block 3 */
             {
                 int num_handles;
                 SAF_Field *dom_strain_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "strain_on_blk3_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &strain_on_blk3_ftmpl);
                 saf_declare_field(SAF_ALL, db, &strain_on_blk3_ftmpl, "strain_on_blk3", &block_3, NULL, &domain_cat,
                                   SAF_ZONAL(&elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &strain_on_blk3);

                 /* gather field handles of strain for all block3 domains and write out to (indirect) strain field on block 3 */
                 dom_strain_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&strain, &num_handles, NULL);

                 pbuf = &(dom_strain_fields[0]);
                 saf_write_field(SAF_ALL, &strain_on_blk3, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = strain_on_blk3;
             field_tmpl_list[cnt] = strain_on_blk3_ftmpl;
             cnt++;

             /* pressure scalar field associated with elements of BLOCK_1 and BLOCK_2 */

             /* pressure on BLOCK_1 */

             /* first, declare field template */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_1_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, pressure_q, 1, NULL,
                                    &dom_block_elem_ftmpl);

             /* declare the field */
             saf_declare_field(SAF_EACH, db, &dom_block_elem_ftmpl, "PRESSURE", &domain_block_1, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &pressure);

             /* determine which elements in the domain are in element block 1 so we can extract values from the global pressure
              * field */
             calc_in_or_out(begin_elem_index_in_blk[0], end_elem_index_in_blk[0],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);
             {
                 /* PRESSURE */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = press_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &pressure, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for pressure on global block 1 */
             {
                 int num_handles;
                 SAF_Field *dom_press_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "press_on_blk1_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &press_on_blk1_ftmpl);
                 saf_declare_field(SAF_ALL, db, &press_on_blk1_ftmpl, "press_on_blk1", &block_1, NULL, &domain_cat,
                                   SAF_ZONAL(&elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &press_on_blk1);

                 /* gather field handles of pressure for all block1 domains and write out to (indirect) pressure field on block 1 */
                 dom_press_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&pressure, &num_handles, NULL);

                 pbuf = &(dom_press_fields[0]);
                 saf_write_field(SAF_ALL, &press_on_blk1, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = press_on_blk1;
             field_tmpl_list[cnt] = press_on_blk1_ftmpl;
             cnt++;

             /* pressure on BLOCK_2 */

             /* first, declare field template */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_block_2_elem_ftmpl",  SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, pressure_q, 1, NULL,
                                    &dom_block_2_elem_ftmpl);

             /* declare the field */
             saf_declare_field(SAF_EACH, db, &dom_block_2_elem_ftmpl, "PRESSURE", &domain_block_2, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &pressure);

             /* determine which elements in the domain are in element block 2 so we can extract values from the global pressure
              * field */
             calc_in_or_out(begin_elem_index_in_blk[1], end_elem_index_in_blk[1],
                            begin_elem_index_in_domain, end_elem_index_in_domain,
                            &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);
             {
                 /* PRESSURE */
                 float buf[MAX_NUM_ELEMS];
                 void *pbuf = &buf[0];

                 if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                 for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = press_vals[begin_elem_index_in_dom_blk+i];

                 saf_write_field(SAF_EACH, &pressure, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for pressure on global block 2 */
             {
                 int num_handles;
                 SAF_Field *dom_press_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "press_on_blk2_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &press_on_blk2_ftmpl);
                 saf_declare_field(SAF_ALL, db, &press_on_blk2_ftmpl, "press_on_blk2", &block_2, NULL, &domain_cat,
                                   SAF_ZONAL(&elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &press_on_blk2);

                 /* gather field handles of pressure for all block2 domains and write out to (indirect) pressure field on block 2 */
                 dom_press_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&pressure, &num_handles, NULL);

                 pbuf = &(dom_press_fields[0]);
                 saf_write_field(SAF_ALL, &press_on_blk2, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = press_on_blk2;
             field_tmpl_list[cnt] = press_on_blk2_ftmpl;
             cnt++;

             /* centroid vector field associated with elements of BLOCK_1, BLOCK_2, BLOCK_3, BLOCK_4, and BLOCK_5 */
             {
                 dom_block_set[0] = domain_block_1;
                 dom_block_set[1] = domain_block_2;
                 dom_block_set[2] = domain_block_3;
                 dom_block_set[3] = domain_block_4;
                 dom_block_set[4] = domain_block_5;

                 for (block_index=0; block_index<5; block_index++) {
                     /* first, declare field templates for the component (CX, CY, CZ) fields; then declare field templates for
                      * the composite (CENTROID) field */
                     sprintf (tmp_name, "dom_block_%d_elem_ctmpl", block_index+1);

                     saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                            &dom_block_elem_ctmpl);

                     tmp_ftmpl[0] = dom_block_elem_ctmpl;
                     tmp_ftmpl[1] = dom_block_elem_ctmpl;
                     tmp_ftmpl[2] = dom_block_elem_ctmpl;

                     sprintf (tmp_name, "dom_block_%d_elem_tmpl", block_index+1);

                     saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3, tmp_ftmpl,
                                            &dom_block_elem_ftmpl);

                     /* determine which elements in the domain are in this element block so we can extract values from the
                      * global centroid field */
                     calc_in_or_out(begin_elem_index_in_blk[block_index], end_elem_index_in_blk[block_index],
                                    begin_elem_index_in_domain, end_elem_index_in_domain,
                                    &begin_elem_index_in_dom_blk, &num_elem_in_dom_blk);

                     /* declare the component and composite centroid fields */
                     saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "CENT_X", &(dom_block_set[block_index]), NULL,
                                       SAF_SELF(db), SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                                       &cent_x);
                     {
                         /* CENT_X */
                         float buf[MAX_NUM_ELEMS];
                         void *pbuf = &buf[0];

                         if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                         for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = xcent[begin_elem_index_in_dom_blk+i];

                         saf_write_field(SAF_EACH, &cent_x, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                     }

                     saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "CENT_Y", &(dom_block_set[block_index]), NULL,
                                       SAF_SELF(db), SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                                       &cent_y);
                     {
                         /* CENT_Y */
                         float buf[MAX_NUM_ELEMS];
                         void *pbuf = &buf[0];

                         if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                         for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = ycent[begin_elem_index_in_dom_blk+i];

                         saf_write_field(SAF_EACH, &cent_y, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                     }

                     saf_declare_field(SAF_EACH, db, &dom_block_elem_ctmpl, "CENT_Z", &(dom_block_set[block_index]), NULL,
                                       SAF_SELF(db), SAF_ZONAL(&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                                       &cent_z);
                     {
                         /* CENT_Z */
                         float buf[MAX_NUM_ELEMS];
                         void *pbuf = &buf[0];

                         if (begin_elem_index_in_dom_blk < 0) begin_elem_index_in_dom_blk = 0;
                         for (i=0; i<num_elem_in_dom_blk; i++) buf[i] = zcent[begin_elem_index_in_dom_blk+i];

                         saf_write_field(SAF_EACH, &cent_z, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                     }

                     tmp_fields[0] = cent_x;
                     tmp_fields[1] = cent_y;
                     tmp_fields[2] = cent_z;

                     saf_declare_field(SAF_EACH, db, &dom_block_elem_ftmpl, "centroid", &(dom_block_set[block_index]), NULL,
                                       SAF_SELF(db), SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT,
                                       SAF_IDENTITY, NULL, &centroid);

                     centroid_fld_list[block_index] = centroid;
                 }
             }

             /* centroids for domain set. This will be an indirect field that references the centroid fields of each of the
              * blocks */
             saf_declare_field_tmpl(SAF_EACH, db, "dom_elem_tmpl", SAF_ALGTYPE_FIELD, SAF_ANY_BASIS, SAF_NOT_APPLICABLE_QUANTITY,
                                    SAF_NOT_APPLICABLE_INT, NULL, &domain_elem_ftmpl);

             saf_declare_field(SAF_EACH, db, &domain_elem_ftmpl, "centroid", &domain_set, NULL, &blocks, SAF_ZONAL(&elems),
                               SAF_HANDLE, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &centroid);

             pbuf = (void *)(&(centroid_fld_list[0]));
             saf_write_field(SAF_EACH, &centroid, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);

             /* create indirect field for centroids on top set */
             {
                 int num_handles;
                 SAF_Field *dom_cent_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "cent_on_top_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &cent_on_top_ftmpl);
                 saf_declare_field(SAF_ALL, db, &cent_on_top_ftmpl, "cent_on_top", &top, NULL, &domain_cat, SAF_ZONAL(&elems),
                                   H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &cent_on_top);

                 /* gather field handles of centroids for all domains and write out to (indirect) centroid field on top */
                 dom_cent_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&centroid, &num_handles, NULL);

                 pbuf = &(dom_cent_fields[0]);
                 saf_write_field(SAF_ALL, &cent_on_top, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = cent_on_top;
             field_tmpl_list[cnt] = cent_on_top_ftmpl;
             cnt++;

             /* kinetic energy constant field associated with TOP_SET */
             saf_declare_field_tmpl(SAF_ALL, db, "top_constant", SAF_ALGTYPE_SCALAR, SAF_ANY_BASIS, energy_q, 1, NULL,
                                    &top_constant_ftmpl);

             saf_declare_field(SAF_ALL, db, &top_constant_ftmpl, "KIN_ENERGY", &top, NULL, SAF_SELF(db), SAF_CONSTANT(db),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, NULL, NULL, &ke);
             {
                 float buf[] = {10000.};
                 pbuf = (void *)(&buf[0]);
                 saf_write_field(SAF_ALL, &ke, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             field_list[cnt] = ke;
             field_tmpl_list[cnt] = top_constant_ftmpl;
             cnt++;

             /* total energy constant field associated with TOP_SET */
             saf_declare_field(SAF_ALL, db, &top_constant_ftmpl, "TOTAL_ENERGY", &top, NULL, SAF_SELF(db), SAF_CONSTANT(db),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, NULL, NULL, &te);
             {
                 float buf[] = {20000.};
                 void *pbuf = &buf[0];
                 saf_write_field(SAF_ALL, &te, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             field_list[cnt] = te;
             field_tmpl_list[cnt] = top_constant_ftmpl;
             cnt++;

             /* nodal rotation field with components ROTX, ROTY, and ROTZ associated with nodes of BLOCK_1 and BLOCK_3 */
             block_set[0] = block_1;
             block_set[1] = block_3;

             dom_block_set[0] = domain_block_1;
             dom_block_set[1] = domain_block_3;

             block_num[0] = 1;
             block_num[1] = 3;

             for (i=0; i<2; i++) {
                 /* first, declare field templates for the component (ROTX, ROTY, ROTZ) fields; then declare field templates for
                  * the composite (ROTATION) field */
                 sprintf (tmp_name, "dom_block_%d_node_ctmpl", i+1);
                 saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, angle_q, 1, NULL,
                                        &dom_block_node_ctmpl);

                 tmp_ftmpl[0] = dom_block_node_ctmpl;
                 tmp_ftmpl[1] = dom_block_node_ctmpl;
                 tmp_ftmpl[2] = dom_block_node_ctmpl;

                 saf_declare_field_tmpl(SAF_EACH, db, "dom_block_node_tmpl",  SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, angle_q, 3,
                                        tmp_ftmpl, &dom_block_node_ftmpl);

                 /* declare the component and composite rotation fields */
                 saf_declare_field(SAF_EACH, db, &dom_block_node_ctmpl, "ROT_X", &(dom_block_set[i]), NULL, SAF_SELF(db),
                                   SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_rot);
                 saf_declare_field(SAF_EACH, db, &dom_block_node_ctmpl, "ROT_Y", &(dom_block_set[i]), NULL, SAF_SELF(db),
                                   SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_rot);
                 saf_declare_field(SAF_EACH, db, &dom_block_node_ctmpl, "ROT_Z", &(dom_block_set[i]), NULL, SAF_SELF(db),
                                   SAF_NODAL(&nodes, &elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_rot);

                 tmp_fields[0] = x_rot;
                 tmp_fields[1] = y_rot;
                 tmp_fields[2] = z_rot;

                 saf_declare_field(SAF_EACH, db, &dom_block_node_ftmpl, "ROTATION", &(dom_block_set[i]), NULL, SAF_SELF(db),
                                   SAF_NODAL(&nodes, &elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL,
                                   &rot);
                 {
                     /* X rotation */
                     float buf[] = {.011, .012, .013, .014, .015, .016};
                     void *pbuf = &buf[0];
                     saf_write_field(SAF_EACH, &x_rot, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                 }
                 {
                     /* Y rotation */
                     float buf[] = {.021, .022, .023, .024, .025, .026};
                     void *pbuf = &buf[0];
                     saf_write_field(SAF_EACH, &y_rot, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                 }
                 {
                     /* Z rotation */
                     float buf[] = {.031, .032, .033, .034, .035, .036};
                     void *pbuf = &buf[0];
                     saf_write_field(SAF_EACH, &z_rot, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
                 }

                 /* create indirect field for rotation on global blocks */
                 {
                     int num_handles;
                     SAF_Field *dom_rot_fields;
                     void *pbuf;
                     sprintf (tmp_name, "nodes_in_blk_%d_ftmpl", block_num[i]);
                     saf_declare_field_tmpl(SAF_ALL, db, tmp_name, SAF_ALGTYPE_FIELD, NULL, SAF_NOT_APPLICABLE_QUANTITY,
                                            SAF_NOT_APPLICABLE_INT, NULL, &nodes_on_blk_ftmpl);
                     sprintf (tmp_name, "nodal_rot_in_blk_%d", block_num[i]);
                     saf_declare_field(SAF_ALL, db, &nodes_on_blk_ftmpl, tmp_name, &(block_set[i]), NULL, &domain_cat,
                                       SAF_NODAL(&nodes, &elems), H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL,
                                       &nodal_rot_in_blk);

                     /* gather field handles of nodal rotations for all blockX domains and write out to (indirect) rotation
                      * field on global block */
                     dom_rot_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&rot, &num_handles, NULL);

                     pbuf = &(dom_rot_fields[0]);
                     saf_write_field(SAF_ALL, &nodal_rot_in_blk, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
                 }

                 field_list[cnt] = nodal_rot_in_blk;
                 field_tmpl_list[cnt] = nodes_on_blk_ftmpl;
                 cnt++;
             }

             /* area field associated with elements of SIDE_SET_A */

             /* first, declare field template */
             sprintf (tmp_name, "dom_ssa_elem_ftmpl_%d", rank);
             saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, area_q, 1, NULL,
                                    &dom_ssa_elem_ftmpl);

             /* declare the field */
             saf_declare_field(SAF_EACH, db, &dom_ssa_elem_ftmpl, "AREA", &domain_ssa, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &area);
             {
                 /* areas */
                 float buf[] = {1., .5};
                 void *pbuf = &buf[0];
                 saf_write_field(SAF_EACH, &area, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* field of vector normals with components NX, NY, and NZ associated with elements of SIDE_SET_A */

             /* first, declare field templates for the component (NX, NY, NZ) fields; then declare field templates for the
              * composite (NORMALS) field */
             sprintf (tmp_name, "dom_ssa_elem_ctmpl_%d", rank);
             saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1, NULL,
                                    &dom_ssa_elem_ctmpl);

             tmp_ftmpl[0] = dom_ssa_elem_ctmpl;
             tmp_ftmpl[1] = dom_ssa_elem_ctmpl;
             tmp_ftmpl[2] = dom_ssa_elem_ctmpl;

             sprintf (tmp_name, "dom_ssa_elem_tmpl_%d", rank);
             saf_declare_field_tmpl(SAF_EACH, db, tmp_name, SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3, tmp_ftmpl,
                                    &dom_ssa_elem_ftmpl);

             /* declare the component and composite normal fields */
             saf_declare_field(SAF_EACH, db, &dom_ssa_elem_ctmpl, "NX", &domain_ssa, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_norm);
             saf_declare_field(SAF_EACH, db, &dom_ssa_elem_ctmpl, "NY", &domain_ssa, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_norm);
             saf_declare_field(SAF_EACH, db, &dom_ssa_elem_ctmpl, "NZ", &domain_ssa, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_norm);

             tmp_fields[0] = x_norm;
             tmp_fields[1] = y_norm;
             tmp_fields[2] = z_norm;

             saf_declare_field(SAF_EACH, db, &dom_ssa_elem_ftmpl, "NORMAL", &domain_ssa, NULL, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &normal);
             {
                 /* X normal */
                 float buf[] = {0., 0.};
                 void *pbuf = &buf[0];
                 saf_write_field(SAF_EACH, &x_norm, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* Y normal */
                 float buf[] = {0., 0.};
                 void *pbuf = &buf[0];
                 saf_write_field(SAF_EACH, &y_norm, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }
             {
                 /* Z normal */
                 float buf[] = {1., 1.};
                 void *pbuf = &buf[0];
                 saf_write_field(SAF_EACH, &z_norm, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* ID integer field associated with elements of TOP_SET */

             /* first, declare field template */
             saf_declare_field_tmpl(SAF_EACH, db, "domain_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                    SAF_NOT_APPLICABLE_QUANTITY, 1, NULL, &domain_elem_ftmpl);

             /* declare the field */
             saf_declare_field(SAF_EACH, db, &domain_elem_ftmpl, "ELEM_IDS", &domain_set, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(db),
                               SAF_ZONAL(&elems), SAF_INT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &elem_ids_fld);
             {
                 /* element IDs */
                 int buf[12];
                 void *pbuf = &buf[0];

                 for (i=0; i<loc_num_elems; i++) {
                     /* extract from global element IDs */
                     buf[i] = elem_ids[elem_map[i]];
                 }
                 saf_write_field(SAF_EACH, &elem_ids_fld, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
             }

             /* create indirect field for element IDs on top set */
             {
                 int num_handles;
                 SAF_Field *dom_elem_ids_fields;
                 void *pbuf;

                 saf_declare_field_tmpl(SAF_ALL, db, "elems_on_top_tmpl", SAF_ALGTYPE_FIELD, NULL,
                                        SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &top_elem_ftmpl);
                 saf_declare_field(SAF_ALL, db, &top_elem_ftmpl, "elem_ids_on_top", &top, NULL, &domain_cat, SAF_ZONAL(&elems),
                                   H5I_INVALID_HID, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &elem_ids_on_top);

                 /* gather field handles of element ids for all domains and write out to (indirect) element ids field on top */
                 dom_elem_ids_fields = (SAF_Field*)saf_allgather_handles((ss_pers_t*)&elem_ids_fld, &num_handles, NULL);

                 pbuf = &(dom_elem_ids_fields[0]);
                 saf_write_field(SAF_ALL, &elem_ids_on_top, SAF_WHOLE_FIELD, 1, SAF_HANDLE, &pbuf, db);
             }

             field_list[cnt] = elem_ids_on_top;
             field_tmpl_list[cnt] = top_elem_ftmpl;
             cnt++;

             if(!state) {
                 /*if this is the first time through, must create the state group*/
                 saf_declare_state_tmpl(SAF_ALL,db, "TIME_SUITE_TMPL", cnt, field_tmpl_list, &stmpl);
                 saf_declare_state_group(SAF_ALL,db,"TIME_STATE_GROUP",&suite,&top,&stmpl,SAF_QTIME,SAF_ANY_UNIT, SAF_FLOAT,
                                         &state_grp);
             }

             saf_write_state(SAF_ALL, &state_grp, state, &top, SAF_FLOAT, &(time[state]), field_list);
         }

         saf_close_database(db);
     } SAF_CATCH {
         SAF_CATCH_ALL {
             failed = 1;
         }
     } SAF_TRY_END;

     saf_final();

     if (failed)
         FAILED;
     else
         PASSED;

 #ifdef HAVE_PARALLEL
     MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
     MPI_Finalize();
 #endif

     return failed;
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110

	 int
 main(
    int argc,    /* command line argument count */
    char **argv  /* command line arguments */
 )
 {
   char dbName[MAX_FILENAME] = "hadaptive.saf";
   hbool_t do_multifile = false;
   hbool_t verbose = false;
   int i;
   int failed=0;
   int myProcNum = 0;
   int numProcs = 1;
   int numFields;
   CurrentMeshParams_t currentMeshParams;
   SAF_Field *theFields;
   DbInfo_t dbInfo;

   build_h5_types();
   /* Issue: This is really only a parallel test. It doesn't make much sense to run it in serial */
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &myProcNum);
   MPI_Comm_size(MPI_COMM_WORLD, &numProcs);

   /* this use-case was hard-coded for three processors */
   if (numProcs != 3)
     {
       if (!myProcNum)
         printf("This example must be run on three (3) processors\n");
       SKIPPED;
       MPI_Finalize();
       exit(0);
     }

   /* since we want to see whats happening make sure stdout and stderr are unbuffered */
   setbuf(stdout, NULL);
   setbuf(stderr, NULL);

   STU_ProcessCommandLine(0, argc, argv,
                          "-multifile",
                          "if specified, write each cycle to a different supplemental file [single file]",
                          &do_multifile,
                          "-dbName %s",
                          "specify output database name [\"loadbalance.saf\"]",
                          &dbName,
                          "-verbose",
                          "provide verbose output during the run",
                          &verbose,
                          STU_END_OF_ARGS);

   InitMeshParams(&currentMeshParams);

   saf_init(SAF_DEFAULT_LIBPROPS);

   SAF_TRY_BEGIN
     {

       /* do some preperatory stuff for the database */
       OpenDatabase(dbName, do_multifile, &dbInfo);

       /***********************************************
        ***********************************************
        *                 MAIN LOOP                   *
        ***********************************************
        ***********************************************/
       theFields=calloc(10, sizeof(*theFields));
       for (i = 0; i < 6; i++)
         {
           numFields = 0;

           if (!myProcNum)
             printf("Writing step %d\n", i);

           /* update the current mesh */
           UpdateMesh(i, myProcNum, &currentMeshParams);

           /* write the current mesh and all of its fields */
           WriteCurrentMesh(&dbInfo, i, numProcs, myProcNum, currentMeshParams, &theFields[numFields], &numFields);

           /* link this mesh instance into the aggregate, update the state fields, flush the database, etc. */
           UpdateDatabase(&dbInfo, i, numProcs+1, do_multifile, numFields, theFields);

         }
       free(theFields);

       /* close the database */
       CloseDatabase(dbInfo);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           failed = 1;
         }
     }
   SAF_TRY_END

     saf_final();

   if (failed)
     FAILED;
   else
     PASSED;

   MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();

   return failed;
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

	 int
 main(
    int argc,    /* command line argument count */
    char **argv  /* command line arguments */
 )
 {
   char dbName[MAX_FILENAME] = "loadbalance.saf";
   hbool_t do_multifile = false;
   hbool_t verbose = false;
   int numToShift = 10;
   int histElem = -1;
   int i, numDims, numFields;
   int failed=0;
   int myProcNum = 0;
   int numProcs = 1;
   RelRectIndex_t meshSize = {{ 10, 10, 0}};
   ElementHistory_t *elemHistAsGenerated;
   ElementHistory_t *elemHistAsReadBack;
   CurrentMeshParams_t currentMeshParams;
   SAF_Field *theFields;
   DbInfo_t dbInfo;

   /* Issue: This is really only a parallel test. It doesn't make much sense to run it in serial */
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &myProcNum);
   MPI_Comm_size(MPI_COMM_WORLD, &numProcs);

   /* since we want to see whats happening make sure stdout and stderr are unbuffered */
   setbuf(stdout, NULL);
   setbuf(stderr, NULL);

   STU_ProcessCommandLine(0, argc, argv,
                          "-multifile",
                          "if specified, write each cycle to a different supplemental file [single file]",
                          &do_multifile,
                          "-numToShift %d",
                          "specify the number of elements to shift each cycle [max{10% on proc 0,1}]",
                          &numToShift,
                          "-dims %d %d %d",
                          "specify size of the mesh in x, y and z dimensions [10 10 0]",
                          &meshSize.idx[0], &meshSize.idx[1], &meshSize.idx[2],
                          "-histElem %d",
                          "specify an element whose pressure history is to be printed at the end of the run [-1]",
                          &histElem,
                          "-dbName %s",
                          "specify output database name [\"loadbalance.saf\"]",
                          &dbName,
                          "-verbose",
                          "provide verbose output during the run",
                          &verbose,
                          STU_END_OF_ARGS);

   /* compute number of dimensions from size parameters */
   for (numDims = 0; numDims < MAX_DIMS; numDims++)
     if (meshSize.idx[numDims] == 0)
       break;

   saf_init(SAF_DEFAULT_LIBPROPS);

   /* initialize the mesh parameters */
   InitMeshParams(numDims, meshSize, &currentMeshParams);

   /* perform initial decomposition */
   InitDecomp(numDims, numProcs, myProcNum, &numToShift, &histElem, &currentMeshParams);

   /* allocate element history buffers, if necessary */
   if (histElem >= 0)
     elemHistAsGenerated = (ElementHistory_t *) malloc((numProcs + 1) * sizeof(ElementHistory_t));

   SAF_TRY_BEGIN
     {

       /* do some preperatory stuff for the database */
       OpenDatabase(dbName, do_multifile, numDims, numProcs, &dbInfo);

       /***********************************************
        ***********************************************
        *                 MAIN LOOP                   *
        ***********************************************
        ***********************************************/
       theFields=calloc(10, sizeof(*theFields));
       for (i = 0; i <= numProcs; i++)
         {
           numFields = 0;

           /* update the current mesh relations and fields */
           UpdateDecomp(numDims, numProcs, myProcNum, numToShift, i, histElem, &currentMeshParams, elemHistAsGenerated);

           if (verbose)
             {
               if (myProcNum == 0)
                 printf("---------------------------- step %03d ---------------------------\n", i);
               PrintCurrentMeshParams(numProcs, myProcNum, numDims, currentMeshParams);
             }

           /* write the current mesh and all of its fields */
           WriteCurrentMesh(&dbInfo, i, numDims, numProcs, myProcNum, &currentMeshParams, &theFields[numFields], &numFields);

           /* link this mesh instance into the aggregate, update the state fields, flush the database, etc. */
           UpdateDatabase(&dbInfo, i, numProcs+1, do_multifile, numFields, theFields);

         }
       free(theFields);


       /* if history of an element was requested, query the database and do the history thing */
       if (histElem >= 0)
         {
           int numReadBack;

           ReadBackElementHistory(&dbInfo, myProcNum, histElem, &numReadBack, &elemHistAsReadBack);

           if (myProcNum == 0)
             {
               PrintElementHistory(elemHistAsGenerated, numProcs+1, histElem, "Element History As Generated");
               PrintElementHistory(elemHistAsReadBack, numReadBack, histElem, "Element History As Read Back");
             }

         }

       /* close the database */
       CloseDatabase(dbInfo);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           failed = 1;
         }
     }
   SAF_TRY_END

     saf_final();

   if (failed)
     FAILED;
   else
     PASSED;

   MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();

   return failed;
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108

	 int
 main(int argc, char **argv)
 {
   char dbname[1024];        /* Name of the SAF database file to be read. */
   SAF_Db *db=NULL;                /* Handle to the SAF database. */
   SAF_DbProps *dbprops=NULL;      /* Handle to the SAF database properties. */
   int failCount = 0;
   int passCount = 0;
   int numProcs = 1;

   /* this use-case example is designed to read the database generated by
      exo_par_wt, which is only generated when building a parallel version
      of SAF. Nonetheless, this example is, in fact, a serial example.
      Consequently, this use-case test is only run in single processor
      parallel (I guess we should start calling this pseudo-serial) */
 #ifndef HAVE_PARALLEL
   saf_init(SAF_DEFAULT_LIBPROPS);
   saf_final();
   SKIPPED;
   return(0);
 #else
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &numProcs);
   if (numProcs != 1)
     {
       printf("This example must be run using MPI, but with only 1 proc (now is %d)\n",numProcs);
       SKIPPED;
       MPI_Finalize();
       return(0);
     }
 #endif

   if( argc>=2 && !strcmp(argv[1],"-quiet") ) g_quiet=1;

   /* for convenience, set working directory to the test file directory */
   chdir(TEST_FILE_PATH);

   /* Get the name of the SAF database. */
   strcpy(dbname, "exo_par_wt.saf");

   /* Initialize the library. */
   saf_init(SAF_DEFAULT_LIBPROPS);

   SAF_TRY_BEGIN
     {
       field_cache *time_cache;

       /* Because we are in a try block here, all failures will send us to
          the one and only catch block at the end of this test */

       /* Create the database properties. */
       dbprops = saf_createProps_database();

       /* Set the read-only database property. */
       saf_setProps_ReadOnly(dbprops);

       /* Open the SAF database. Give it name dbname, properties dbprops
        * and set db to be a handle to this database. */
       db = saf_open_database(dbname,dbprops);

       /* Create caches of the field handles from the suites in the
        * database. */
       time_cache = create_field_cache(db, "TIME_SUITE");

       if (time_cache != NULL)
         {
           read_verify_top_set(db, time_cache, &passCount, &failCount);

           read_verify_block_sets(db, time_cache, &passCount, &failCount);
         }
       else
         {
           FAILED;
         }

       /* Free the field handle caches. */
       free_field_cache(time_cache);

       /* Close the SAF database. */
       saf_close_database(db);
     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           FAILED;
         }
     }
   SAF_TRY_END

     /* Finalize access to the library. */
     saf_final();

   printf("%d tests performed:    PASSED=%d, FAILED=%d\n", passCount + failCount, passCount, failCount);


   if (failCount)
     FAILED;
   else
     PASSED;

 #ifdef HAVE_PARALLEL
   MPI_Bcast(&failCount, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();
 #endif

   return failCount;
 }









          

      

      

    

  

    
      
          
            
  	   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

	 int
 main(int argc, char **argv)
 {

   /*SAF_Db db;*/
   /* SAF_Handle db; */
   char dbname[1024];
   SAF_DbProps *dbprops=NULL;
   SAF_Role saf_ss_role, saf_ns_role;
   SAF_Cat nodes, elems, blocks, side_sets, node_sets;
   SAF_Set top, block_1, block_2, block_3, block_4, block_5;
   SAF_Set block_set[5];
   SAF_Set side_set_a, side_set_b, node_set_a;
   SAF_Set side_set_a_q, side_set_a_t;
   SAF_Rel rel, trel;

   SAF_FieldTmpl coords_ctmpl, coords_ftmpl, tmp_ftmpl[6];
   SAF_FieldTmpl blk_1_elem_ftmpl, blk_3_elem_ftmpl, ssaq_elem_ftmpl, ssat_elem_ftmpl;
   SAF_FieldTmpl nsa_node_ftmpl, top_node_ctmpl, top_node_ftmpl;
   SAF_FieldTmpl block_5_elem_ctmpl, block_5_elem_ftmpl;
   SAF_FieldTmpl block_1_elem_ctmpl, block_1_elem_ftmpl;
   SAF_FieldTmpl block_2_elem_ctmpl, block_2_elem_ftmpl;
   SAF_FieldTmpl block_3_elem_ctmpl, block_3_elem_ftmpl;
   SAF_FieldTmpl block_elem_ctmpl, block_elem_ftmpl;
   SAF_FieldTmpl top_elem_ftmpl, top_constant_ftmpl;
   SAF_FieldTmpl block_node_ctmpl, block_node_ftmpl;
   SAF_FieldTmpl ssa_elem_ctmpl, ssa_elem_ftmpl;

   SAF_Field x_coords, y_coords, z_coords, coords;
   SAF_Field thickness, dist_fact;
   SAF_Field x_disp, y_disp, z_disp, disp;
   SAF_Field x_vel, y_vel, z_vel, vel;
   SAF_Field sigxx, sigyy, sigzz, sigxy, sigyz, sigzx;
   SAF_Field stress;
   SAF_Field epsxx, epsyy, epszz, epsxy, epsyz, epszx;
   SAF_Field strain, pressure;
   SAF_Field cent_x, cent_y, cent_z, centroid;
   SAF_Field centroid_fld_list[5];
   SAF_Field ke, te;
   SAF_Field x_rot, y_rot, z_rot, rot;
   SAF_Field area;
   SAF_Field x_norm, y_norm, z_norm, normal;
   SAF_Field elem_ids;

   SAF_Field tmp_fields[6], *coord_components;

   SAF_Field field_list[40];
   SAF_FieldTmpl field_tmpl_list[40];

   SAF_Suite suite;
   SAF_StateTmpl stmpl;
   SAF_StateGrp state_grp;

   SAF_Quantity *vel_q, *stress_q, *strain_q, *pressure_q, *energy_q, *angle_q, *area_q;
   SAF_Quantity *tmp_q;


   char tmp_name[255];
   int i, index[3];
   float time[10]={1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0};

   int failCount = 0;
   int cnt = 0, state;

   void *pbuf;

 #ifdef HAVE_PARALLEL
   MPI_Init(&argc,&argv);

   SKIPPED;
   MPI_Finalize();

   exit(0);
 #endif

   /*
    * initialize the library
    */

   saf_init(SAF_DEFAULT_LIBPROPS);

   SAF_TRY_BEGIN
     {
       /*
        * open (create) a database
        */

       strcpy(dbname, TEST_FILE_NAME);

       dbprops = saf_createProps_database();
       saf_setProps_Clobber(dbprops);
       db = saf_open_database(dbname,dbprops);

       /*
        * create categories that will be used in creating collections on sets
        */

       saf_declare_role(SAF_ALL, db, "side sets", NULL, &saf_ss_role);
       saf_declare_role(SAF_ALL, db, "node sets", NULL, &saf_ns_role);

       saf_declare_category(SAF_ALL, db, "nodes", SAF_TOPOLOGY, 0, &nodes);
       saf_declare_category(SAF_ALL, db, "elems", SAF_TOPOLOGY, 3, &elems);
       saf_declare_category(SAF_ALL, db, "blocks", SAF_BLOCK, 3, &blocks);
       saf_declare_category(SAF_ALL, db, "side_sets", &saf_ss_role, 2, &side_sets);
       saf_declare_category(SAF_ALL, db, "node_sets", &saf_ns_role, 0, &node_sets);




       /* get quantities that will be used in various field templates */

       vel_q = saf_find_one_quantity(db,"velocity",NULL);

       tmp_q = saf_find_one_quantity( db, "force",NULL);
       stress_q = saf_declare_quantity(SAF_ALL,db,"stress","stress",NULL,NULL);
       saf_multiply_quantity(SAF_ALL,stress_q, tmp_q, 1);
       saf_multiply_quantity(SAF_ALL,stress_q,SAF_QLENGTH, -2);


       strain_q = saf_declare_quantity(SAF_ALL,db,"strain", "strain", NULL, NULL);
       tmp_q = SAF_QLENGTH;
       saf_multiply_quantity(SAF_ALL,strain_q, tmp_q, 1);
       saf_multiply_quantity(SAF_ALL,strain_q, tmp_q, -1);

       pressure_q = saf_find_one_quantity (db, "pressure",NULL);
       energy_q = saf_find_one_quantity (db, "energy",NULL);
       angle_q = saf_find_one_quantity(db,"plane angle",NULL);
       area_q = saf_find_one_quantity(db,"area",NULL);

       /*
        * write out some (3) QA records
        */
       {
           const char *qa_record[3][64] = {{"FASTQ; FASTQ; 11/16/1989; 12:00:00"},
                                           {"GEN3D; GEN3D; 11/16/1989; 17:00:00"},
                                           {"JAC3D 05; JAC3D 05; 11/17/1989; 11:26:18"}};
           hid_t str64 = H5Tcopy(H5T_C_S1);
           H5Tset_size(str64, 64);
           saf_put_attribute(SAF_ALL, (ss_pers_t*)db, "QA_RECORDS", str64, 3, qa_record);
           H5Tclose(str64);
       }

       /*
        * write out some INFO records
        */
       {
           const char *info[5][16] = {{"info record 1"},
                                       {"info record 2"},
                                      {"info record 3"},
                                      {"info record 4"},
                                      {"info record 5"}};
           hid_t str16 = H5Tcopy(H5T_C_S1);
           H5Tset_size(str16, 16);
           saf_put_attribute(SAF_ALL, (ss_pers_t*)db, "INFO_RECORDS", str16, 5, info);
       }

       /*
        * create a top set called "TOP_SET"
        */

       saf_declare_set(SAF_ALL, db, "TOP_SET", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &top);


       /*
        * create collections in "TOP_SET" for:
        *   elements;
        *   nodes;
        *   element blocks;
        *   side sets;
        *   node sets
        */

       saf_declare_collection(SAF_ALL, &top, &nodes, SAF_CELLTYPE_POINT, 15, SAF_1DC(15), SAF_DECOMP_FALSE);
       saf_declare_collection(SAF_ALL, &top, &elems, SAF_CELLTYPE_MIXED, 12, SAF_1DC(12), SAF_DECOMP_TRUE);
       saf_declare_collection(SAF_ALL, &top, &blocks, SAF_CELLTYPE_SET, 5, SAF_1DC(5), SAF_DECOMP_TRUE);
       saf_declare_collection(SAF_ALL, &top, &side_sets, SAF_CELLTYPE_SET, 2, SAF_1DC(2), SAF_DECOMP_FALSE);
       saf_declare_collection(SAF_ALL, &top, &node_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_FALSE);

       /*
        * create "BLOCK_1" with quad shells
        */

       saf_declare_set(SAF_ALL, db, "BLOCK_1", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_1);

       /*
        * optional attribute that EXODUS clients may want to know
        */

       saf_put_set_att(SAF_ALL, &block_1, "EXO_ELEM_TYPE", H5T_C_S1, 1, "SHELL");

       saf_declare_collection(SAF_ALL, &block_1, &elems, SAF_CELLTYPE_QUAD, 2, SAF_1DC(2), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_1, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0,2,1};   /* start, count, stride */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_collection(SAF_ALL, &block_1, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_1, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       /* NOTE: this node subset relation is necessary because we are going to define a field on the nodes of BLOCK_1 */

       saf_declare_collection(SAF_ALL, &block_1, &nodes, SAF_CELLTYPE_POINT, 6, SAF_1DC(6), SAF_DECOMP_FALSE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_1, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0,1,3,4,6,7};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_topo_relation(SAF_ALL, db, &block_1, &elems, &top, &nodes, SAF_SELF(db), &block_1,
                                 SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
       { int abuf[] = {4};  /* stride (number of nodes per element) */
       int bbuf[] = {3,4,7,6, 0,1,4,3};  /* node list */
       saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       /*
        * create "BLOCK_2" with hexes
        */

       saf_declare_set(SAF_ALL, db, "BLOCK_2", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_2);

       /*
        * optional attribute that EXODUS clients may want to know
        */

       saf_put_set_att(SAF_ALL, &block_2, "EXO_ELEM_TYPE", H5T_C_S1, 1, "HEX");

       saf_declare_collection(SAF_ALL, &block_2, &elems, SAF_CELLTYPE_HEX, 2, SAF_1DC(2), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &block_2, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {2,2,1};   /* start, count, stride */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_collection(SAF_ALL, &block_2, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_2, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {1};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_topo_relation(SAF_ALL, db, &block_2, &elems, &top, &nodes, SAF_SELF(db), &block_2,
                                 SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
       { int abuf[] = {8};
       int bbuf[] = {3,4,14,13,6,7,10,9, 0,1,12,11,3,4,14,13};
       saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       /*
        * create "BLOCK_3" with tri shells
        */

       saf_declare_set(SAF_ALL, db, "BLOCK_3", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_3);

       /*
        * optional attribute that EXODUS clients may want to know
        */

       saf_put_set_att(SAF_ALL, &block_3, "EXO_ELEM_TYPE", H5T_C_S1, 1, "SHELL");

       saf_declare_collection(SAF_ALL, &block_3, &elems, SAF_CELLTYPE_TRI, 4, SAF_1DC(4), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &block_3, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {4,4,1};   /* start, count, stride */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_collection(SAF_ALL, &block_3, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_3, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {2};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       /* NOTE: this node subset relation is necessary because we are going to define a field on the nodes of BLOCK_3 */

       saf_declare_collection(SAF_ALL, &block_3, &nodes, SAF_CELLTYPE_POINT, 6, SAF_1DC(6), SAF_DECOMP_FALSE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_3, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {1,2,4,5,7,8};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_topo_relation(SAF_ALL,db, &block_3, &elems, &top, &nodes, SAF_SELF(db), &block_3,
                                 SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
       { int abuf[] = {3};
       int bbuf[] = {7,5,8, 4,5,7, 4,1,5, 1,2,5};
       saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       /*
        * create "BLOCK_4" with pyramids
        */

       saf_declare_set(SAF_ALL, db, "BLOCK_4", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_4);

       /*
        * optional attribute that EXODUS clients may want to know
        */

       saf_put_set_att(SAF_ALL, &block_4, "EXO_ELEM_TYPE", H5T_C_S1, 1, "PYRAMID");

       saf_declare_collection(SAF_ALL, &block_4, &elems, SAF_CELLTYPE_PYRAMID, 2, SAF_1DC(2), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &block_4, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {8,2,1};   /* start, count, stride */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_collection(SAF_ALL, &block_4, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_4, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {3};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_topo_relation(SAF_ALL, db, &block_4, &elems, &top, &nodes, SAF_SELF(db), &block_4,
                                 SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
       { int abuf[] = {5};
       int bbuf[] = {4,14,10,7,5, 1,12,14,4,5};
       saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       /*
        * create "BLOCK_5" with tets
        */

       saf_declare_set(SAF_ALL, db, "BLOCK_5", 3, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &block_5);

       /*
        * optional attribute that EXODUS clients may want to know
        */

       saf_put_set_att(SAF_ALL, &block_5, "EXO_ELEM_TYPE", H5T_C_S1, 1, "TET");

       saf_declare_collection(SAF_ALL, &block_5, &elems, SAF_CELLTYPE_PYRAMID, 2, SAF_1DC(2), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &block_5, SAF_COMMON(&elems), SAF_HSLAB, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {10,2,1};   /* start, count, stride */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_collection(SAF_ALL, &block_5, &blocks, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &block_5, SAF_COMMON(&blocks), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {4};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_topo_relation(SAF_ALL, db, &block_5, &elems, &top, &nodes, SAF_SELF(db), &block_5,
                                 SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &trel);
       { int abuf[] = {4};
       int bbuf[] = {7,5,10,8, 1,2,12,5};
       saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       /*
        * create "SIDE_SET_A"
        */

       saf_declare_set(SAF_ALL, db, "SIDE_SET_A", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_a);

       saf_declare_collection(SAF_ALL, &side_set_a, &elems, SAF_CELLTYPE_MIXED, 2, SAF_1DC(2), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &side_set_a, SAF_EMBEDBND(&elems,&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int abuf[] = {2,10};   /* side set element list */
       int bbuf[] = {5,2};   /* side set side list  */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       saf_declare_collection(SAF_ALL, &side_set_a, &side_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &side_set_a, SAF_COMMON(&side_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       /*
        * create subsets "SIDE_SET_A_QUADS" and "SIDE_SET_A_TRIS" which are sets of homogeneous primitives
        */

       saf_declare_set(SAF_ALL, db, "SIDE_SET_A_QUADS", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_a_q);

       saf_declare_collection(SAF_ALL, &side_set_a_q, &elems, SAF_CELLTYPE_QUAD, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &side_set_a, &side_set_a_q, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_set(SAF_ALL, db, "SIDE_SET_A_TRIS", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_a_t);

       saf_declare_collection(SAF_ALL, &side_set_a_t, &elems, SAF_CELLTYPE_TRI, 1, SAF_1DC(1), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &side_set_a, &side_set_a_t, SAF_COMMON(&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {1};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       /*
        * create "SIDE_SET_B"
        */

       saf_declare_set(SAF_ALL, db, "SIDE_SET_B", 2, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &side_set_b);

       saf_declare_collection(SAF_ALL, &side_set_b, &elems, SAF_CELLTYPE_MIXED, 4, SAF_1DC(4), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &side_set_b, SAF_EMBEDBND(&elems,&elems), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int abuf[] = {2,5,3,6};   /* side set element list */
       int bbuf[] = {0,0,0,0};   /* side set side list; yes, all of these are the 0th face of the associated elements  */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, abuf, SAF_INT, bbuf, db);
       }

       saf_declare_collection(SAF_ALL, &side_set_b, &side_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &side_set_b, SAF_COMMON(&side_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {1};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       /*
        * create "NODE_SET_A"
        */

       saf_declare_set(SAF_ALL, db, "NODE_SET_A", 0, SAF_SPACE, SAF_EXTENDIBLE_FALSE, &node_set_a);

       saf_declare_collection(SAF_ALL, &node_set_a, &nodes, SAF_CELLTYPE_POINT, 9, SAF_1DC(9), SAF_DECOMP_TRUE);

       saf_declare_subset_relation(SAF_ALL, db, &top, &node_set_a, SAF_COMMON(&nodes), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0,1,2,3,4,5,6,7,8};   /* node set node list */
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       saf_declare_collection(SAF_ALL, &node_set_a, &node_sets, SAF_CELLTYPE_SET, 1, SAF_1DC(1), SAF_DECOMP_TRUE);
       saf_declare_subset_relation(SAF_ALL, db, &top, &node_set_a, SAF_COMMON(&node_sets), SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
       { int buf[] = {0};
       saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, buf, H5I_INVALID_HID, NULL, db);
       }

       /*
        * OK, all the sets are written out
        * now write out the fields
        */


       cnt = 0;

       /******************************************************************************************************
        * field of coordinates of nodes on TOP_SET
        ******************************************************************************************************/

       /*
        * first, declare field templates for the component (X, Y, Z) fields;
        * then declare field templates for the composite (XYZ) field
        */

       saf_declare_field_tmpl(SAF_ALL, db, "coordinate_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                              NULL, &coords_ctmpl);

       tmp_ftmpl[0] = coords_ctmpl;
       tmp_ftmpl[1] = coords_ctmpl;
       tmp_ftmpl[2] = coords_ctmpl;


       saf_declare_field_tmpl(SAF_ALL, db, "coordinate_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3,
                              tmp_ftmpl, &coords_ftmpl);

       /*
        * declare the component and composite coordinate fields
        */

       saf_declare_field(SAF_ALL, db, &coords_ctmpl, "X", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                         SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_coords);
       saf_declare_field(SAF_ALL, db, &coords_ctmpl, "Y", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                         SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_coords);
       saf_declare_field(SAF_ALL, db, &coords_ctmpl, "Z", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                         SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_coords);

       tmp_fields[0] = x_coords;
       tmp_fields[1] = y_coords;
       tmp_fields[2] = z_coords;
       coord_components = tmp_fields;

       saf_declare_field(SAF_ALL, db, &coords_ftmpl, "coords", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                         SAF_FLOAT, coord_components, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &coords);

       {  /* X coordinates */
         /* node ID:    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  */
         float buf[] = {0., 1., 2., 0., 1., 2., 0., 1., 2., 0., 1., 0., 1., 0., 1.};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &x_coords, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       {  /* Y coordinates */
         /* node ID:    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  */
         float buf[] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &y_coords, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       {  /* Z coordinates */
         /* node ID:    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  */
         float buf[] = {0., 0., 0., 1., 1., 1., 2., 2., 2., 2., 2., 0., 0., 1., 1.};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &z_coords, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       /* specify that is a coordinate field */
       saf_declare_coords(SAF_ALL, &coords);
       saf_declare_default_coords(SAF_ALL, &top, &coords);

       field_list[cnt] = coords;
       field_tmpl_list[cnt] = coords_ftmpl;
       cnt++;




       /******************************************************************************************************
        * field of constant shell thicknesses of elements in BLOCK_1
        * 1 thickness will be specified per element (constant thru element)
        ******************************************************************************************************/

       saf_declare_field_tmpl(SAF_ALL, db, "blk_1_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                              NULL, &blk_1_elem_ftmpl);

       saf_declare_field(SAF_ALL, db, &blk_1_elem_ftmpl, "elem_thickness", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                         SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &thickness);

       {  /* shell thicknesses for BLOCK_1 (1 per element) */
         float buf[] = {0.01, 0.02};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &thickness, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       field_list[cnt] = thickness;
       field_tmpl_list[cnt] = blk_1_elem_ftmpl;
       cnt++;



       /******************************************************************************************************
        * field of varying shell thicknesses of elements in BLOCK_3
        *
        * 3 thicknesses will be specified per element (1 per node)
        *
        * NOTE: this field is not specified to be associated with a node collection the block, which would
        *       enforce thickness continuity at the nodes;
        *
        *       rather the thicknesses are specified associated with the elements (3 per element) which allows
        *       for discontinuity at the nodes
        *
        *       the locations at which the thicknesses are associated, as well as the ordering, must currently be assumed
        *       (at the nodes of the tris, in the order of the nodes in the topo relations)
        ******************************************************************************************************/

       saf_declare_field_tmpl(SAF_ALL, db, "blk_3_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                              NULL, &blk_3_elem_ftmpl);

       saf_declare_field(SAF_ALL, db, &blk_3_elem_ftmpl, "elem_thickness", &block_3, NULL, SAF_SELF(db),
                         &elems, 3, &elems, SAF_SPACE_PWLINEAR,
                         SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &thickness);

       {  /* shell thicknesses for BLOCK_3 (3 per element) */
         float buf[] = {.01, .02, .03,  .01, .02, .03,  .01, .02, .03,  .01, .02, .03};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &thickness, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       field_list[cnt] = thickness;
       field_tmpl_list[cnt] = blk_3_elem_ftmpl;
       cnt++;



       /******************************************************************************************************
        * field of distribution factors at nodes of SIDE_SET_A
        * these will be fields on the homogeneous subsets of SIDE_SET_A (i.e., SIDE_SET_A_TRIS and SIDE_SET_A_QUADS)
        ******************************************************************************************************/

       saf_declare_field_tmpl(SAF_ALL, db, "ssaq_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QAMOUNT, 1,
                              NULL, &ssaq_elem_ftmpl);

       saf_declare_field(SAF_ALL, db, &ssaq_elem_ftmpl, "dist_factor", &side_set_a_q, NULL, SAF_SELF(db),
                         &elems, 4, &elems, SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);

       {  /* distribution factors (4 per element) */
         float buf[] = {.1, .2, .3, .4};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &dist_fact, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       field_list[cnt] = dist_fact;
       field_tmpl_list[cnt] = ssaq_elem_ftmpl;
       cnt++;

       saf_declare_field_tmpl(SAF_ALL, db, "ssat_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QAMOUNT, 1,
                              NULL, &ssat_elem_ftmpl);

       saf_declare_field(SAF_ALL, db, &ssat_elem_ftmpl, "dist_factor", &side_set_a_t, NULL, SAF_SELF(db),
                         &elems, 3, &elems, SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);

       {  /* distribution factors (3 per element) */
         float buf[] = {.1, .2, .3};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &dist_fact, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       field_list[cnt] = dist_fact;
       field_tmpl_list[cnt] = ssat_elem_ftmpl;
       cnt++;



       /******************************************************************************************************
        * field of distribution factors at nodes of NODE_SET_A
        ******************************************************************************************************/

       saf_declare_field_tmpl(SAF_ALL, db, "nsa_node_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QAMOUNT, 1,
                              NULL, &nsa_node_ftmpl);

       /*
         saf_declare_field(SAF_ALL, db, &nsa_node_ftmpl, "dist_factor", &node_set_a, NULL, SAF_SELF(db),
         SAF_NODAL(&nodes,&elems), SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);
       */

       saf_declare_field(SAF_ALL, db, &nsa_node_ftmpl, "dist_factor", &node_set_a, NULL, SAF_SELF(db),
                         &nodes, 1, &nodes, SAF_SPACE_PWLINEAR, SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &dist_fact);

       {  /* distribution factors (1 per node) */
         float buf[] = {.1, .2, .3, .4, .5, .6, .7, .8, .9};
         void *pbuf = &buf[0];
         saf_write_field(SAF_ALL, &dist_fact, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
       }

       field_list[cnt] = dist_fact;
       field_tmpl_list[cnt] = nsa_node_ftmpl;
       cnt++;




       for (state=0, cnt=0; state<2; state++) {

         /******************************************************************************************************
          * displacement vector field associated with nodes of TOP_SET
          ******************************************************************************************************/

         /*
          * first, declare field templates for the component (DX, DY, DZ) fields;
          * then declare field templates for the composite (DISP) field
          */

         saf_declare_field_tmpl(SAF_ALL, db, "top_node_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                                NULL, &top_node_ctmpl);

         tmp_ftmpl[0] = top_node_ctmpl;
         tmp_ftmpl[1] = top_node_ctmpl;
         tmp_ftmpl[2] = top_node_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "top_node_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3,
                                tmp_ftmpl, &top_node_ftmpl);

         /*
          * declare the component and composite displacement fields
          */

         saf_declare_field(SAF_ALL, db, &top_node_ctmpl, "DISP_X", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_disp);
         saf_declare_field(SAF_ALL, db, &top_node_ctmpl, "DISP_Y", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_disp);
         saf_declare_field(SAF_ALL, db, &top_node_ctmpl, "DISP_Z", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_disp);

         tmp_fields[0] = x_disp;
         tmp_fields[1] = y_disp;
         tmp_fields[2] = z_disp;

         saf_declare_field(SAF_ALL, db, &top_node_ftmpl, "displacement", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &disp);

         {  /* X displacements */
           /* node ID:     0     1     2     3     4     5     6     7     8     9    10    11    12    13    14  */
           float buf[] = {1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &x_disp, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* Y displacements */
           /* node ID:     0     1     2     3     4     5     6     7     8     9    10    11    12    13    14  */
           float buf[] = {2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09, 2.10, 2.11, 2.12, 2.13, 2.14};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &y_disp, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* Z displacements */
           /* node ID:     0     1     2     3     4     5     6     7     8     9    10    11    12    13    14  */
           float buf[] = {3.00, 3.01, 3.02, 3.03, 3.04, 3.05, 3.06, 3.07, 3.08, 3.09, 3.10, 3.11, 3.12, 3.13, 3.14};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &z_disp, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = disp;
         field_tmpl_list[cnt] = top_node_ftmpl;
         cnt++;

         /******************************************************************************************************
          * velocity vector field associated with nodes of TOP_SET
          ******************************************************************************************************/

         /*
          * first, declare field templates for the component (VX, VY, VZ) fields;
          * then declare field templates for the composite (VEL) field
          */


         saf_declare_field_tmpl(SAF_ALL, db, "top_node_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                vel_q, 1, NULL, &top_node_ctmpl);

         tmp_ftmpl[0] = top_node_ctmpl;
         tmp_ftmpl[1] = top_node_ctmpl;
         tmp_ftmpl[2] = top_node_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "top_node_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, vel_q, 3,
                                tmp_ftmpl, &top_node_ftmpl);

         /*
          * declare the component and composite velocity fields
          */

         saf_declare_field(SAF_ALL, db, &top_node_ctmpl, "VEL_X", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_vel);
         saf_declare_field(SAF_ALL, db, &top_node_ctmpl, "VEL_Y", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_vel);
         saf_declare_field(SAF_ALL, db, &top_node_ctmpl, "VEL_Z", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_vel);

         tmp_fields[0] = x_vel;
         tmp_fields[1] = y_vel;
         tmp_fields[2] = z_vel;

         saf_declare_field(SAF_ALL, db, &top_node_ftmpl, "velocity", &top, NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                           SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &vel);

         {  /* X velocities */
           float buf[] = {10.00, 10.01, 10.02, 10.03, 10.04, 10.05, 10.06, 10.07, 10.08, 10.09, 10.10, 10.11, 10.12, 10.13, 10.14};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &x_vel, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* Y velocities */
           float buf[] = {20.00, 20.01, 20.02, 20.03, 20.04, 20.05, 20.06, 20.07, 20.08, 20.09, 20.10, 20.11, 20.12, 20.13, 20.14};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &y_vel, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* Z velocities */
           float buf[] = {30.00, 30.01, 30.02, 30.03, 30.04, 30.05, 30.06, 30.07, 30.08, 30.09, 30.10, 30.11, 30.12, 30.13, 30.14};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &z_vel, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = vel;
         field_tmpl_list[cnt] = top_node_ftmpl;
         cnt++;

         /******************************************************************************************************
          * stress symmetric tensor field associated with elements of BLOCK_2 and BLOCK_5
          ******************************************************************************************************/

         /*
          * first, declare field templates for the component (SIGXX, SIGYY, SIGZZ, SIGXY, SIGYZ, SIGZX) fields;
          * then declare field templates for the composite (SIG) field
          */


         /*
          * stress on BLOCK_2
          */

         saf_declare_field_tmpl(SAF_ALL, db, "block_2_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                stress_q, 1, NULL, &block_2_elem_ctmpl);

         tmp_ftmpl[0] = block_2_elem_ctmpl;
         tmp_ftmpl[1] = block_2_elem_ctmpl;
         tmp_ftmpl[2] = block_2_elem_ctmpl;
         tmp_ftmpl[3] = block_2_elem_ctmpl;
         tmp_ftmpl[4] = block_2_elem_ctmpl;
         tmp_ftmpl[5] = block_2_elem_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "block_2_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, stress_q, 6,
                                tmp_ftmpl, &block_2_elem_ftmpl);

         /*
          * declare the component and composite stress fields
          */

         saf_declare_field(SAF_ALL, db, &block_2_elem_ctmpl, "SIGXX", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxx);
         saf_declare_field(SAF_ALL, db, &block_2_elem_ctmpl, "SIGYY", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyy);
         saf_declare_field(SAF_ALL, db, &block_2_elem_ctmpl, "SIGZZ", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzz);
         saf_declare_field(SAF_ALL, db, &block_2_elem_ctmpl, "SIGXY", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxy);
         saf_declare_field(SAF_ALL, db, &block_2_elem_ctmpl, "SIGYZ", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyz);
         saf_declare_field(SAF_ALL, db, &block_2_elem_ctmpl, "SIGZX", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzx);

         tmp_fields[0] = sigxx;
         tmp_fields[1] = sigyy;
         tmp_fields[2] = sigzz;
         tmp_fields[3] = sigxy;
         tmp_fields[4] = sigyz;
         tmp_fields[5] = sigzx;

         saf_declare_field(SAF_ALL, db, &block_2_elem_ftmpl, "stress", &block_2, NULL, SAF_SELF(db),  SAF_ZONAL(&elems),
                           SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &stress);

         {  /* SIGXX */
           float buf[] = {100., 101.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGYY */
           float buf[] = {200., 201.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGZZ */
           float buf[] = {300., 301.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigzz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGXY */
           float buf[] = {400., 401.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGYZ */
           float buf[] = {500., 501.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGZX */
           float buf[] = {600., 601.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigzx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = stress;
         field_tmpl_list[cnt] = block_2_elem_ftmpl;
         cnt++;

         /*
          * stress on BLOCK_5
          */

         saf_declare_field_tmpl(SAF_ALL, db, "block_5_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                stress_q, 1, NULL, &block_5_elem_ctmpl);

         tmp_ftmpl[0] = block_5_elem_ctmpl;
         tmp_ftmpl[1] = block_5_elem_ctmpl;
         tmp_ftmpl[2] = block_5_elem_ctmpl;
         tmp_ftmpl[3] = block_5_elem_ctmpl;
         tmp_ftmpl[4] = block_5_elem_ctmpl;
         tmp_ftmpl[5] = block_5_elem_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "block_5_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, stress_q, 6,
                                tmp_ftmpl, &block_5_elem_ftmpl);

         /*
          * declare the component and composite stress fields
          */

         saf_declare_field(SAF_ALL, db, &block_5_elem_ctmpl, "SIGXX", &block_5, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxx);
         saf_declare_field(SAF_ALL, db, &block_5_elem_ctmpl, "SIGYY", &block_5, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyy);
         saf_declare_field(SAF_ALL, db, &block_5_elem_ctmpl, "SIGZZ", &block_5, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzz);
         saf_declare_field(SAF_ALL, db, &block_5_elem_ctmpl, "SIGXY", &block_5, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigxy);
         saf_declare_field(SAF_ALL, db, &block_5_elem_ctmpl, "SIGYZ", &block_5, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigyz);
         saf_declare_field(SAF_ALL, db, &block_5_elem_ctmpl, "SIGZX", &block_5, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &sigzx);

         tmp_fields[0] = sigxx;
         tmp_fields[1] = sigyy;
         tmp_fields[2] = sigzz;
         tmp_fields[3] = sigxy;
         tmp_fields[4] = sigyz;
         tmp_fields[5] = sigzx;

         saf_declare_field(SAF_ALL, db, &block_5_elem_ftmpl, "stress", &block_5, NULL, SAF_SELF(db),  SAF_ZONAL(&elems),
                           SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &stress);

         {  /* SIGXX */
           float buf[] = {100., 101.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGYY */
           float buf[] = {200., 201.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGZZ */
           float buf[] = {300., 301.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigzz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGXY */
           float buf[] = {400., 401.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGYZ */
           float buf[] = {500., 501.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* SIGZX */
           float buf[] = {600., 601.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &sigzx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = stress;
         field_tmpl_list[cnt] = block_5_elem_ftmpl;
         cnt++;

         /******************************************************************************************************
          * strain symmetric tensor field associated with elements of BLOCK_1 and BLOCK_3
          ******************************************************************************************************/

         /*
          * first, declare field templates for the component (EPSXX, EPSYY, EPSZZ, EPSXY, EPSYZ, EPSZX) fields;
          * then declare field templates for the composite (EPS) field
          */
         /*
          * strain on BLOCK_1
          */

         saf_declare_field_tmpl(SAF_ALL, db, "block_1_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                strain_q, 1, NULL, &block_1_elem_ctmpl);

         tmp_ftmpl[0] = block_1_elem_ctmpl;
         tmp_ftmpl[1] = block_1_elem_ctmpl;
         tmp_ftmpl[2] = block_1_elem_ctmpl;
         tmp_ftmpl[3] = block_1_elem_ctmpl;
         tmp_ftmpl[4] = block_1_elem_ctmpl;
         tmp_ftmpl[5] = block_1_elem_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "block_1_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, strain_q, 6,
                                tmp_ftmpl, &block_1_elem_ftmpl);

         /*
          * declare the component and composite strain fields
          */

         saf_declare_field(SAF_ALL, db, &block_1_elem_ctmpl, "EPSXX", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxx);
         saf_declare_field(SAF_ALL, db, &block_1_elem_ctmpl, "EPSYY", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyy);
         saf_declare_field(SAF_ALL, db, &block_1_elem_ctmpl, "EPSZZ", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszz);
         saf_declare_field(SAF_ALL, db, &block_1_elem_ctmpl, "EPSXY", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxy);
         saf_declare_field(SAF_ALL, db, &block_1_elem_ctmpl, "EPSYZ", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyz);
         saf_declare_field(SAF_ALL, db, &block_1_elem_ctmpl, "EPSZX", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszx);

         tmp_fields[0] = epsxx;
         tmp_fields[1] = epsyy;
         tmp_fields[2] = epszz;
         tmp_fields[3] = epsxy;
         tmp_fields[4] = epsyz;
         tmp_fields[5] = epszx;

         saf_declare_field(SAF_ALL, db, &block_1_elem_ftmpl, "strain", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &strain);

         {  /* EPSXX */
           float buf[] = {.1, .11};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSYY */
           float buf[] = {.2, .21};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSZZ */
           float buf[] = {.3, .31};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epszz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSXY */
           float buf[] = {.4, .41};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSYZ */
           float buf[] = {.5, .51};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSZX */
           float buf[] = {.6, .61};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epszx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = strain;
         field_tmpl_list[cnt] = block_1_elem_ftmpl;
         cnt++;

         /*
          * strain on BLOCK_3
          */

         saf_declare_field_tmpl(SAF_ALL, db, "block_3_elem_ctmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                strain_q, 1, NULL, &block_3_elem_ctmpl);

         tmp_ftmpl[0] = block_3_elem_ctmpl;
         tmp_ftmpl[1] = block_3_elem_ctmpl;
         tmp_ftmpl[2] = block_3_elem_ctmpl;
         tmp_ftmpl[3] = block_3_elem_ctmpl;
         tmp_ftmpl[4] = block_3_elem_ctmpl;
         tmp_ftmpl[5] = block_3_elem_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "block_3_elem_ftmpl", SAF_ALGTYPE_SYMTENSOR, SAF_CARTESIAN, strain_q, 6,
                                tmp_ftmpl, &block_3_elem_ftmpl);

         /*
          * declare the component and composite strain fields
          */

         saf_declare_field(SAF_ALL, db, &block_3_elem_ctmpl, "EPSXX", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxx);
         saf_declare_field(SAF_ALL, db, &block_3_elem_ctmpl, "EPSYY", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyy);
         saf_declare_field(SAF_ALL, db, &block_3_elem_ctmpl, "EPSZZ", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszz);
         saf_declare_field(SAF_ALL, db, &block_3_elem_ctmpl, "EPSXY", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsxy);
         saf_declare_field(SAF_ALL, db, &block_3_elem_ctmpl, "EPSYZ", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epsyz);
         saf_declare_field(SAF_ALL, db, &block_3_elem_ctmpl, "EPSZX", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &epszx);

         tmp_fields[0] = epsxx;
         tmp_fields[1] = epsyy;
         tmp_fields[2] = epszz;
         tmp_fields[3] = epsxy;
         tmp_fields[4] = epsyz;
         tmp_fields[5] = epszx;

         saf_declare_field(SAF_ALL, db, &block_3_elem_ftmpl, "strain", &block_3, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &strain);

         {  /* EPSXX */
           float buf[] = {.1, .11};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsxx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSYY */
           float buf[] = {.2, .21};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsyy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSZZ */
           float buf[] = {.3, .31};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epszz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSXY */
           float buf[] = {.4, .41};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsxy, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSYZ */
           float buf[] = {.5, .51};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epsyz, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* EPSZX */
           float buf[] = {.6, .61};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &epszx, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = strain;
         field_tmpl_list[cnt] = block_3_elem_ftmpl;
         cnt++;

         /******************************************************************************************************
          * pressure scalar field associated with elements of BLOCK_1 and BLOCK_2
          ******************************************************************************************************/

         /*
          * pressure on BLOCK_1
          */

         /*
          * first, declare field template
          */


         saf_declare_field_tmpl(SAF_ALL, db, "block_1_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, pressure_q, 1,
                                NULL, &block_1_elem_ftmpl);

         /*
          * declare the field
          */

         saf_declare_field(SAF_ALL, db, &block_1_elem_ftmpl, "PRESSURE", &block_1, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &pressure);

         {  /* pressures */
           float buf[] = {1000., 2000.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &pressure, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = pressure;
         field_tmpl_list[cnt] = block_1_elem_ftmpl;
         cnt++;

         /*
          * pressure on BLOCK_2
          */

         /*
          * first, declare field template
          */

         saf_declare_field_tmpl(SAF_ALL, db, "block_2_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, pressure_q, 1,
                                NULL, &block_2_elem_ftmpl);

         /*
          * declare the field
          */

         saf_declare_field(SAF_ALL, db, &block_2_elem_ftmpl, "PRESSURE", &block_2, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &pressure);

         {  /* pressures */
           float buf[] = {3000., 4000.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &pressure, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = pressure;
         field_tmpl_list[cnt] = block_2_elem_ftmpl;
         cnt++;

         /******************************************************************************************************
          * centroid vector field associated with elements of BLOCK_1, BLOCK_2, BLOCK_3, BLOCK_4, and BLOCK_5
          ******************************************************************************************************/

         {
           /* element ID    0     1     2     3    4     5     6     7     8     9    10    11 */
           float xbuf[] = { .5,   .5,   .5,   .5, 1.67, 1.33, 1.33, 1.67, 1.33, 1.33, 1.5 , 1.5};
           float ybuf[] = {0. ,  0. ,   .5,   .5, 0.  , 0.  , 0.  , 0.  ,  .33,  .33,  .25,  .25};
           float zbuf[] = {1.5,   .5,  1.5,   .5, 1.67, 1.33,  .67,  .33,  .67, 1.33, 1.75, 1.25};

           int index[]  = {0, 2, 4, 8, 10};   /* index of beginning element for each block */

           block_set[0] = block_1;
           block_set[1] = block_2;
           block_set[2] = block_3;
           block_set[3] = block_4;
           block_set[4] = block_5;

           for (i=0; i<5; i++) {

             /*
              * first, declare field templates for the component (CX, CY, CZ) fields;
              * then declare field templates for the composite (CENTROID) field
              */

             sprintf (tmp_name, "block_%d_elem_ctmpl", i+1);

             saf_declare_field_tmpl(SAF_ALL, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                                    NULL, &block_elem_ctmpl);

             tmp_ftmpl[0] = block_elem_ctmpl;
             tmp_ftmpl[1] = block_elem_ctmpl;
             tmp_ftmpl[2] = block_elem_ctmpl;

             sprintf (tmp_name, "block_%d_elem_tmpl", i+1);

             saf_declare_field_tmpl(SAF_ALL, db, tmp_name, SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3,
                                    tmp_ftmpl, &block_elem_ftmpl);

             /*
              * declare the component and composite centroid fields
              */

             saf_declare_field(SAF_ALL, db, &block_elem_ctmpl, "CENT_X", &(block_set[i]), NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &cent_x);

             pbuf = (void *)(&(xbuf[index[i]]));

             saf_write_field(SAF_ALL, &cent_x, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);

             saf_declare_field(SAF_ALL, db, &block_elem_ctmpl, "CENT_Y", &(block_set[i]), NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &cent_y);

             pbuf = (void *)(&(ybuf[index[i]]));

             saf_write_field(SAF_ALL, &cent_y, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);

             saf_declare_field(SAF_ALL, db, &block_elem_ctmpl, "CENT_Z", &(block_set[i]), NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &cent_z);

             pbuf = (void *)(&(zbuf[index[i]]));

             saf_write_field(SAF_ALL, &cent_z, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);

             tmp_fields[0] = cent_x;
             tmp_fields[1] = cent_y;
             tmp_fields[2] = cent_z;

             saf_declare_field(SAF_ALL, db, &block_elem_ftmpl, "centroid", &(block_set[i]), NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                               SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &centroid);

             centroid_fld_list[i] = centroid;

           }
         }



         /******************************************************************************************************
          * centroids for TOP
          * this will be an indirect field that references the centroid fields of each of the blocks
          ******************************************************************************************************/

         saf_declare_field_tmpl(SAF_ALL, db, "top_elem_tmpl", SAF_ALGTYPE_FIELD, SAF_ANY_BASIS,
                                SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &top_elem_ftmpl);

         saf_declare_field(SAF_ALL, db, &top_elem_ftmpl, "centroid", &top, NULL, &blocks, SAF_ZONAL(&elems),
                           SAF_HANDLE, NULL, SAF_INTERLEAVE_INDEPENDENT, NULL, NULL, &centroid);

         pbuf = (void *)(&(centroid_fld_list[0]));
         saf_write_field(SAF_ALL, &centroid, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);

         field_list[cnt] = centroid;
         field_tmpl_list[cnt] = top_elem_ftmpl;
         cnt++;


         /******************************************************************************************************
          * kinetic energy constant field associated with TOP_SET
          ******************************************************************************************************/

         saf_declare_field_tmpl(SAF_ALL, db, "top_constant", SAF_ALGTYPE_SCALAR, SAF_ANY_BASIS,
                                energy_q, 1, NULL, &top_constant_ftmpl);


         saf_declare_field(SAF_ALL, db, &top_constant_ftmpl, "KIN_ENERGY", &top, NULL, SAF_SELF(db), SAF_CONSTANT(db),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, NULL, NULL, &ke);


         {
           float buf[] = {10000.};
           pbuf = (void *)(&buf[0]);
           saf_write_field(SAF_ALL, &ke, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }


         field_list[cnt] = ke;
         field_tmpl_list[cnt] = top_constant_ftmpl;
         cnt++;



         /******************************************************************************************************
          * total energy constant field associated with TOP_SET
          ******************************************************************************************************/


         saf_declare_field(SAF_ALL, db, &top_constant_ftmpl, "TOTAL_ENERGY", &top, NULL, SAF_SELF(db), SAF_CONSTANT(db),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, NULL, NULL, &te);

         {
           float buf[] = {20000.};
           pbuf = (void *)(&buf[0]);
           saf_write_field(SAF_ALL, &te, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = te;
         field_tmpl_list[cnt] = top_constant_ftmpl;
         cnt++;


         /******************************************************************************************************
          * nodal rotation field with components ROTX, ROTY, and ROTZ associated with nodes of BLOCK_1 and BLOCK_3
          ******************************************************************************************************/


         block_set[0] = block_1;
         block_set[1] = block_3;

         for (i=0; i<2; i++) {

           /*
            * first, declare field templates for the component (ROTX, ROTY, ROTZ) fields;
            * then declare field templates for the composite (ROTATION) field
            */

           sprintf (tmp_name, "block_%d_node_ctmpl", i+1);
           saf_declare_field_tmpl(SAF_ALL, db, tmp_name, SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                  angle_q, 1, NULL, &block_node_ctmpl);

           tmp_ftmpl[0] = block_node_ctmpl;
           tmp_ftmpl[1] = block_node_ctmpl;
           tmp_ftmpl[2] = block_node_ctmpl;

           saf_declare_field_tmpl(SAF_ALL, db, "block_node_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, angle_q, 3,
                                  tmp_ftmpl, &block_node_ftmpl);

           /*
            * declare the component and composite rotation fields
            */

           saf_declare_field(SAF_ALL, db, &block_node_ctmpl, "ROT_X", &(block_set[i]), NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                             SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_rot);
           saf_declare_field(SAF_ALL, db, &block_node_ctmpl, "ROT_Y", &(block_set[i]), NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                             SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_rot);
           saf_declare_field(SAF_ALL, db, &block_node_ctmpl, "ROT_Z", &(block_set[i]), NULL, SAF_SELF(db), SAF_NODAL(&nodes, &elems),
                             SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_rot);

           tmp_fields[0] = x_rot;
           tmp_fields[1] = y_rot;
           tmp_fields[2] = z_rot;

           saf_declare_field(SAF_ALL, db, &block_node_ftmpl, "ROTATION", &(block_set[i]), NULL, SAF_SELF(db),
                             SAF_NODAL(&nodes, &elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &rot);

           {  /* X rotation */
             float buf[] = {.010, .011, .011, .011, .011, .011};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &x_rot, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
           }

           {  /* Y rotation */
             float buf[] = {.020, .021, .022, .023, .024, .025};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &y_rot, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
           }

           {  /* Z rotation */
             float buf[] = {.030, .031, .032, .033, .034, .035};
             void *pbuf = &buf[0];
             saf_write_field(SAF_ALL, &z_rot, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
           }

           field_list[cnt] = rot;
           field_tmpl_list[cnt] = block_node_ftmpl;
           cnt++;

         }

         /******************************************************************************************************
          * area field associated with elements of SIDE_SET_A
          ******************************************************************************************************/


         /*
          * first, declare field template
          */


         saf_declare_field_tmpl(SAF_ALL, db, "ssa_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, area_q, 1,
                                NULL, &ssa_elem_ftmpl);

         /*
          * declare the field
          */

         saf_declare_field(SAF_ALL, db, &ssa_elem_ftmpl, "AREA", &side_set_a, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &area);

         {  /* areas */
           float buf[] = {1., .5};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &area, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = area;
         field_tmpl_list[cnt] = ssa_elem_ftmpl;
         cnt++;

         /******************************************************************************************************
          * field of vector normals with components NX, NY, and NZ associated with elements of SIDE_SET_A
          ******************************************************************************************************/

         /*
          * first, declare field templates for the component (NX, NY, NZ) fields;
          * then declare field templates for the composite (NORMALS) field
          */


         saf_declare_field_tmpl(SAF_ALL, db, "ssa_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN,
                                SAF_QLENGTH, 1, NULL, &ssa_elem_ctmpl);

         tmp_ftmpl[0] = ssa_elem_ctmpl;
         tmp_ftmpl[1] = ssa_elem_ctmpl;
         tmp_ftmpl[2] = ssa_elem_ctmpl;

         saf_declare_field_tmpl(SAF_ALL, db, "ssa_elem_tmpl", SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 3,
                                tmp_ftmpl, &ssa_elem_ftmpl);

         /*
          * declare the component and composite normal fields
          */

         saf_declare_field(SAF_ALL, db, &ssa_elem_ctmpl, "NX", &side_set_a, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &x_norm);
         saf_declare_field(SAF_ALL, db, &ssa_elem_ctmpl, "NY", &side_set_a, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &y_norm);
         saf_declare_field(SAF_ALL, db, &ssa_elem_ctmpl, "NZ", &side_set_a, NULL, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_FLOAT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &z_norm);

         tmp_fields[0] = x_norm;
         tmp_fields[1] = y_norm;
         tmp_fields[2] = z_norm;

         saf_declare_field(SAF_ALL, db, &ssa_elem_ftmpl, "NORMAL", &side_set_a, NULL, SAF_SELF(db),
                           SAF_ZONAL(&elems), SAF_FLOAT, tmp_fields, SAF_INTERLEAVE_COMPONENT, SAF_IDENTITY, NULL, &normal);

         {  /* X normal */
           float buf[] = {0., 0.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &x_norm, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* Y normal */
           float buf[] = {0., 0.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &y_norm, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         {  /* Z normal */
           float buf[] = {1., 1.};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &z_norm, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = normal;
         field_tmpl_list[cnt] = ssa_elem_ftmpl;
         cnt++;

         /******************************************************************************************************
          * ID integer field associated with elements of TOP_SET
          ******************************************************************************************************/

         /*
          * first, declare field template
          */


         saf_declare_field_tmpl(SAF_ALL, db, "top_elem_ftmpl", SAF_ALGTYPE_SCALAR, SAF_CARTESIAN, SAF_NOT_APPLICABLE_QUANTITY, 1,
                                NULL, &top_elem_ftmpl);

         /*
          * declare the field
          */

         saf_declare_field(SAF_ALL, db, &top_elem_ftmpl, "ELEM_IDS", &top, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(db), SAF_ZONAL(&elems),
                           SAF_INT, NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &elem_ids);


         {  /* element IDs */
           int buf[] = {100, 101, 102, 103, 104, 105, 106, 207, 208, 209, 210, 211};
           void *pbuf = &buf[0];
           saf_write_field(SAF_ALL, &elem_ids, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID, &pbuf, db);
         }

         field_list[cnt] = elem_ids;
         field_tmpl_list[cnt] = top_elem_ftmpl;
         cnt++;

         if (state==0) {  /* first time thru, declare suite and state field */
           saf_declare_suite(SAF_ALL,db,"TIME_SUITE",&top,NULL, &suite);
           saf_declare_state_tmpl(SAF_ALL, db, "TIME_SUITE_TMPL", cnt, field_tmpl_list, &stmpl);
           saf_declare_state_group(SAF_ALL,db, "TIME_STATE_GROUP",&suite,&top,&stmpl,SAF_QTIME,SAF_ANY_UNIT,
                                   SAF_FLOAT,&state_grp);
         }

         index[0] = state;
         saf_write_state(SAF_ALL, &state_grp, index[0], &top, SAF_FLOAT, &(time[state]), field_list);

       }

       printf("closing database\n");
       saf_close_database(db);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           FAILED;
           failCount += 1;
         }
     }
   SAF_TRY_END


   saf_final();


   return (failCount==0)? 0 : 1;

 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

	 int
 main(int argc,
      char **argv)
 {
   char dbname[1024];        /* Name of the SAF database file to be created. */
   int rank=0;               /* Rank of this process for parallel. */
   /* SAF_Db db; */                /* Handle to the SAF database. */
   SAF_DbProps *dbprops;      /* Handle to the SAF databsae properties. */
   SAF_Cat nodes, elems;     /* Handles to the node and elements categories. */
   SAF_Set mesh;             /* Handle to the mesh set. */
   SAF_Db *saf_file;        /* Handle to the saf file. */
   int edge_ct_x, edge_ct_y; /* The number of triangle edges in
                              * the x and y directions. */
   int failed = 0;

 #ifdef HAVE_PARALLEL
   /* the MPI_init comes first because on some platforms MPICH's mpirun
    * doesn't pass the same argc, argv to all processors. However, the MPI
    * spec says nothing about what it does or might do to argc or argv. In
    * fact, there is no "const" in the function prototypes for either the
    * pointers or the things they're pointing too.  I would rather pass NULL
    * here and the spec says this is perfectly acceptable.  However, that too
    * has caused MPICH to core on certain platforms. */
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 #endif

   /* root process */
   if (rank == 0)
     {
       /* since we want to see what's happening make sure stdout and stderr
        * are unbuffered */
       setbuf(stdout, NULL);
       setbuf(stderr, NULL);

       /* Process any command line args to get the number of triangle
        * edges in the x and y directions. */
       edge_ct_x = 1;
       if (argc > 1)
         edge_ct_x = atoi(argv[1]);
       edge_ct_y = 2;
       if (argc > 2)
         edge_ct_y = atoi(argv[2]);
     }

 #ifdef HAVE_PARALLEL
   /* Broadcast edge_ct_x and edge_ct_y from the root process to the others. */
   MPI_Bcast(&edge_ct_x, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Bcast(&edge_ct_y, 1, MPI_INT, 0, MPI_COMM_WORLD);
 #endif

   /* for convenience, set working directory to the test file directory */
   chdir(TEST_FILE_PATH);
 #ifdef HAVE_PARALLEL
   MPI_Barrier(MPI_COMM_WORLD);
 #endif

   /* Initialize the library. */
   saf_init(SAF_DEFAULT_LIBPROPS);

   /* Get the name of the SAF database. */
   strcpy(dbname, "triangle_mesh.saf");

   SAF_TRY_BEGIN
     {
       /* Because we are in a try block here, all failures will send us to
          the one and only catch block at the end of this test */

       /* Create the database properties. */
       dbprops = saf_createProps_database();

       /* Set the clobber database property so any existing file
        * will be overwritten. */
       saf_setProps_Clobber(dbprops);

       /* Open the SAF database. Give it name dbname, properties p and
        * set db to be a handle to this database. */
       db = saf_open_database(dbname,dbprops);

       /* Get the handle to the master file. */
       saf_file = db;

       /* Construct the base space with edge_ct_x triangle edges in the x
        * direction and edge_ct_y triangle edges in the y  direction in
        * database db in SAF file saf_file.  Set mesh to mesh set, nodes to the
        * category of nodes in the mesh and elems to the category of elements in
        * the mesh. */
       make_base_space(db, &mesh, &nodes, &elems,
                       edge_ct_x, edge_ct_y);

       /* Construct the coordinate field on the mesh. */
       make_coord_field(edge_ct_x, edge_ct_y, db, &mesh, &nodes, &elems, saf_file);

       /* Construct the scalar field on the mesh. */
       make_scalar_field(edge_ct_x, edge_ct_y, db, &mesh, &nodes, &elems,
                         saf_file);

       /* Construct the stress tensor on the mesh. */
       make_stress_field(edge_ct_x, edge_ct_y, db, &mesh, &elems, saf_file);


       /* Close the SAF database. */
       saf_close_database(db);
       saf_freeProps_database(dbprops);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           failed = 1;
         }
     }
   SAF_TRY_END

     /* Finalize access to the library. */
     saf_final();

   if (failed)
     FAILED;
   else
     PASSED;

 #ifdef HAVE_PARALLEL
   MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();
 #endif

   return failed;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

	 int
 main(int argc,
      char **argv)
 {
   char dbname[1024] = "storagew.saf"; /* Name of the SAF database file to be created. */
   int rank=0;        /* Rank of this process for parallel. */
   SAF_DbProps *dbprops;/* Handle to the SAF databsae properties. */
   int  failed=0;

 #ifdef HAVE_PARALLEL
   /* the MPI_init comes first because on some platforms MPICH's mpirun
    * doesn't pass the same argc, argv to all processors. However, the MPI
    * spec says nothing about what it does or might do to argc or argv. In
    * fact, there is no "const" in the function prototypes for either the
    * pointers or the things they're pointing too.  I would rather pass NULL
    * here and the spec says this is perfectly acceptable.  However, that too
    * has caused MPICH to core on certain platforms.  */
   MPI_Init(&argc,&argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 #endif

   if (rank == 0)
     {
       /* since we want to see whats happening make sure stdout and stderr
        * are unbuffered */
       setbuf(stdout, NULL);
       setbuf(stderr, NULL);
     }

   /*  for convenience, set working directory to the test file directory */
   chdir(TEST_FILE_PATH);
 #ifdef HAVE_PARALLEL
   MPI_Barrier(MPI_COMM_WORLD);
 #endif

   /* Initialize the library. */
   saf_init(SAF_DEFAULT_LIBPROPS);

   SAF_TRY_BEGIN
     {

       /* Because we are in a try block here, all failures will send us to
        * the one and only catch block at the end of this test. */

       /* Create the database properties. */
       dbprops = saf_createProps_database();

       /* Set the clobber database property so any existing file
        * will be overwritten. */
       saf_setProps_Clobber(dbprops);

       /* Open the SAF database. Give it name dbname, properties p and
        * set db to be a handle to this database. */
       db = saf_open_database(dbname,dbprops);

       /* Construct the base space. */
       make_base_space();

       /* Construct the direct coordinate field on the domains. */
       make_direct_coord_field();

       /* Construct the indirect coordinate field on the mesh. */
       make_indirect_coord_field();

       /* Construct the direct temperature field on the domains. */
       make_direct_temperature_field();

       /* Construct the indirect temperature field on the mesh. */
       make_indirect_temperature_field();

       /* Close the SAF database. */
       saf_close_database(db);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           failed = 1;
         }
     }
   SAF_TRY_END

     /* Finalize access to the library. */
     saf_final();

   if (failed)
     FAILED;
   else
     PASSED;

 #ifdef HAVE_PARALLEL
   /* make sure everyone returns the same error status */
   MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();
 #endif

   return failed;
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

	 int
 main(
    int argc,    /* command line argument count */
    char **argv  /* command line arguments */
 )
 {
   char inputFileName[MAX_FILENAME]="", *inputFileName_p = inputFileName;
   char dbname[1024]="", *dbname_p=dbname;
   hbool_t do_multifile = false;
   hbool_t verbose = false;
   hbool_t noSimplices = false;
   int i, failed=0;
   int numDims, numSteps, numFields, *theOps;
   ElemSlab_t *theSlabs;
   SAF_Field *theFields;
   CurrentMeshParams_t currentMesh;
   IDTrackingMeshParams_t idTrackingMesh;
   DbInfo_t dbInfo;

 #ifdef HAVE_PARALLEL
   MPI_Init(&argc,&argv);
 #endif

   /* since we want to see whats happening make sure stdout and stderr are unbuffered */
   setbuf(stdout, NULL);
   setbuf(stderr, NULL);

   STU_ProcessCommandLine(0, argc, argv,
                          "-multifile",
                          "if specified, write each cycle to a different supplemental file [false]",
                          &do_multifile,
                          "-dbname %s",
                          "specify output database name [\"birth_death.saf\"]",
                          &dbname_p,
                          "-seq %s",
                          "specify input file containing add/del sequence [\"\"]",
                          &inputFileName_p,
                          "-noSimplices",
                          "if specified, DO NOT refine some blocks into simplices (tris in 2D or tets in 3D) [false]",
                          &noSimplices,
                          "-verbose",
                          "provide verbose output during the run",
                          &verbose,
                          STU_END_OF_ARGS);
   if (!strlen(dbname))
         strcpy(dbname, "birth_death.saf");


   saf_init(SAF_DEFAULT_LIBPROPS); /*moved this before other functions, so that the SAF_ERROR
                                     reporting done by AbortThisMess would work ok*/

   /* get the sequence of additions and deletions (either from file or from default static storage) */
   GetAddDelSequence(inputFileName, &numDims, &numSteps, &theOps, &theSlabs);

   if (verbose)
     PrintAddDelSequence(numDims, numSteps, theOps, theSlabs);

   /* initialize the mesh params */
   InitCurrentMeshParams(&currentMesh);
   InitIDTrackingMeshParams(numDims, theSlabs[0], &idTrackingMesh);


   SAF_TRY_BEGIN
     {

       /* Issue: because we are in a try block here, all failures in any code here or in functions we call from here will send
          us to the one and only catch block at the end of this test */

       /* do some preperatory stuff for the database */
       OpenDatabase(dbname, do_multifile, numDims, &dbInfo);

       /* loop initialization stuff */
       theFields = calloc(10, sizeof(*theFields));


       /***********************************************
        ***********************************************
        *                 MAIN LOOP                   *
        ***********************************************
        ***********************************************/
       for (i = 0; i < numSteps; i++)
         {
           numFields = 0;

           /* update current and id tracking mesh parameters with the current step */
           UpdateCurrentMeshParams(numDims, theOps[i], theSlabs[i], &currentMesh);
           UpdateIDTrackingMesh(numDims, currentMesh, &idTrackingMesh);

           /* update the current mesh relations and fields */
           UpdateCurrentMeshData(numDims, idTrackingMesh, &currentMesh, (double) i);

           if (verbose)
             {
               printf("---------------------------- step %03d ---------------------------\n", i);
               PrintCurrentMeshParams("Current Mesh Parameters", 1, numDims,currentMesh);
               PrintIDTrackingMeshParams("Maximal Mesh Parameters", numDims,idTrackingMesh);
             }

           /* refine some of the element blocks in the current mesh into blocks of simplices (tris in 2D or tets in 3D) */
           if (!noSimplices)
             RefineSomeBlocksNcubesToSimplices(numDims, &currentMesh, (double) i);

           /* compute and write the current mesh, including topology relation and coordinate field */
           WriteCurrentMesh(&dbInfo, i, numDims, currentMesh, &theFields[numFields], &numFields);

           /* link this instance into the aggregate, update the state fields, flush the database, etc. */
           UpdateDatabase(&dbInfo, i, numSteps, do_multifile, numFields, theFields);


         }
       free(theFields);

       /* close the database */
       CloseDatabase(dbInfo);

     }
   SAF_CATCH
     {
       SAF_CATCH_ALL
         {
           failed = 1;
         }
     }
   SAF_TRY_END

     saf_final();

   if (failed)
     FAILED;
   else
     PASSED;

 #ifdef HAVE_PARALLEL
   /* make sure everyone returns the same error status */
   MPI_Bcast(&failed, 1, MPI_INT, 0, MPI_COMM_WORLD);
   MPI_Finalize();
 #endif

   return failed;

 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

	 void make_base_space(void)
 {
    SAF_Rel rel, trel; /* Handles to the subset and topological relations. */
    SAF_Cat blocks,    /* Handle to the blocks category. */
            side_sets, /* Handle to the side sets category. */
            node_sets; /* Handle to the node sets category. */
    SAF_Role SAF_USERD; /* User defined role */
    /* Arrays of the inclusion mappings. */
    int cell_1_nodes[] = {1,2,3,5,6,7,9,10,11},
        cell_1_elems[] = {1,2,4,5},
        cell_2_nodes[] = {9,10,11,13,14,16,17},
        cell_2_elems[] = {7,8,9,11},
        cell_2_tri_nodes[] = {9,10,11,13,14},
        cell_2_tri_elems[] = {7,8,9},
        cell_2_quad_nodes[] = {13,14,16,17},
        cell_2_quad_elems[] = {11},
        cell_3_nodes[] = {3,4,7,8,11,12,14,15,17,18},
        cell_3_elems[] = {3,6,10,12},
        cell_1_blocks[] = {0},
        cell_2_tri_blocks[] = {1},
        cell_2_quad_blocks[] = {2},
        cell_3_blocks[] = {3},
        ss1_nodes[] = {9,10,11},
        ss2_nodes[] = {1,5,9,13,16},
        ns1_nodes[] = {4,8,12,15,18},
        cell_1_element_node_ct[] = {4},
        cell_1_connectivity[] = {1,2,6,5,2,3,7,6,5,6,10,9,6,7,11,10},
        cell_2_tri_element_node_ct[] = {3},
        cell_2_tri_connectivity[] = {9,10,13,10,14,13,10,11,14},
        cell_2_quad_element_node_ct[] = {4},
        cell_2_quad_connectivity[] = {13,14,17,16},
        cell_3_element_node_ct[] = {4},
        cell_3_connectivity[] = {3,4,8,7,  7,8,12,11,  11,12,15,14,  14,15,18,17},
        side_set_edge_node_ct[] = {2},
        ss1_connectivity[] = {1,2,2,3},
        ss2_connectivity[] = {1,2,2,3,3,4,4,5};

    /*
     ---------------------------------------------------------------------------
     *                            DECLARE ROLES
     ---------------------------------------------------------------------------
     */
    saf_declare_role(SAF_ALL, db, "testing", "larry1w", &SAF_USERD);

    /*
     ---------------------------------------------------------------------------
     *                            DECLARE CATEGORIES
     ---------------------------------------------------------------------------
     */
    saf_declare_category(SAF_ALL, db, "nodes",     SAF_TOPOLOGY, 0, &nodes);
    saf_declare_category(SAF_ALL, db, "elems",     SAF_TOPOLOGY, 2, &elems);
    saf_declare_category(SAF_ALL, db, "edges",     SAF_TOPOLOGY, 1, &edges);
    saf_declare_category(SAF_ALL, db, "blocks",    SAF_BLOCK,    2, &blocks);
    saf_declare_category(SAF_ALL, db, "side_sets", &SAF_USERD,    1, &side_sets);
    saf_declare_category(SAF_ALL, db, "node_sets", &SAF_USERD,    0, &node_sets);

    /*
     ---------------------------------------------------------------------------
     *                               DECLARE SETS
     ---------------------------------------------------------------------------
     */
    saf_declare_set(SAF_ALL, db, "TOP_CELL",   2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &top);
    saf_declare_set(SAF_ALL, db, "CELL_1",     2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &cell_1);
    saf_declare_set(SAF_ALL, db, "CELL_2",     2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &cell_2);
    saf_declare_set(SAF_ALL, db, "CELL_3",     2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &cell_3);
    saf_declare_set(SAF_ALL, db, "SIDE_SET_1", 1, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &ss1);
    saf_declare_set(SAF_ALL, db, "SIDE_SET_2", 1, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &ss2);
    saf_declare_set(SAF_ALL, db, "NODE_SET_1", 0, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &ns1);
    saf_declare_set(SAF_ALL, db, "TIME",       0, SAF_TIME,
                    SAF_EXTENDIBLE_TRUE,  &time_base);

    /* The following sets are needed to deal with the inhomogeneous
     * cell types on CELL_2. */
    saf_declare_set(SAF_ALL, db, "CELL_2_TRIS",  2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &cell_2_tri);
    saf_declare_set(SAF_ALL, db, "CELL_2_QUADS", 2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &cell_2_quad);

    /*
     ---------------------------------------------------------------------------
     *                           DECLARE COLLECTIONS
     ---------------------------------------------------------------------------
     */
    /* collections contained in the top set */
    saf_declare_collection(SAF_ALL, &top,         &nodes,     SAF_CELLTYPE_POINT, 18,
                           SAF_1DF(18), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &top,         &elems,     SAF_CELLTYPE_MIXED, 12,
                           SAF_1DF(12), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &top,         &blocks,    SAF_CELLTYPE_SET,   4,
                           SAF_1DF(4),  SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &top,         &side_sets, SAF_CELLTYPE_SET,   2,
                           SAF_1DF(2),  SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &top,         &node_sets, SAF_CELLTYPE_SET,   1,
                           SAF_1DF(1),  SAF_DECOMP_FALSE);

    /* collections contained in the cell 1 set */
    saf_declare_collection(SAF_ALL, &cell_1,      &nodes,     SAF_CELLTYPE_POINT, 9,
                           SAF_1DF(9), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &cell_1,      &elems,     SAF_CELLTYPE_QUAD,  4,
                           SAF_1DF(4), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &cell_1,      &blocks,    SAF_CELLTYPE_SET,   1,
                           SAF_1DF(1), SAF_DECOMP_TRUE);

    /* collections contained in the cell 2 set */
    saf_declare_collection(SAF_ALL, &cell_2,      &nodes,     SAF_CELLTYPE_POINT, 7,
                           SAF_1DF(7), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &cell_2,      &elems,     SAF_CELLTYPE_MIXED, 4,
                           SAF_1DF(4), SAF_DECOMP_TRUE);

    /* collections contained in the cell 3 set */
    saf_declare_collection(SAF_ALL, &cell_3,      &nodes,     SAF_CELLTYPE_POINT, 10,
                           SAF_1DF(10), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &cell_3,      &elems,     SAF_CELLTYPE_QUAD,  4,
                           SAF_1DF(4), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &cell_3,      &blocks,    SAF_CELLTYPE_SET,   1,
                           SAF_1DF(1), SAF_DECOMP_TRUE);

    /* collections contained in side set 1 */
    saf_declare_collection(SAF_ALL, &ss1,         &nodes,     SAF_CELLTYPE_POINT, 3,
                           SAF_1DF(3), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &ss1,         &edges,     SAF_CELLTYPE_LINE,  2,
                           SAF_1DF(2), SAF_DECOMP_TRUE);

    /* collections contained in side set 2 */
    saf_declare_collection(SAF_ALL, &ss2,         &nodes,     SAF_CELLTYPE_POINT, 5,
                           SAF_1DF(5), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &ss2,         &edges,     SAF_CELLTYPE_LINE,  4,
                           SAF_1DF(4), SAF_DECOMP_TRUE);

    /* collections contained in node set 1 */
    saf_declare_collection(SAF_ALL, &ns1,         &nodes,     SAF_CELLTYPE_POINT, 5,
                           SAF_1DF(5), SAF_DECOMP_TRUE);

    /* collections contained in the set of cell_2's triangles */
    saf_declare_collection(SAF_ALL, &cell_2_tri,  &nodes,     SAF_CELLTYPE_POINT, 5,
                           SAF_1DF(5), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &cell_2_tri,  &elems,     SAF_CELLTYPE_TRI,   3,
                           SAF_1DF(3), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &cell_2_tri,  &blocks,    SAF_CELLTYPE_SET,   1,
                           SAF_1DF(1), SAF_DECOMP_TRUE);

    /* collections contained in the set of cell_2's quads */
    saf_declare_collection(SAF_ALL, &cell_2_quad, &nodes,     SAF_CELLTYPE_POINT, 4,
                           SAF_1DF(4), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &cell_2_quad, &elems,     SAF_CELLTYPE_QUAD,  1,
                           SAF_1DF(1), SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &cell_2_quad, &blocks,    SAF_CELLTYPE_SET,   1,
                           SAF_1DF(1), SAF_DECOMP_TRUE);

    /* collections contained in the time base set */
    saf_declare_collection(SAF_ALL, &time_base,   &nodes,     SAF_CELLTYPE_POINT, 1,
                           SAF_1DC(1), SAF_DECOMP_TRUE);

    /*
     ---------------------------------------------------------------------------
     *                    DECLARE AND WRITE SUBSET RELATIONS
     ---------------------------------------------------------------------------
     */
    /* For the first group of subset relations, the relation data will be
     * passed to the write call rather than the declare call.  To make the
     * association of writes with declares clear, the writes appear immediately
     * after the declare with which they are associated.  It is not required
     * that each write immediately follow the declare with which it is
     * associated, however. */

    /* nodes and elems of cell_1 in nodes and elems of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_1,      SAF_COMMON(&nodes),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_1_nodes,       H5I_INVALID_HID,
                              NULL, saf_file);
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_1,      SAF_COMMON(&elems),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_1_elems,       H5I_INVALID_HID,
                              NULL, saf_file);

    /* nodes and elems of cell_2 in nodes and elems of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2,      SAF_COMMON(&nodes),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_nodes,       H5I_INVALID_HID,
                              NULL, saf_file);
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2,      SAF_COMMON(&elems),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_elems,       H5I_INVALID_HID,
                              NULL, saf_file);

    /* nodes and elems of cell_2_tri in nodes and elems of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2_tri,  SAF_COMMON(&nodes),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_tri_nodes,   H5I_INVALID_HID,
                              NULL, saf_file);
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2_tri,  SAF_COMMON(&elems),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_tri_elems,   H5I_INVALID_HID,
                              NULL, saf_file);

    /* nodes and elems of cell_2_quad in nodes and elems of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2_quad, SAF_COMMON(&nodes),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_quad_nodes,  H5I_INVALID_HID,
                              NULL, saf_file);
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2_quad, SAF_COMMON(&elems),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_quad_elems,  H5I_INVALID_HID,
                              NULL, saf_file);

    /* nodes and elems of cell_3 in nodes and elems of the top*/
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_3,      SAF_COMMON(&nodes),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_3_nodes,       H5I_INVALID_HID,
                              NULL, saf_file);
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_3,      SAF_COMMON(&elems),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_3_elems,       H5I_INVALID_HID,
                              NULL, saf_file);

    /* blocks of cell_1 in blocks of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_1,      SAF_COMMON(&blocks),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_1_blocks,      H5I_INVALID_HID,
                              NULL, saf_file);

    /* blocks of cell_2_tri in blocks of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2_tri,  SAF_COMMON(&blocks),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_tri_blocks,  H5I_INVALID_HID,
                              NULL, saf_file);

    /* blocks of cell_2_quad in blocks of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_2_quad, SAF_COMMON(&blocks),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_2_quad_blocks, H5I_INVALID_HID,
                              NULL, saf_file);

    /* blocks of cell_3 in blocks of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &cell_3,      SAF_COMMON(&blocks),
                                SAF_TUPLES, H5I_INVALID_HID,    NULL,      H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, cell_3_blocks,      H5I_INVALID_HID,
                              NULL, saf_file);

    /* For the next group of subset relations, the relation data will be
     * passed to the declare call rather than the write call. */

    /* nodes of side set 1 in nodes of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &ss1,         SAF_COMMON(&nodes),
                                SAF_TUPLES, SAF_INT, ss1_nodes, H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, saf_file);

    /* nodes of side set 2 in nodes of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &ss2,         SAF_COMMON(&nodes),
                                SAF_TUPLES, SAF_INT, ss2_nodes, H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, saf_file);

    /* nodes of node set 1 in nodes of the top */
    saf_declare_subset_relation(SAF_ALL, db, &top, &ns1,         SAF_COMMON(&nodes),
                                SAF_TUPLES, SAF_INT, ns1_nodes, H5I_INVALID_HID, NULL,
                                &rel);
    saf_write_subset_relation(SAF_ALL, &rel, H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, saf_file);

    /*
     ---------------------------------------------------------------------------
     *                   DECLARE AND WRITE TOPOLOGY RELATIONS
     ---------------------------------------------------------------------------
     */

    /* The connectivity data will be passed in the write call for all
     * topological relations. */

    /* connectivity of the nodes of the top in the elements of cell_1 */
    saf_declare_topo_relation(SAF_ALL, db, &cell_1,      &elems, &top, &nodes,
                              SAF_SELF(db), &cell_1, SAF_UNSTRUCTURED, H5I_INVALID_HID,
                              NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, cell_1_element_node_ct,
                            SAF_INT, cell_1_connectivity, saf_file);

    /* connectivity of the nodes of the top in the elements of cell_2_tri */
    saf_declare_topo_relation(SAF_ALL, db, &cell_2_tri,  &elems, &top, &nodes,
                              SAF_SELF(db), &cell_2_tri, SAF_UNSTRUCTURED, H5I_INVALID_HID,
                              NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, cell_2_tri_element_node_ct,
                            SAF_INT, cell_2_tri_connectivity, saf_file);

    /* connectivity of the nodes of the top in the elements of cell_2_quad */
    saf_declare_topo_relation(SAF_ALL, db, &cell_2_quad, &elems, &top, &nodes,
                              SAF_SELF(db), &cell_2_quad, SAF_UNSTRUCTURED, H5I_INVALID_HID,
                              NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, cell_2_quad_element_node_ct,
                            SAF_INT, cell_2_quad_connectivity, saf_file);

    /* connectivity of the nodes of the top in the elements of cell_3 */
    saf_declare_topo_relation(SAF_ALL, db, &cell_3,      &elems, &top, &nodes,
                              SAF_SELF(db), &cell_3, SAF_UNSTRUCTURED, H5I_INVALID_HID,
                              NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, cell_3_element_node_ct,
                            SAF_INT, cell_3_connectivity, saf_file);

    /* connectivity of the nodes of the top in the edges of side set 1 */
    saf_declare_topo_relation(SAF_ALL, db, &ss1,         &edges, &top, &nodes,
                              SAF_SELF(db), &ss1,    SAF_UNSTRUCTURED, H5I_INVALID_HID,
                              NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, side_set_edge_node_ct,
                            SAF_INT, ss1_connectivity,    saf_file);

    /* connectivity of the nodes of the top in the edges of side set 2 */
    saf_declare_topo_relation(SAF_ALL, db, &ss2,         &edges, &top, &nodes,
                              SAF_SELF(db), &ss2,    SAF_UNSTRUCTURED, H5I_INVALID_HID,
                              NULL, H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, side_set_edge_node_ct,
                            SAF_INT, ss2_connectivity,    saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	 void make_base_space(SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes,
                      SAF_Cat *elems,
                      int edge_ct_x, int edge_ct_y)
 {
    SAF_Rel trel;        /* Handle to the topological relation. */
    int abuf[] = {3};    /* Number of nodes for each element type in mesh. */
    int node_ct, ele_ct; /* Numbers of nodes and elements in the mesh. */
    int *conn;           /* Node to element connectivity data. */

    /* Make the connectivity. */
    conn = make_mesh_connectivity(edge_ct_x, edge_ct_y);

    /* Set the number of nodes and elements in the mesh. */
    node_ct = (edge_ct_x+1)*(edge_ct_y+1);
    ele_ct  = edge_ct_x*edge_ct_y*2;

    /*
     ---------------------------------------------------------------------------
     *                            DECLARE CATEGORIES
     ---------------------------------------------------------------------------
     */
    saf_declare_category(SAF_ALL, db, "nodes",  SAF_TOPOLOGY, 0, nodes);
    saf_declare_category(SAF_ALL, db, "elems",  SAF_TOPOLOGY, 2, elems);

    /*
     ---------------------------------------------------------------------------
     *                               DECLARE SET
     ---------------------------------------------------------------------------
     */
    saf_declare_set(SAF_ALL, db, "TOP_CELL", 2, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, mesh);

    /*
     ---------------------------------------------------------------------------
     *                           DECLARE COLLECTIONS
     ---------------------------------------------------------------------------
     */
    saf_declare_collection(SAF_ALL, mesh, nodes,  SAF_CELLTYPE_POINT, node_ct,
                           SAF_1DC(node_ct), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, mesh, elems,  SAF_CELLTYPE_TRI,   ele_ct,
                           SAF_1DC(ele_ct),  SAF_DECOMP_TRUE);

    /*
     ---------------------------------------------------------------------------
     *                   DECLARE AND WRITE TOPOLOGY RELATIONS
     ---------------------------------------------------------------------------
     */
    saf_declare_topo_relation(SAF_ALL,db, mesh, elems, mesh, nodes,
                              SAF_SELF(db), mesh, SAF_UNSTRUCTURED, H5I_INVALID_HID, NULL,
                              H5I_INVALID_HID, NULL, &trel);
    saf_write_topo_relation(SAF_ALL, &trel, SAF_INT, abuf, SAF_INT,
                            conn, db);
    if (conn)free(conn);

    return;
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

	 void make_base_space(void)
 {
    SAF_Rel rel,                   /* Handle to the subset relations. */
            topoRelationOnDomain0, /* Handles to the topological relations. */
            topoRelationOnDomain1,
            topoRelationOnMesh,
            abuf[2];
    /* Arrays of the inclusion mappings. */
    int domain0_nodes[] = {0,1,4,3,6,7,10,9},
        domain0_zones[] = {0},
        domain0_domains[] = {0},
        domain1_nodes[] = {1,2,5,4,7,8,11,10},
        domain1_zones[] = {1},
        domain1_domains[] = {1},
        domain0_element_node_ct[] = {8},
        domain0_connectivity[] = {0,1,2,3,4,5,6,7},
        domain1_element_node_ct[] = {8},
        domain1_connectivity[] = {0,1,2,3,4,5,6,7};

    /*
     ---------------------------------------------------------------------------
     *                            DECLARE CATEGORIES
     ---------------------------------------------------------------------------
     */
    saf_declare_category(SAF_ALL, db, "nodes", SAF_TOPOLOGY, SAF_TOPODIM_0D, &nodes);
    saf_declare_category(SAF_ALL, db, "zones", SAF_TOPOLOGY, SAF_TOPODIM_3D, &zones);
    saf_declare_category(SAF_ALL, db, "domains", SAF_DOMAIN, SAF_TOPODIM_3D, &domains);

    /*
     ---------------------------------------------------------------------------
     *                               DECLARE SETS
     ---------------------------------------------------------------------------
     */
    saf_declare_set(SAF_ALL, db, "TheMesh",    SAF_TOPODIM_3D, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &mesh);
    saf_declare_set(SAF_ALL, db, "Domain_000", SAF_TOPODIM_3D, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &domain0);
    saf_declare_set(SAF_ALL, db, "Domain_001", SAF_TOPODIM_3D, SAF_SPACE,
                    SAF_EXTENDIBLE_FALSE, &domain1);

    /*
     ---------------------------------------------------------------------------
     *                           DECLARE COLLECTIONS
     ---------------------------------------------------------------------------
     */
    /* Collections of nodes, zones and domains in the mesh. */
    saf_declare_collection(SAF_ALL, &mesh,    &nodes,   SAF_CELLTYPE_POINT, 12,
                           SAF_1DC(12), SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &mesh,    &zones,   SAF_CELLTYPE_HEX,   2,
                           SAF_1DC(2),  SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &mesh,    &domains, SAF_CELLTYPE_SET,   2,
                           SAF_1DC(2),  SAF_DECOMP_TRUE);

    /* Collections of nodes, zones and domains in domain0. */
    saf_declare_collection(SAF_ALL, &domain0, &nodes,   SAF_CELLTYPE_POINT, 8,
                           SAF_1DC(8),  SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &domain0, &zones,   SAF_CELLTYPE_HEX,   1,
                           SAF_1DC(1),  SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &domain0, &domains, SAF_CELLTYPE_SET,   1,
                           SAF_1DC(1),  SAF_DECOMP_TRUE);

    /* Collections of nodes, zones and domains in domain1. */
    saf_declare_collection(SAF_ALL, &domain1, &nodes,   SAF_CELLTYPE_POINT, 8,
                           SAF_1DC(8),  SAF_DECOMP_FALSE);
    saf_declare_collection(SAF_ALL, &domain1, &zones,   SAF_CELLTYPE_HEX,   1,
                           SAF_1DC(1),  SAF_DECOMP_TRUE);
    saf_declare_collection(SAF_ALL, &domain1, &domains, SAF_CELLTYPE_SET,   1,
                           SAF_1DC(1),  SAF_DECOMP_TRUE);

    /*
     ---------------------------------------------------------------------------
     *                    DECLARE AND WRITE SUBSET RELATIONS
     ---------------------------------------------------------------------------
     */
    /* nodes, zones and domains of domain 0 in nodes and zones of the mesh */
    saf_declare_subset_relation(SAF_ALL, db, &mesh, &domain0, SAF_COMMON(&nodes),
                                SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &domain0_nodes,
                              H5I_INVALID_HID, NULL, db);
    saf_declare_subset_relation(SAF_ALL, db, &mesh, &domain0, SAF_COMMON(&zones),
                                SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &domain0_zones,
                              H5I_INVALID_HID, NULL, db);
    saf_declare_subset_relation(SAF_ALL, db, &mesh, &domain0, SAF_COMMON(&domains),
                                SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &domain0_domains,
                              H5I_INVALID_HID, NULL, db);

    /* nodes, zones and domains of domain 1 in nodes and zones of the mesh */
    saf_declare_subset_relation(SAF_ALL, db, &mesh, &domain1, SAF_COMMON(&nodes),
                                SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &domain1_nodes,
                              H5I_INVALID_HID, NULL, db);
    saf_declare_subset_relation(SAF_ALL, db, &mesh, &domain1, SAF_COMMON(&zones),
                                SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &domain1_zones,
                              H5I_INVALID_HID, NULL, db);
    saf_declare_subset_relation(SAF_ALL, db, &mesh, &domain1, SAF_COMMON(&domains),
                                SAF_TUPLES, SAF_INT, NULL, H5I_INVALID_HID, NULL, &rel);
    saf_write_subset_relation(SAF_ALL, &rel, SAF_INT, &domain1_domains,
                              H5I_INVALID_HID, NULL, db);

    /*
     ---------------------------------------------------------------------------
     *                   DECLARE AND WRITE TOPOLOGY RELATIONS
     ---------------------------------------------------------------------------
     */

    /* The connectivity data will be passed in the write call for all
     * topological relations. */

    /* connectivity of the nodes of domain0 in the zones of domain0 */
    saf_declare_topo_relation(SAF_ALL, db, &domain0, &zones, &domain0, &nodes,
                              SAF_SELF(db), &domain0, SAF_UNSTRUCTURED,
                              H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &topoRelationOnDomain0);
    saf_write_topo_relation(SAF_ALL, &topoRelationOnDomain0, SAF_INT,
                            domain0_element_node_ct, SAF_INT,
                            domain0_connectivity, db);

    /* connectivity of the nodes of domain1 in the zones of domain0 */
    saf_declare_topo_relation(SAF_ALL, db, &domain1, &zones, &domain1, &nodes,
                              SAF_SELF(db), &domain1, SAF_UNSTRUCTURED,
                              H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &topoRelationOnDomain1);
    saf_write_topo_relation(SAF_ALL, &topoRelationOnDomain1, SAF_INT,
                            domain1_element_node_ct, SAF_INT,
                            domain1_connectivity, db);

    /* connectivity of the nodes of the mesh in the zones of the mesh declared
     * indirectly through the 2 topological relations just declared */
    saf_declare_topo_relation(SAF_ALL, db, &mesh,    &zones, &mesh,    &nodes,
                              &domains,      &mesh,    SAF_UNSTRUCTURED,
                              H5I_INVALID_HID, NULL, H5I_INVALID_HID, NULL, &topoRelationOnMesh);
    abuf[0] = topoRelationOnDomain0;
    abuf[1] = topoRelationOnDomain1;
    saf_write_topo_relation(SAF_ALL, &topoRelationOnMesh,    SAF_HANDLE,
                            abuf,                    H5I_INVALID_HID,
                            NULL,                 db);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	 void make_coord_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh,
                       SAF_Cat *nodes, SAF_Cat *elems, SAF_Db *saf_file)
 {
    SAF_FieldTmpl coords_ftmpl, /* Handle to the coordinate field field
                                 * template. */
                  coords_ctmpl, /* Handle to the coordinate field's components'
                                 * field templates. */
                  tmp_ftmpl[3]; /* temporary field template handle for
                                 * component field templates. */
    SAF_Field coords,           /* Handle to the coordinate field. */
              coord_compon[2];  /* Handle to the 2 components of the
                                 * coordinate field. */
    SAF_Unit umeter;            /* Handle to the units for the coordinates. */
    double *lcoord_dof_tuple;   /* The coordinate field dofs. */

    /* Create the coordinate field dofs. */
    lcoord_dof_tuple = make_coord_field_dofs(edge_ct_x, edge_ct_y);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL, db, "e2_on_triangle_mesh_ctmpl",
                            SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 1,
                            NULL, &coords_ctmpl);

    tmp_ftmpl[0] = coords_ctmpl;
    tmp_ftmpl[1] = coords_ctmpl;
    saf_declare_field_tmpl(SAF_ALL, db, "e2_on_triangle_mesh_tmpl",
                            SAF_ALGTYPE_VECTOR, SAF_CARTESIAN, SAF_QLENGTH, 2,
                            tmp_ftmpl, &coords_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                       (buf specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "meter", &umeter);

    /* Declare the fields. */
    saf_declare_field(SAF_ALL, db, &coords_ctmpl, "X",           mesh, &umeter,
                      SAF_SELF(db), SAF_NODAL(nodes, elems), SAF_DOUBLE,
                      NULL,         SAF_INTERLEAVE_NONE,   SAF_IDENTITY, NULL,
                      coord_compon);
    saf_declare_field(SAF_ALL, db, &coords_ctmpl, "Y",           mesh, &umeter,
                      SAF_SELF(db), SAF_NODAL(nodes, elems), SAF_DOUBLE,
                      NULL,         SAF_INTERLEAVE_NONE,   SAF_IDENTITY, NULL,
                      coord_compon+1);
    saf_declare_field(SAF_ALL, db, &coords_ftmpl, "coord field", mesh, &umeter,
                      SAF_SELF(db), SAF_NODAL(nodes, elems), SAF_DOUBLE,
                      coord_compon, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL,
                      &coords);

    /* Write the coordinate field. */
    saf_write_field(SAF_ALL, &coords, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID,(void**)&lcoord_dof_tuple, saf_file);

    /* Specify that is a coordinate field */
    saf_declare_coords(SAF_ALL, &coords);

    /* Free the dofs now that we are done with them. */
    free(lcoord_dof_tuple);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	 double *
 make_coord_field_dofs(int edge_ct_x,    /*number of edges in X direction*/
                       int edge_ct_y     /*number of edges in Y direction*/
                       )
 {
    SAF_ENTER(make_coord_field_dofs, NULL);

    int node_ct_x = edge_ct_x+1,         /* Number of nodes in x. */
        node_ct_y = edge_ct_y+1,         /* Number of nodes in y. */
        dofs_ub = node_ct_x*node_ct_y*2, /* Number of dofs. */
        i, j, node_id;
    double delx = 1.0/edge_ct_x,         /* X increment between nodes in x. */
           dely = 1.0/edge_ct_y,         /* Y increment between nodes in y. */
           *dofs,                        /* The array of dofs. */
           x, y;                         /* x and y coordinates. */

    /* Preconditions */

    SAF_REQUIRE(edge_ct_x > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the x direction"));
    SAF_REQUIRE(edge_ct_y > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the y direction"));

    /* Body */


    /* allocate dofs as single index array,
     * but treat as dofs[nx+1][ny+1][2]; */
    dofs = (double*)malloc(dofs_ub*sizeof(double));

    for(i = 0; i < node_ct_x; i++)
    {
       x = i*delx;
       for(j = 0; j < node_ct_y; j++)
       {
          y = j*dely;
          node_id = NODE_ID(i,j);
          dofs[2*node_id] = x;
          dofs[2*node_id+1] = y;
       }
    }

    /* Postconditions */

    /* Exit */

    SAF_LEAVE(dofs);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

	 void make_direct_coord_field(void)
 {
    SAF_Unit umeter;              /* Handle to the units for the coordinates. */
    SAF_FieldTmpl coord_d0_ftmpl, /* Handle to the coordinate field field
                                   * template on domain0. */
                  coord_d0_ctmpl, /* Handle to the coordinate field component
                                   * template on domain0. */
                  coord_d1_ftmpl, /* Handle to the coordinate field field
                                   * template on domain1. */
                  coord_d1_ctmpl, /* Handle to the coordinate field component
                                   * template on domain1. */
                  tmp_ftmpl[3];   /* temporarly field template handles for
                                   * component fields. */

    /* Coordinate values. */
    float domain0_Xcoords[] = { 0., 1., 1., 0., 0., 1., 1., 0. },
          domain0_Ycoords[] = { 0., 0., 0., 0., 1., 1., 1., 1. },
          domain0_Zcoords[] = { 0., 0., 1., 1., 0., 0., 1., 1. },
          domain1_Xcoords[] = { 1., 2., 2., 1., 1., 2., 2., 1. },
          domain1_Ycoords[] = { 0., 0., 0., 0., 1., 1., 1., 1. },
          domain1_Zcoords[] = { 0., 0., 1., 1., 0., 0., 1., 1. };
    void *domain0_coords[3],
         *domain1_coords[3];
    domain0_coords[0] = domain0_Xcoords;
    domain0_coords[1] = domain0_Ycoords;
    domain0_coords[2] = domain0_Zcoords;
    domain1_coords[0] = domain1_Xcoords;
    domain1_coords[1] = domain1_Ycoords;
    domain1_coords[2] = domain1_Zcoords;

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    /* for domain0 */
    saf_declare_field_tmpl(SAF_ALL, db, "coords_on_d0_ctmpl",   SAF_ALGTYPE_SCALAR,
                           SAF_CARTESIAN, SAF_QLENGTH, 1,
                           NULL, &coord_d0_ctmpl);

    tmp_ftmpl[0] = coord_d0_ctmpl;
    tmp_ftmpl[1] = coord_d0_ctmpl;
    tmp_ftmpl[2] = coord_d0_ctmpl;
    saf_declare_field_tmpl(SAF_ALL, db, "coords_on_d0_ctmpl",   SAF_ALGTYPE_VECTOR,
                           SAF_CARTESIAN, SAF_QLENGTH, 3,
                           tmp_ftmpl, &coord_d0_ftmpl);

    /* for domain1 */
    saf_declare_field_tmpl(SAF_ALL, db, "coords_on_d1_ctmpl",   SAF_ALGTYPE_SCALAR,
                           SAF_CARTESIAN, SAF_QLENGTH, 1,
                           NULL, &coord_d1_ctmpl);

    tmp_ftmpl[0] = coord_d1_ctmpl;
    tmp_ftmpl[1] = coord_d1_ctmpl;
    tmp_ftmpl[2] = coord_d1_ctmpl;
    saf_declare_field_tmpl(SAF_ALL, db, "coords_on_d1_tmpl",   SAF_ALGTYPE_VECTOR,
                           SAF_CARTESIAN, SAF_QLENGTH, 3,
                           tmp_ftmpl,   &coord_d1_ftmpl);


    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "meter", &umeter);

    /* Declare the fields on domain0. */
    saf_declare_field(SAF_ALL, db, &coord_d0_ctmpl, "X",      &domain0, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL,            SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(coord_d0_compon[0]));
    saf_declare_field(SAF_ALL, db, &coord_d0_ctmpl, "Y",      &domain0, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL,            SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(coord_d0_compon[1]));
    saf_declare_field(SAF_ALL, db, &coord_d0_ctmpl, "Z",      &domain0, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL,            SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(coord_d0_compon[2]));
    saf_declare_field(SAF_ALL, db, &coord_d0_ftmpl, "coords", &domain0, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      coord_d0_compon, SAF_BLOCKED,         SAF_IDENTITY, NULL,
                      &coords_d0);

    /* Write the field on domain0. */
    saf_write_field(SAF_ALL, &coords_d0, SAF_WHOLE_FIELD, 3, H5I_INVALID_HID,
                    domain0_coords, db);

    /* specify that it is a coordinate field */
    saf_declare_coords(SAF_ALL, &coords_d0);
    saf_declare_default_coords(SAF_ALL,&domain0,&coords_d0);

    /* Declare the fields on domain1. */
    saf_declare_field(SAF_ALL, db, &coord_d1_ctmpl, "X",      &domain1, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL,            SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(coord_d1_compon[0]));
    saf_declare_field(SAF_ALL, db, &coord_d1_ctmpl, "Y",      &domain1, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL,            SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(coord_d1_compon[1]));
    saf_declare_field(SAF_ALL, db, &coord_d1_ctmpl, "Z",      &domain1, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL,            SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(coord_d1_compon[2]));
    saf_declare_field(SAF_ALL, db, &coord_d1_ftmpl, "coords", &domain1, &umeter, SAF_SELF(db),
                      SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      coord_d1_compon, SAF_BLOCKED,         SAF_IDENTITY, NULL,
                      &coords_d1);

    /* Write the fields on domain1. */
    saf_write_field(SAF_ALL, &coords_d1, SAF_WHOLE_FIELD, 3, H5I_INVALID_HID,
                    domain1_coords, db);

    /* specify that it is a coordinate field */
    saf_declare_coords(SAF_ALL, &coords_d1);
    saf_declare_default_coords(SAF_ALL,&domain1,&coords_d1);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	 void make_direct_temperature_field(void)
 {
    SAF_Unit ukelvin;            /* Handle to the units for the field. */
    SAF_FieldTmpl temp_d0_ftmpl, /* Handle to the field template on domain0. */
                  temp_d1_ftmpl; /* Handle to the field template on domain1. */
    /* Temperature values. */
    float domain0_temps[] = { 0., 1., 1.414213562373095,
                              1., 1., 1.414213562373095,
                              1.732050807568877,
                              1.414213562373095},
          domain1_temps[] = { 1., 2., 2.23606797749979,
                              1.414213562373095,
                              1.414213562373095,
                              2.23606797749979,
                              2.449489742783177,
                              1.732050807568877};
    void *pdomain0_temps = &domain0_temps[0],
         *pdomain1_temps = &domain1_temps[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    /* on domain0 */
    saf_declare_field_tmpl(SAF_ALL, db, "temp_on_domain0", SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_QTEMP, 1, NULL, &temp_d0_ftmpl);

    /* on domain1 */
    saf_declare_field_tmpl(SAF_ALL, db, "temp_on_domain1",  SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_QTEMP, 1, NULL, &temp_d1_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     ---------------------------------------------------------------------------
     */
    /* Get the handle to the units for the field. */
    saf_find_one_unit(db, "kelvin", &ukelvin);

    /* on domain0 */
    saf_declare_field(SAF_ALL, db, &temp_d0_ftmpl, "temperature", &domain0, &ukelvin,
                      SAF_SELF(db), SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &temp_d0);
    saf_write_field(SAF_ALL, &temp_d0, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID,
                    &pdomain0_temps, db);

    /* on domain1 */
    saf_declare_field(SAF_ALL, db, &temp_d1_ftmpl, "temperature", &domain1, &ukelvin,
                      SAF_SELF(db), SAF_NODAL(&nodes, &zones), SAF_FLOAT,
                      NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &temp_d1);
    saf_write_field(SAF_ALL, &temp_d1, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID,
                    &pdomain1_temps, db);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	 void make_displacement_field(void)
 {
    SAF_Unit umeter;            /* Handle to the units for the coordinates. */
    /* The displacement field dofs. */
    float displacement_dof_tuple[] = {.25,.25,   .25,.25,   .25,.25,   .25,.25,
                                      .25,.25,   .25,.25,   .25,.25,   .25,.25,
                                      .25,.25,   .25,.25,   .25,.25,   .25,.25,
                                      .25,.25,              .25,.25,   .25,.25,
                                      .25,.25,              .25,.25,   .25,.25};
    void *dofs = &displacement_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                      (dofs specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "meter", &umeter);

    /* Declare the fields. */
    saf_declare_field(SAF_ALL, db, &coords_ctmpl, "dX",            &top, &umeter,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      NULL,         SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(disp_compons[0]));
    saf_declare_field(SAF_ALL, db, &coords_ctmpl, "dY",            &top, &umeter,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      NULL,         SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &(disp_compons[1]));
    saf_declare_field(SAF_ALL, db, &coords_ftmpl, "displacements", &top, &umeter,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      disp_compons, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL,
                      &disps);

    /* Write the field. */
    saf_write_field(SAF_ALL, &disps, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID, &dofs, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 void make_distribution_factors_on_ss2_field(void)
 {
    /* Made up distribution factors. */
    float distfac_dof_tuple[]  = {4., 3., 2., 1., 0.};
    void *dofs = &distfac_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL,  db,"distrib_factors_tmpl", SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_NOT_APPLICABLE_QUANTITY, 1, NULL,
                           &distfac_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                      (dofs specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &distfac_ftmpl, "distribution factors",
                      &ss2, SAF_NOT_APPLICABLE_UNIT, SAF_SELF(db),
                      SAF_NODAL(&nodes, &edges), H5T_NATIVE_FLOAT, NULL,
                      SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &distfac);

    /* Write the field. */
    saf_write_field(SAF_ALL, &distfac, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID, &dofs, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	 void make_global_coord_field(void)
 {
    SAF_Unit umeter;            /* Handle to the units for the coordinates. */
    /* The coordinate field dofs. */
    float lcoord_dof_tuple[] = {0.,4., 1.,4., 2.,4., 2.5,4.,
                                0.,3., 1.,3., 2.,3., 2.5,3.,
                                0.,2., 1.,2., 2.,2., 2.5,2.,
                                0.,1.,        2.,1., 2.5,1.,
                                0.,0.,        2.,0., 2.5,0.};
    void *dofs = &lcoord_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL, db, "coordinate_ctmpl", SAF_ALGTYPE_SCALAR,
                           SAF_CARTESIAN, SAF_QLENGTH, 1,
                           NULL, &coords_ctmpl);

    tmp_ftmpl[0] = coords_ctmpl;
    tmp_ftmpl[1] = coords_ctmpl;
    saf_declare_field_tmpl(SAF_ALL, db, "coordinate_tmpl", SAF_ALGTYPE_VECTOR,
                           SAF_CARTESIAN, SAF_QLENGTH, 2,
                           tmp_ftmpl, &coords_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                      (dofs specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "meter", &umeter);

    /* Declare the fields. */
    saf_declare_field(SAF_ALL, db, &coords_ctmpl, "X",      &top, &umeter,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      NULL,         SAF_INTERLEAVE_NONE,   SAF_IDENTITY, NULL,
                      &(coord_compon[0]));
    saf_declare_field(SAF_ALL, db, &coords_ctmpl, "Y",      &top, &umeter,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      NULL,         SAF_INTERLEAVE_NONE,   SAF_IDENTITY, NULL,
                      &(coord_compon[1]));
    saf_declare_field(SAF_ALL, db, &coords_ftmpl, "coords", &top, &umeter,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      coord_compon, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY, NULL,
                      &coords);

    /* Write the coordinate field. */
    saf_write_field(SAF_ALL, &coords, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID, &dofs, saf_file);

    /* specify that is a coordinate field */
    saf_declare_coords(SAF_ALL, &coords);
    saf_declare_default_coords(SAF_ALL, &top, &coords);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 void make_indirect_coord_field(void)
 {
    SAF_FieldTmpl coord_mesh_ftmpl; /* Handle to the coordinate field template
                                     * on the mesh. */
    SAF_Field coords_mesh,          /* Handle to the coordinate field on the
                                     * mesh. */
              buf[2];
    void *pbuf = &buf[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
     saf_declare_field_tmpl(SAF_ALL, db, "coords_on_mesh_tmpl", SAF_ALGTYPE_FIELD,
                            NULL, SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT,
                            NULL, &coord_mesh_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     ---------------------------------------------------------------------------
     */

    /* the coordinate field on the mesh */
    saf_declare_field(SAF_ALL, db, &coord_mesh_ftmpl, "coords", &mesh, SAF_NOT_APPLICABLE_UNIT, &domains,
                      SAF_NODAL(&nodes, &zones), SAF_HANDLE,
                      NULL, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY,
                      NULL, &coords_mesh);
    buf[0] = coords_d0;
    buf[1] = coords_d1;
    saf_write_field(SAF_ALL, &coords_mesh,          SAF_WHOLE_FIELD, 1, H5I_INVALID_HID,
                    &pbuf, db);

    /* specify that it is a coordinate field */
    saf_declare_coords(SAF_ALL, &coords_mesh);
    saf_declare_default_coords(SAF_ALL,&mesh,&coords_mesh);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 void make_indirect_temperature_field(void)
 {
    SAF_FieldTmpl temp_mesh_ftmpl;  /* Handle to the field template on
                                     * the mesh. */
    SAF_Field temp_mesh,            /* Handle to the field on the mesh. */
              buf[2];
    void *pbuf = &buf[0];

    buf[0] = temp_d0;
    buf[1] = temp_d1;
    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL, db, "temp_on_mesh",    SAF_ALGTYPE_FIELD,
                           NULL, SAF_NOT_APPLICABLE_QUANTITY, SAF_NOT_APPLICABLE_INT, NULL, &temp_mesh_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     ---------------------------------------------------------------------------
     */

    saf_declare_field(SAF_ALL, db, &temp_mesh_ftmpl, "temperature", &mesh, SAF_NOT_APPLICABLE_UNIT,
                      &domains, SAF_NODAL(&nodes, &zones), SAF_HANDLE, NULL,
                      SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &temp_mesh);
    saf_write_field(SAF_ALL, &temp_mesh, SAF_WHOLE_FIELD, 1, H5I_INVALID_HID,
                    &pbuf, db);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	 void make_init_suite(void)
 {
    int index[1];
    float time[1];
    SAF_Unit usec;
    SAF_StateTmpl st_tmpl;
    SAF_FieldTmpl fld_tmpls[3];
    SAF_StateGrp state_grp;
    SAF_Field field_list[3];

    saf_find_one_unit(db, "second", &usec);

    /* create a suite for initial state (time step 0) */
    saf_declare_suite(SAF_ALL, db, "INIT_SUITE", &top, NULL, &suite);

    /* create a state template to define what types of fields will be stored at each state in this suite;
       this is defined by a list of field templates */

    fld_tmpls[0] = coords_ftmpl;
    fld_tmpls[1] = distfac_ftmpl;
    fld_tmpls[2] = temp1_ftmpl;

    saf_declare_state_tmpl (SAF_ALL, db, "INIT_SUITE_STATE_TMPL", 3, fld_tmpls, &st_tmpl);

    /* create a state group for this suite */
    saf_declare_state_group(SAF_ALL, db, "INIT_STATEGRP", &suite, &top, &st_tmpl, SAF_QTIME, &usec,
                            SAF_FLOAT, &state_grp);

    /* insert the following fields into the state for time step 0:
     *   coordinates on nodes of whole
     *   distribution factors on nodes of side_set_2
     *   temperature on nodes of node_set_1
     */

    index[0] = 0;

    time[0] = 0.0;

    field_list[0] = coords;
    field_list[1] = distfac;
    field_list[2] = temps1;

    saf_write_state (SAF_ALL, &state_grp, index[0], &top, SAF_FLOAT, time, field_list);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	 int *
 make_mesh_connectivity(int edge_ct_x,   /*number of edges in X direction*/
                        int edge_ct_y    /*number of edges in Y direction*/
                        )
 {
    SAF_ENTER(make_mesh_connectivity, NULL);

    int *node_ids;                 /* The node to element connectivity. */
    int node_ct_y = edge_ct_y + 1; /* Number of nodes in y. */
    int tri_ct = 0,                /* Number of triangles in mesh. */
        conn_idx = 0;              /* Index into connectivity array. */
    int i, j;

    /* Preconditions */

    SAF_REQUIRE(edge_ct_x > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the x direction"));
    SAF_REQUIRE(edge_ct_y > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the y direction"));

    /* Body */

    /* allocate node_ids as single index array,
     * but treat as node_ids[edge_ct_x][edge_ct_y][3]; */
    node_ids = (int*)malloc(edge_ct_x*edge_ct_y*2*3*sizeof(int));

    for(i = 0; i < edge_ct_x; i++)
    {
       for(j = 0; j < edge_ct_y; j++)
       {
          /* Each (i,j) pair is the lower-left-hand node in
           * a quad containing two triangles. */

          /* Connectivity for lower triangle in quad,
           * follow right-hand rule (ccw) starting
           * in llh corner of quad. */

          node_ids[conn_idx++] = NODE_ID(i,j);
          node_ids[conn_idx++] = NODE_ID(i+1, j);
          node_ids[conn_idx++] = NODE_ID(i, j+1);

          tri_ct++;


          /* Connectivity for upper triangle in quad,
           * follow right-hand rule (ccw) starting
           * in urh corner of quad. */

          node_ids[conn_idx++] = NODE_ID(i+1,j);
          node_ids[conn_idx++] = NODE_ID(i+1, j+1);
          node_ids[conn_idx++] = NODE_ID(i, j+1);

          tri_ct++;
       }
    }

    /* Postconditions */

    /* Exit */
   SAF_LEAVE(node_ids);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 void make_pressure_on_ss1_field(void)
 {
    SAF_Unit upsi;             /* Handle to the units for the pressure. */
    /* Made up pressure. */
    float pressure_dof_tuple[] = {45., 55.};
    void *dofs = &pressure_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL,  db,"pressure_on_ss1", SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_QNAME(db,"pressure"), 1, NULL,
                           &press_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                     (dofs specified in declare call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "psi", &upsi);

    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &press_ftmpl, "pressure", &ss1, &upsi, SAF_SELF(db),
                      SAF_ZONAL(&edges), H5T_NATIVE_FLOAT, NULL, SAF_INTERLEAVE_NONE,
                      SAF_IDENTITY, &dofs, &press);

    /* Write the field. */
    saf_write_field(SAF_ALL, &press, SAF_WHOLE_FIELD, 0, H5I_INVALID_HID, NULL, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	 void make_scalar_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh,
                        SAF_Cat *nodes, SAF_Cat *elems, SAF_Db *saf_file)
 {
    SAF_FieldTmpl scalar_ftmpl; /* Handle to the field template. */
    SAF_Field scalar;           /* Handle to the field. */
    SAF_Unit umeter;            /* Handle to the units of the field. */
    double *lscalar_dof_tuple;  /* The scalar field dofs. */

    /* Create the scalar field dofs. */
    lscalar_dof_tuple = make_scalar_field_dofs(edge_ct_x, edge_ct_y);

    /*
     ---------------------------------------------------------------------------
     *                          DECLARE FIELD TEMPLATE
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL, db, "at0_on_triangle_mesh_tmpl",
                            SAF_ALGTYPE_SCALAR, SAF_UNITY, SAF_QLENGTH, 1,
                            NULL, &scalar_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                          DECLARE AND WRITE FIELD
     *                       (buf specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Get the units for the field. */
    saf_find_one_unit(db, "meter", &umeter);

    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &scalar_ftmpl, "scalar field", mesh, &umeter,
                      SAF_SELF(db), SAF_NODAL(nodes, elems), SAF_DOUBLE,
                      NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL,
                      &scalar);

    /* Write the field. */
    saf_write_field(SAF_ALL, &scalar, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID,(void**)&lscalar_dof_tuple, saf_file);

    /* Free the dofs now that we are done with them. */
    free(lscalar_dof_tuple);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 double *
 make_scalar_field_dofs(int edge_ct_x,   /*number of edges in X direction*/
                        int edge_ct_y    /*number of edges in Y direction*/
                        )
 {
    SAF_ENTER(make_scalar_field_dofs, NULL);

    int node_ct_x = edge_ct_x+1,       /* Number of nodes in x direction. */
        node_ct_y = edge_ct_y+1,       /* Number of nodes in y direction. */
        dofs_ub = node_ct_x*node_ct_y, /* Number of dofs. */
        i, j, node_id;
    double delx = 1.0,                 /* X increment between nodes in x. */
           dely = 1.0,                 /* Y increment between nodes in y. */
           *dofs,                      /* The array of dofs. */
           x, y;                       /* Used to compute dofs. */

    /* Preconditions */

    SAF_REQUIRE(edge_ct_x > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the x direction"));
    SAF_REQUIRE(edge_ct_y > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the y direction"));

    /* Body */


    /* allocate dofs as single index array,
     * but treat as dofs[nx+1][ny+1][2]; */
    dofs = (double*)malloc(dofs_ub*sizeof(double));

    for(i = 0; i < node_ct_x; i++)
    {
       x = i*delx;
       for(j = 0; j < node_ct_y; j++)
       {
          y = j*dely;
          node_id = NODE_ID(i,j);
          dofs[node_id] = x*x + y*y;
       }
    }

    /* Postconditions */

    /* Exit */

    SAF_LEAVE(dofs);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	 void make_stress_field(int edge_ct_x, int edge_ct_y, SAF_Db *db,
                        SAF_Set *mesh, SAF_Cat *elems, SAF_Db *saf_file)
 {
    SAF_FieldTmpl stress_ftmpl, /* Handle to the stress field template. */
                  stress_ctmpl, /* Handle to the stress field's components'
                                 * field templates. */
                  tmp_ftmpl[3]; /* temporary field template handles for
                                 * component field templates. */
    SAF_Field stress,           /* Handle to the stress field. */
              stress_compon[3]; /* Handle to the stress field's components. */
    SAF_Unit upascal;           /* Handle to the units for this field. */
    double *lstress_dof_tuple;  /* The stress field dofs. */
    SAF_Quantity *qbuf=NULL;

    /* Create the stress field dofs. */
    lstress_dof_tuple = make_stress_field_dofs(edge_ct_x, edge_ct_y);

    /*
     ---------------------------------------------------------------------------
     *                          DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    qbuf = SAF_QNAME(db,"pressure");
    saf_declare_field_tmpl(SAF_ALL, db, "st2_ei_on_triangle_mesh",
                           SAF_ALGTYPE_SCALAR, SAF_UNITY,
                           qbuf, 1, NULL,
                           &stress_ctmpl);

    tmp_ftmpl[0] = stress_ctmpl;
    tmp_ftmpl[1] = stress_ctmpl;
    tmp_ftmpl[2] = stress_ctmpl;
    saf_declare_field_tmpl(SAF_ALL, db, "st2_e2_on_triangle_mesh",
                           SAF_ALGTYPE_SYMTENSOR, SAF_UPPERTRI,
                           qbuf, 3, tmp_ftmpl,
                           &stress_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                      (buf specified in declare call)
     ---------------------------------------------------------------------------
     */
    /* Get the units for the field. */
    saf_find_one_unit(db, "pascal", &upascal);

    /* Declare the fields. */
    saf_declare_field(SAF_ALL, db, &stress_ctmpl, "Sxx",           mesh, &upascal,
                      SAF_SELF(db), SAF_ZONAL(elems), SAF_DOUBLE,
                      NULL,          SAF_INTERLEAVE_NONE,   SAF_IDENTITY,
                      NULL,                        stress_compon);
    saf_declare_field(SAF_ALL, db, &stress_ctmpl, "Syy",           mesh, &upascal,
                      SAF_SELF(db), SAF_ZONAL(elems), SAF_DOUBLE,
                      NULL,          SAF_INTERLEAVE_NONE,   SAF_IDENTITY,
                      NULL,                        stress_compon+1);
    saf_declare_field(SAF_ALL, db, &stress_ctmpl, "Sxy",           mesh, &upascal,
                      SAF_SELF(db), SAF_ZONAL(elems), SAF_DOUBLE,
                      NULL,          SAF_INTERLEAVE_NONE,   SAF_IDENTITY,
                      NULL,                        stress_compon+2);
    saf_declare_field(SAF_ALL, db, &stress_ftmpl, "stress tensor", mesh, &upascal,
                      SAF_SELF(db), SAF_ZONAL(elems), SAF_DOUBLE,
                      stress_compon, SAF_INTERLEAVE_VECTOR, SAF_IDENTITY,
                      (void**)&lstress_dof_tuple, &stress);

    /* Write the field. */
    saf_write_field(SAF_ALL, &stress, SAF_WHOLE_FIELD, 0, H5I_INVALID_HID,NULL, saf_file);

    /* Free the dofs now that we are done with them. */
    free(lstress_dof_tuple);
    if (qbuf)free(qbuf);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	 double *
 make_stress_field_dofs(int edge_ct_x,   /*number of edges in X direction*/
                        int edge_ct_y    /*number of edges in Y direction*/
                        )
 {
     SAF_ENTER(make_stress_field_dofs, NULL);

     int dofs_ub = edge_ct_x*edge_ct_y*2*3, /* Number of dofs. */
        tri_ct = 0,                        /* Triangle counter. */
        i, j;
    double *dofs;                          /* The array of dofs. */

    /* Preconditions */

    SAF_REQUIRE(edge_ct_x > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the x direction"));
    SAF_REQUIRE(edge_ct_y > 0, SAF_LOW_CHK_COST, NULL,
                _saf_errmsg("there must be at least 1 edge in the y direction"));

    /* Body */

    /* allocate dofs as single index array,
     * but treat as dofs[edge_ct_x][edge_ct_y][3]; */
    dofs = (double*)malloc(dofs_ub*sizeof(double));

    for(i=0; i<edge_ct_x; i++)
    {
       for(j=0; j<edge_ct_y; j++)
       {
          /* Each (i,j) pair is the lower-left-hand node in
           * a quad containing two triangles. */

          /* Stress for lower triangle in quad, */

          dofs[3*tri_ct]   = tri_ct+0.0; /* xx component */
          dofs[3*tri_ct+1] = tri_ct+0.1; /* xy component */
          dofs[3*tri_ct+2] = tri_ct+0.2; /* yy component */

          tri_ct++;

          /* Stress for upper triangle in quad, */

          dofs[3*tri_ct]   = tri_ct+0.0; /* xx component */
          dofs[3*tri_ct+1] = tri_ct+0.1; /* xy component */
          dofs[3*tri_ct+2] = tri_ct+0.2; /* yy component */

          tri_ct++;
       }
    }

    /* Postconditions */

    /* Exit */

    SAF_LEAVE(dofs);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	 void make_stress_on_cell_1_field(void)
 {
    SAF_Unit upascal;           /* Handle to the units for the stress. */
    /* Made up stresses. */
    float stress_dof_tuple[] = {0.5, 0.25, 0.5,0.5, 0.25, 0.5,
                                0.5, 0.25, 0.5,0.5, 0.25, 0.5};
    void *dofs = &stress_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL,  db,"stress_on_cell_1_tmpl",
                           SAF_ALGTYPE_SCALAR, SAF_UNITY,
                           SAF_QNAME(db,"pressure"), 1, NULL,
                           &stress_ctmpl);

    tmp_ftmpl[0] = stress_ctmpl;
    tmp_ftmpl[1] = stress_ctmpl;
    tmp_ftmpl[2] = stress_ctmpl;
    saf_declare_field_tmpl(SAF_ALL,  db,"stress_on_cell_1_tmpl",
                           SAF_ALGTYPE_SYMTENSOR, SAF_UPPERTRI,
                           SAF_QNAME(db,"pressure"), 3, tmp_ftmpl,
                           &stress_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                     (dofs specified in declare call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "pascal", &upascal);

    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &stress_ctmpl, "Sx",     &cell_1, &upascal, SAF_SELF(db),
                      SAF_ZONAL(&elems), H5T_NATIVE_FLOAT, NULL,
                      SAF_INTERLEAVE_NONE, SAF_IDENTITY,
                      NULL, &(stress_compon[0]));
    saf_declare_field(SAF_ALL, db, &stress_ctmpl, "Sy",     &cell_1, &upascal, SAF_SELF(db),
                      SAF_ZONAL(&elems), H5T_NATIVE_FLOAT, NULL,
                      SAF_INTERLEAVE_NONE, SAF_IDENTITY,
                      NULL, &(stress_compon[1]));
    saf_declare_field(SAF_ALL, db, &stress_ctmpl, "Sxy",    &cell_1, &upascal, SAF_SELF(db),
                      SAF_ZONAL(&elems), H5T_NATIVE_FLOAT, NULL,
                      SAF_INTERLEAVE_NONE, SAF_IDENTITY,
                      NULL, &(stress_compon[2]));

    saf_declare_field(SAF_ALL, db, &stress_ftmpl, "stress", &cell_1, &upascal, SAF_SELF(db),
                      SAF_ZONAL(&elems), H5T_NATIVE_FLOAT, stress_compon,
                      SAF_INTERLEAVE_VECTOR, SAF_IDENTITY,
                      &dofs, &stress);


    /* Write the field. */
    saf_write_field(SAF_ALL, &stress, SAF_WHOLE_FIELD, 0, H5I_INVALID_HID, NULL, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	 void make_temperature_on_cell_2_field(void)
 {
    SAF_Unit ukelvin;          /* Handle to the units for the temperature. */
    /* Made up temperatures. */
    float temp2_dof_tuple[] = {75., 95., 120., 80., 115., 85., 110.};
    void *dofs = &temp2_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL,  db,"temp_on_cell_2_tmpl", SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_QTEMP, 1, NULL, &temp2_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                     (dofs specified in declare call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "kelvin",&ukelvin);

    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &temp2_ftmpl, "temperature", &cell_2, &ukelvin,
                      SAF_SELF(db), SAF_NODAL(&nodes, &elems), H5T_NATIVE_FLOAT,
                      NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, &dofs, &temps2);

    /* Write the field. */
    saf_write_field(SAF_ALL, &temps2, SAF_WHOLE_FIELD, 0, H5I_INVALID_HID, NULL, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	 void make_temperature_on_ns1_field(void)
 {
    SAF_Unit ukelvin;          /* Handle to the units for the temperature. */
    /* Made up temperatures. */
    float temp1_dof_tuple[] = {100., 150., 150., 100., 75.};
    void *dofs = &temp1_dof_tuple[0];
    /* More made up temperatures. */
    float new_temp1_dof_tuple[] = {375., 415., 225., 195., 150.};
    void *new_dofs = &new_temp1_dof_tuple[0];

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL,  db,"temp_on_ns1_tmpl", SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_QTEMP, 1, NULL, &temp1_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                      (dofs specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "kelvin", &ukelvin);

    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &temp1_ftmpl, "temperature", &ns1, &ukelvin,
                      SAF_SELF(db), SAF_NODAL(&nodes, &nodes), H5T_NATIVE_FLOAT,
                      NULL, SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &temps1);

    /* Write the field. */
    saf_write_field(SAF_ALL, &temps1, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID, &dofs, saf_file);

    /*
     ---------------------------------------------------------------------------
     *                             OVERWRITE FIELD
     ---------------------------------------------------------------------------
     */
    saf_write_field(SAF_ALL, &temps1, SAF_WHOLE_FIELD, 1,
                    H5I_INVALID_HID, &new_dofs, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	 void make_time_base_field(void)
 {
    SAF_FieldTmpl time_ftmpl; /* Handle to the time field template. */
    SAF_Field time_fld;       /* Handle to the time field. */
    SAF_Unit usec;
    /* Made up times. */
    float time_dof_tuple[] = {0.0,  1.4,  1.8,  2.35,
                              3.0,  3.01, 5.25, 6.1,
                              6.75, 8.0,  11.0};
    void *dofs = &time_dof_tuple[0];
    int members[3] = {0,0,1};

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE FIELD TEMPLATES
     ---------------------------------------------------------------------------
     */
    saf_declare_field_tmpl(SAF_ALL,  db,"time_on_time_base", SAF_ALGTYPE_SCALAR,
                           SAF_UNITY, SAF_QTIME, 1, NULL, &time_ftmpl);

    /*
     ---------------------------------------------------------------------------
     *                         DECLARE AND WRITE FIELDS
     *                      (dofs specified in write call)
     ---------------------------------------------------------------------------
     */
    /* Get a handle to the units for this field. */
    saf_find_one_unit(db, "second", &usec);

    /* Declare the field. */
    saf_declare_field(SAF_ALL, db, &time_ftmpl, "times", &time_base, &usec, SAF_SELF(db),
                      SAF_NODAL(&nodes, &nodes), H5T_NATIVE_FLOAT, NULL,
                      SAF_INTERLEAVE_NONE, SAF_IDENTITY, NULL, &time_fld);

    /* indicate this is a coordinate field for the time base */
    saf_declare_coords(SAF_ALL, &time_fld);
    saf_declare_default_coords(SAF_ALL, &time_base, &time_fld);

    /* Write part of the field--dofs on nodes 0-4. */
    members[0] = 0;  /* start at 0 */
    members[1] = 5;  /* count of 5 */
    saf_write_field(SAF_ALL, &time_fld, 5, SAF_HSLAB, members, 1,
                    H5I_INVALID_HID, &dofs, saf_file);

    /* Write the remainder of the field--dofs on nodes 5-10. */
    members[0] = 5;  /* start at 5 */
    members[1] = 6;  /* count of 6 */
    saf_write_field(SAF_ALL, &time_fld, 6, SAF_HSLAB, members, 1,
                    H5I_INVALID_HID, &dofs, saf_file);

    return;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

	 void make_time_suite(void)
 {
    int index[1];
    float time[1];

    SAF_Unit usec;
    /* SAF_Suite suite; */
    SAF_StateTmpl st_tmpl;
    SAF_FieldTmpl fld_tmpls[4];
    SAF_StateGrp state_grp;
    SAF_Field field_list[4];


    saf_find_one_unit(db, "second", &usec);

    /* create a suite for other states  */
    saf_declare_suite(SAF_ALL, db, "OTHER_SUITE", &top, NULL, &suite);

    /* create a state template to define what types of fields will be stored at each state in this suite;
       this is defined by a list of field templates */

    fld_tmpls[0] = coords_ftmpl;
    fld_tmpls[1] = stress_ftmpl;
    fld_tmpls[2] = temp2_ftmpl;
    fld_tmpls[3] = press_ftmpl;

    saf_declare_state_tmpl (SAF_ALL, db, "OTHER_SUITE_STATE_TMPL", 4, fld_tmpls, &st_tmpl);

    /* create a state field for this suite */
    saf_declare_state_group(SAF_ALL, db, "OTHER_STATEGRP", &suite, &top, &st_tmpl, SAF_QTIME, &usec,
                            SAF_FLOAT, &state_grp);

    /* insert the following fields into the states for time steps 0, 1, and 2:
     *   displacement vector on nodes of whole
     *   stress tensor on elements of cell_1
     *   temperature on nodes of cell_2
     *   pressure on elements of side_set_1
     */

    index[0] = 0;

    time[0] = 0.0;

    field_list[0] = disps;
    field_list[1] = stress;
    field_list[2] = temps2;
    field_list[3] = press;

    saf_write_state (SAF_ALL, &state_grp, index[0], &top, SAF_FLOAT, time, field_list);

    /* for this test, just write out the same fields (IDs) to the successive states;
     * in actual simulations, new fields will be created for each time step
     */

    index[0] = 1;

    time[0] = 0.001;

    field_list[0] = disps;
    field_list[1] = stress;
    field_list[2] = temps2;
    field_list[3] = press;

    saf_write_state (SAF_ALL, &state_grp, index[0], &top, SAF_FLOAT, time, field_list);

    index[0] = 2;

    time[0] = 0.002;

    field_list[0] = disps;
    field_list[1] = stress;
    field_list[2] = temps2;
    field_list[3] = press;

    saf_write_state (SAF_ALL, &state_grp, index[0], &top, SAF_FLOAT, time, field_list);

    return;
 }









          

      

      

    

  

    
      
          
            
  
Acknowledgements

Developers:


	Eric A. Illescas, (SNL)


	Jake S. Jones, (SNL)


	Robb P. Matzke (LLNL)


	Peter K. Espen (SNL)


	Mark C. Miller (LLNL)


	Larry A. Schoof (SNL)


	William J. Arrighi (LLNL)


	James F. Reus (LLNL)




Acknowledgements:


	Greg D. Sjaardema (SNL) - use case specifications




Copyright 1999-2005. The Regents of the University of California.

All Rights Reserved. This document has been authored by The Regents of
the University of California under Contract No. W-7405-ENG-48 with the
U.S.  Government.

Copyright 1999-2005. Sandia National Laboratories.

All rights reserved.

Disclaimer:

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California.  The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California
and shall not be used for advertising or product endorsement purposes.





          

      

      

    

  

    
      
          
            
  
Aggregation Properties

These are properties that have to do with two-phase I/O performed in SSlib for raw data when I/O operations
are collective. See ss_blob_set_2pio for details.





          

      

      

    

  

    
      
          
            
  
Asynchronous I/O

No description available.


Members



	ss_aio_init [Public function]

	ss_aio_finalize [Public function]

	ss_aio_write [Public function]

	ss_aio_suspend [Public function]

	ss_aio_error [Public function]

	ss_aio_hdf5_cb [Public function]











          

      

      

    

  

    
      
          
            
  
Blob Properties

These properties control how certain blob operations work.


	dcpl: An HDF5 dataset creation property list to be used by ss_blob_mkstorage when creating

	a new dataset.



	dset: If specified and positive then only blobs stored on this dataset

	are synchronized in a call to ss_blob_synchronize.



	name: If supplied, then ss_blob_mkstorage will create the dataset with the specified name

	in addition to linking it into the “Blob-Storage” group as usual.









          

      

      

    

  

    
      
          
            
  
File Properties

comm: The MPI communicator for the file.  The default is to use the library’s communicator.

info: The MPI info object for the file.  The default is to pass MPI_INFO_NULL.

fapl: The HDF5 file access property list to use when creating or opening a file. At a minimum, the caller
should specify the HDF5 virtual file driver that should be used.  The default is to use either the  ``sec2``
driver or the  mpiposix driver, depending on whether the file communicator has one MPI task or more than one.
However, if the use_mpiio property is set then the  mpiio virtual file driver is used by default when the file
communicator has more than one MPI task.

fcpl: The HDF5 file creation property list to be used when creating a new file.

hid: The HDF5 file handle to use instead of calling H5Fopen or H5Fcreate.  The file handle is not
duplicated by ss_file_open and therefore the caller should not call H5Fclose but rather relinquish control
of that file to SSlib, eventually closing the file with ss_file_close. The  fapl and  fcpl values are not
used if the file is already opened.

use_mpiio: If no file access property is supplied and SSlib was compiled with parallel support
and the file communicator has more than one MPI task, then the  mpiio virtual file driver (if supported)
will be used to access the file.





          

      

      

    

  

    
      
          
            
  
I/O

The functions of this programming interface deal with I/O to and from an HDF5 file. These are mostly for
non-table data such as application data for fields and relations. SSlib needs to support the following goals:


	Targeting: Data can be targeted for a specific architecture during write operations that create a new

	dataset. This is useful when data is created on one architecture and will be read repeatedly on another
architecture, allowing the data conversion price to be paid just once.



	Precision: The data precision can be changed during read/write operations by requesting that the size

	of datatypes in the file are different than those in memory. For example, when writing a plot file the
caller might supply  double values but desire them to be written as  float values.



	Task-Aggregation: When many tasks are contributing non-overlapping data for a single HDF5 dataset

	then it may be advantageous to do some message passing in order to aggregate the data to a smaller subset of
tasks where each one can contribute a larger aligned block of data to the file system.



	Field-Aggregation: Distinct fields and/or relations might want to share a single dataset in a

	non-overlapping manner in order to improve I/O performance. It should be up to the application how to
organized the data in the dataset.



	Sharing: Two or more fields or relations should be able to point to a common dataset if those fields or

	relations truly reference common data. Changing the data for one field or relation will also change the data
for the other fields or relations.



	Cross-file: We should be able to store raw data in an SSlib database other than the one holding the

	relation or field.



	Prewritten: It should be possible to point to field or relation data that was already written to a file by

	the client.





In order to get all this to work, SSlib relies heavily on HDF5 support and therefore exposes the HDF5 API to
the SSlib client.  This allows the client to make full use of HDF5 capabilities, but in many cases the client
would rather just let SSlib take care of all the storage details. These two competing design goals are handled
by SSlib blob persistent objects (not to be confused with the old VBT blobs which served a similar but much
simpler purpose).

A blob points to either a buffer in memory or part of a dataset in a file or both. When pointing to a dataset,
the dataset must always be in the same file as the blob itself.  An object such as a field in one SSlib file
can store raw data in some other SSlib file by linking to a blob defined in that second file.  All blob
datasets have names in the blob storage group of the top-level scope, and the names are the decimal
representation of the dataset object header address.  This accomplishes three goals: (1) any blob dataset can
be referred to with a single haddr_t value, (2) unique dataset names can be created with no communication, and
(3) all blob datasets can be discovered with just a couple HDF5 calls.

SSlib allows blobs to share datasets and the shared dataset. The dimensionality of a blob may be less than the
dimensionality of the dataset in which it lives allowing, for instance, one-dimensional blobs to be overlayed
as rows of a two-dimensional dataset. See ss_blob_bind_f and ss_blob_space for details.

Since dataset creation and opening in HDF5 is an operation that is collective across the file communicator,
many blob operations are also collective across that communicator.

Blobs cannot be associated with a transient scope since there is no underlying HDF5 file in which to store the
raw data.


Members



	ss_blob_new [Public function]

	ss_blob_bind_m [Public function]

	ss_blob_bind_m1 [Public function]

	ss_blob_bind_f [Public function]

	ss_blob_bind_f1 [Public function]

	ss_blob_bound_m [Public function]

	ss_blob_bound_m1 [Public function]

	ss_blob_bound_f [Public function]

	ss_blob_bound_f1 [Public function]

	ss_blob_space [Public function]

	ss_blob_mkstorage [Public function]

	ss_blob_extend [Public function]

	ss_blob_extend1 [Public function]

	ss_blob_read [Public function]

	ss_blob_read1 [Public function]

	ss_blob_write [Public function]

	ss_blob_write1 [Public function]

	ss_blob_synchronize [Public function]

	ss_blob_flush [Public function]

	ss_blob_set_2pio [Public function]

	ss_blob_get_2pio [Public function]











          

      

      

    

  

    
      
          
            
  
Persistent Object Properties


	noregistry: If set to a non-zero value then a call to ss_pers_find will search only in the specified

	scope and not any registry scopes.



	detect_overflow: If true then a find operation will fail if the number of objects found is greater than

	the limit imposed by the caller of ss_pers_find.









          

      

      

    

  

    
      
          
            
  	1

	 #define H5F_ACC_TRANSIENT       0x01000000









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 #define H5T_NATIVE_SIZE                 ss_hdf5_init1(&ss_hdf5_native_size_g)
 #define H5T_NATIVE_HID                  ss_hdf5_init1(&ss_hdf5_native_hid_g)
 #define H5T_NATIVE_VOIDP                ss_hdf5_init1(&ss_hdf5_native_voidp_g)
 #define H5T_NATIVE_MPI_COMM             ss_hdf5_init1(&ss_hdf5_native_mpi_comm_g)
 #define H5T_NATIVE_MPI_INFO             ss_hdf5_init1(&ss_hdf5_native_mpi_info_g)









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 int
 H5Tcmp(hid_t t1, hid_t t2)
 {
     SS_ENTER(H5Tcmp, int);

     void        *dt1=NULL, *dt2=NULL;
     int         retval=-2;
     extern void *H5I_object_verify(hid_t, H5I_type_t);
     extern int H5T_cmp(void*, void*);

     SS_RETVAL(-2);

     /* Issue: This function calls internal HDF5 functions for which we have no prototypes. */
     if (NULL==(dt1=H5I_object_verify(t1, H5I_DATATYPE)) || NULL==(dt2=H5I_object_verify(t2, H5I_DATATYPE)))
         SS_ERROR(HDF5);
     retval = H5T_cmp(dt1, dt2);

 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1

	 #define SAF_SROLE_ANY   ((ss_silrole_t)(-1))









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8
9

	 #define SS_ALLSAME              0x00010000              /* All applicable tasks are supplying identical data or performing the
                                                          * same operation.  For instance, in a call to ss_pers_new() this
                                                          * indicates that the new object can be "born synchronized" because
                                                          * all tasks will have the same value for the object without needing
                                                          * to communicate. Absence of this bit simply means that different
                                                          * tasks might be supplying different data but doesn't guarantee that
                                                          * the data is different. (Note: this value must be distinct from TRUE,
                                                          * but don't worry, it's checked at runtime.) */
 #define SS_STRICT               0x00020000              /* Flag that causes certain functions to "try harder" to do something */









          

      

      

    

  

    
      
          
            
  	1
2

	 #define SSLIB_DEBUG     0       /* See ss_debug_env() for details */
 #define SSLIB_2PIO      0       /* See ss_blob_set_2pio() for details */









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 #define SS_ASSERT_CLASS(_obj_,_cls_) do {                                                                                      \
     if (!(_obj_) || SS_MAGIC_CLASS(SS_MAGIC_OF(_obj_))!=SS_MAGIC_CLASS(SS_MAGIC(_cls_)))                                       \
         SS_ERROR_FMT(TYPE, ("%s should be class %s", #_obj_, #_cls_))                                                          \
 } while (false);









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 #define SS_ASSERT_MEM(_obj_,_type_) do {                                                                                       \
     SS_ASSERT_TYPE(_obj_,_type_);                                                                                              \
     if (NULL==ss_pers_deref((ss_pers_t*)_obj_)) SS_ERROR_FMT(TYPE, ("%s should be loadable", #_obj_));                         \
 } while (false)









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 #define SS_ASSERT_TYPE(_obj_,_type_) do {                                                                                       \
     if (!(_obj_) || SS_MAGIC_OF(_obj_)!=SS_MAGIC(_type_))                                                                       \
         SS_ERROR_FMT(TYPE, ("%s should be type %s", #_obj_, #_type_))                                                           \
 } while (false)









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5

	 #define SS_CHECKING(_what_) {                                                                                                  \
     int         _failed_checks=0; /*positive implies failure; negative implies skips*/                                         \
     const char *_what = _what_;                                                                                                \
     if (_print) fprintf(_print, "\n%s checking %s...\n", __FUNCTION__,  _what_);                                               \
     do {









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 #define SS_END_CHECKING                                                                                                        \
     } while (false);                                                                                                           \
     if (!_failed_checks && _print) {                                                                                           \
         fprintf(_print, "passed:  %-100s PASSED\n", _what);                                                                    \
     }                                                                                                                          \
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 #define SS_END_CHECKING_WITH(_code_)                                                                                           \
     } while (false);                                                                                                           \
     if (!_failed_checks) {                                                                                                     \
         if (_print) fprintf(_print, "passed:  %-100s PASSED\n", _what);                                                        \
     } else if (_failed_checks<0) {                                                                                             \
         /* do nothing when skipping a test */                                                                                  \
     } else {                                                                                                                   \
         _code_;                                                                                                                \
     }                                                                                                                          \
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 #define SS_FAILED                                                                                                              \
     {                                                                                                                          \
         _failed_checks++;                                                                                                      \
         if (_print) fprintf(_print, "failed:  %-97s ***FAILED***\n", _what);                                                  \
         break; /* out of SS_CHECKING `do' loop */                                                                              \
     }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 #define SS_FAILED_WHEN(_mesg_)                                                                                                 \
     {                                                                                                                          \
         _failed_checks++;                                                                                                      \
         if (_print)                                                                                                            \
             fprintf(_print, "failed:  %s [%s]%*s ***FAILED***\n", _what, _mesg_,                                               \
                     (int)(94-MIN(94, strlen(_what)+strlen(_mesg_))), "");                                                    \
         break; /* out of SS_CHECKING `do' loop */                                                                              \
     }









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAGIC(_type_)        SS_MAGIC_##_type_









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAGIC_CLASS(M)       ((M) & 0xfffff000)









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAGIC_CONS(C,S)      (SS_MAGIC_CLASS(C)|SS_MAGIC_SEQUENCE(S))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAGIC_OF(OBJ)        ((OBJ)?*(const unsigned int*)(OBJ):(unsigned int)0)









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAGIC_OK(M)          (0x5af00000==((M)&0xfff00000))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAGIC_SEQUENCE(M)    ((M) & 0x00000fff)









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 #define SS_MAGIC_ss_prop_t              0x5af01000
 #define SS_MAGIC_ss_table_t             0x5af01001
 #define SS_MAGIC_ss_string_table_t      0x5af01002
 #define SS_MAGIC_ss_gblob_t             0x5af01003









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 #define SS_MAGIC_ss_pers_t              0x5af02000      /* just the class part */
 #define SS_MAGIC_ss_scope_t             0x5af02000
 #define SS_MAGIC_ss_field_t             0x5af02001
 #define SS_MAGIC_ss_role_t              0x5af02002
 #define SS_MAGIC_ss_basis_t             0x5af02003
 #define SS_MAGIC_ss_algebraic_t         0x5af02004
 #define SS_MAGIC_ss_evaluation_t        0x5af02005
 #define SS_MAGIC_ss_relrep_t            0x5af02006
 #define SS_MAGIC_ss_quantity_t          0x5af02007
 #define SS_MAGIC_ss_unit_t              0x5af02008
 #define SS_MAGIC_ss_cat_t               0x5af02009
 #define SS_MAGIC_ss_collection_t        0x5af0200a
 #define SS_MAGIC_ss_set_t               0x5af0200b
 #define SS_MAGIC_ss_rel_t               0x5af0200c
 #define SS_MAGIC_ss_fieldtmpl_t         0x5af0200d
 #define SS_MAGIC_ss_tops_t              0x5af0200e
 #define SS_MAGIC_ss_blob_t              0x5af0200f
 #define SS_MAGIC_ss_indexspec_t         0x5af02010
 #define SS_MAGIC_ss_file_t              0x5af02011
 #define SS_MAGIC_ss_attr_t              0x5af02012









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 #define SS_MAGIC_ss_persobj_t           0x5af03000      /* just the class part */
 #define SS_MAGIC_ss_scopeobj_t          0x5af03000
 #define SS_MAGIC_ss_fieldobj_t          0x5af03001
 #define SS_MAGIC_ss_roleobj_t           0x5af03002
 #define SS_MAGIC_ss_basisobj_t          0x5af03003
 #define SS_MAGIC_ss_algebraicobj_t      0x5af03004
 #define SS_MAGIC_ss_evaluationobj_t     0x5af03005
 #define SS_MAGIC_ss_relrepobj_t         0x5af03006
 #define SS_MAGIC_ss_quantityobj_t       0x5af03007
 #define SS_MAGIC_ss_unitobj_t           0x5af03008
 #define SS_MAGIC_ss_catobj_t            0x5af03009
 #define SS_MAGIC_ss_collectionobj_t     0x5af0300a
 #define SS_MAGIC_ss_setobj_t            0x5af0300b
 #define SS_MAGIC_ss_relobj_t            0x5af0300c
 #define SS_MAGIC_ss_fieldtmplobj_t      0x5af0300d
 #define SS_MAGIC_ss_topsobj_t           0x5af0300e
 #define SS_MAGIC_ss_blobobj_t           0x5af0300f
 #define SS_MAGIC_ss_indexspecobj_t      0x5af03010
 #define SS_MAGIC_ss_fileobj_t           0x5af03011
 #define SS_MAGIC_ss_attrobj_t           0x5af03012









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAX_BASEQS           7       /* Number of basic quantities */









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_MAX_INDEXDIMS        8       /* Maximum dimensionality of an IndexSpec */









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 #define SS_MINOR_ASSERT   ss_err_init1(&ss_minor_assert_g,   "assertion failed")                /*assertion failed*/
 #define SS_MINOR_CONS     ss_err_init1(&ss_minor_cons_g,     "constructor failed")              /*constructor failed*/
 #define SS_MINOR_CORRUPT  ss_err_init1(&ss_minor_corrupt_g,  "possible file corruption")        /*file file corruption*/
 #define SS_MINOR_DOMAIN   ss_err_init1(&ss_minor_domain_g,   "value outside valid domain")      /*value outside valid domain*/
 #define SS_MINOR_EXISTS   ss_err_init1(&ss_minor_exists_g,   "already exists")                  /*already exists*/
 #define SS_MINOR_FAILED   ss_err_init1(&ss_minor_failed_g,   "operation failed")                /*a catch-all*/
 #define SS_MINOR_HDF5     ss_err_init1(&ss_minor_hdf5_g,     "HDF5 call failed")                /*HDF5 call failed*/
 #define SS_MINOR_INIT     ss_err_init1(&ss_minor_init_g,     "not initialized")                 /*not initialized*/
 #define SS_MINOR_MPI      ss_err_init1(&ss_minor_mpi_g,      "MPI call failed")                 /*MPI call failed*/
 #define SS_MINOR_NOTFOUND ss_err_init1(&ss_minor_notfound_g, "not found")                       /*not found*/
 #define SS_MINOR_NOTIMP   ss_err_init1(&ss_minor_notimp_g,   "not implemented")                 /*not implemented*/
 #define SS_MINOR_NOTOPEN  ss_err_init1(&ss_minor_notopen_g,  "not open")                        /*not open*/
 #define SS_MINOR_OVERFLOW ss_err_init1(&ss_minor_overflow_g, "arithmetic or buffer overflow")   /*arithmetic or buffer overflow*/
 #define SS_MINOR_PERM     ss_err_init1(&ss_minor_perm_g,     "not permitted")                   /*not permitted*/
 #define SS_MINOR_RESOURCE ss_err_init1(&ss_minor_resource_g, "insufficient resources")          /*insufficient resources*/
 #define SS_MINOR_SKIPPED  ss_err_init1(&ss_minor_skipped_g,  "operation skipped by request")    /*operation skipped by request*/
 #define SS_MINOR_TYPE     ss_err_init1(&ss_minor_type_g,     "bad datatype")                    /*bad datatype*/
 #define SS_MINOR_USAGE    ss_err_init1(&ss_minor_usage_g,    "incorrect usage or bad arguments")/*incorrect usage*/









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_COPY(_old_,_scope_,_flags_) ((void*)ss_pers_copy((ss_pers_t*)(_old_), _scope_, _flags_, NULL, NULL))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_DEST(_pers_) (ss_pers_dest((ss_pers_t*)_pers_), SS_STATUS_OK, NULL)









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_EQ(link1, link2) ss_pers_eq((ss_pers_t*)link1, (ss_pers_t*)link2)









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_EQUAL(link1,link2) ss_pers_equal((ss_pers_t*)link1, (ss_pers_t*)link2, NULL)









          

      

      

    

  

    
      
          
            
  	1
2

	 #define SS_PERS_FIND(scope, key, mask, limit, nfound)                                                                          \
     (((nfound)=(limit)), (void*)ss_pers_find((scope), (ss_pers_t*)(key), (ss_persobj_t*)(mask), 0, &(nfound), NULL, NULL))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_ISNULL(_pers_) (SS_PERS_LINK_NULL==ss_pers_link_state(_pers_))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_MODIFIED(_pers_,_flags_) ss_pers_modified((ss_pers_t*)(_pers_), (_flags_))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_NEW(_scope_,_type_,_flags_) ((_type_*)ss_pers_new(_scope_,SS_MAGIC(_type_),NULL,_flags_,NULL,NULL))









          

      

      

    

  

    
      
          
            
  	1

	 #define SS_PERS_UNIQUE(_pers_) ss_pers_unique((ss_pers_t*)(_pers_))









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 #define SS_SKIPPED                                                                                                             \
     {                                                                                                                          \
         _failed_checks=-1;                                                                                                     \
         if (_print) fprintf(_print, "skipped: %-107s  --SKIPPED--\n", _what);                                                  \
         break; /* out of SS_CHECKING `do' loop */                                                                              \
     }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 #define SS_SKIPPED_WHEN(_mesg_)                                                                                                \
     {                                                                                                                          \
         _failed_checks=-1;                                                                                                     \
         if (_print)                                                                                                            \
             fprintf(_print, "skipped: %s [%s]%*s  --SKIPPED--\n", _what, _mesg_,                                               \
                     (int)(104-MIN(104, strlen(_what)+strlen(_mesg_))), "");                                                    \
         break; /* out of SS_CHECKING `do' loop */                                                                              \
     }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 int
 ss_aio_error(ss_aio_t *aio)
 {
 #if defined(SSLIB_ASYNC_AIO)
     return aio_error(aio);
 #elif defined(SSLIB_ASYNC_THREADS)
     return aio->errnum;
 #else
     return aio->errnum;
 #endif
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 herr_t
 ss_aio_finalize(void)
 {
     SS_ENTER(ss_aio_finalize, herr_t);

 #ifdef SSLIB_ASYNC_THREADS
     if (ss_aio_g.handler_started) {
         int en;
         pthread_mutex_lock(&(ss_aio_g.mutex));
         ss_aio_g.do_exit = 1;
         pthread_cond_signal(&(ss_aio_g.cond));
         pthread_mutex_unlock(&(ss_aio_g.mutex));

         en = pthread_join(ss_aio_g.handler, NULL);
         if (en) SS_ERROR_FMT(FAILED, ("pthread_join failed: %s", strerror(en)));
     }
 SS_CLEANUP:
 #endif
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 herr_t
 ss_aio_hdf5_cb(int fd, hid_t dxpl, haddr_t addr, size_t size, const void *buf)
 {
     SS_ENTER(ss_aio_hdf5_cb, herr_t);
     ss_aio_t    *req;
     int         retval=0;

     if (H5Pget(dxpl, "async_req", &req)<0) SS_ERROR_FMT(HDF5, ("no async_req property"));
     if (!req || req->aio_buf!=buf) {
         retval = -1; /* cause HDF5 to process request synchronously, but this is not an error condition */
         goto done;
     }
     req->aio_fildes = fd;
     req->aio_offset = addr;
     req->aio_nbytes = size;
     if (ss_aio_write(req)>=0) {
         req = NULL;
         H5Pset(dxpl, "async_req", &req);
     }

 done:
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	 herr_t
 ss_aio_init(void)
 {
     SS_ENTER_INIT;

 #if defined(SSLIB_ASYNC_AIO)
     if (0==ss_mpi_comm_rank(sslib_g.comm))
         fprintf(sslib_g.warnings, "SSlib: using POSIX AIO for asynchronous I/O\n");
 #elif defined(SSLIB_ASYNC_THREADS)
     int         en;

     if (0==ss_mpi_comm_rank(sslib_g.comm))
         fprintf(sslib_g.warnings, "SSlib: using POSIX threads for asynchronous I/O\n");

     /* Initialize global data structures */
     memset(&ss_aio_g, 0, sizeof ss_aio_g);
     pthread_mutex_init(&(ss_aio_g.mutex), NULL);
     pthread_cond_init(&(ss_aio_g.cond), NULL);

     /* Start handler thread */
     en = pthread_create(&(ss_aio_g.handler), NULL, ss_aio_handler_cb, NULL);
     if (en) SS_ERROR_FMT(FAILED, ("pthread_created failed: %s", strerror(en)));
     ss_aio_g.handler_started = TRUE;
 SS_CLEANUP:
 #else
     if (0==ss_mpi_comm_rank(sslib_g.comm))
         fprintf(sslib_g.warnings, "SSlib: faking asynchronous I/O\n");
 #endif
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 herr_t
 ss_aio_suspend(ss_aio_t UNUSED **aio, size_t UNUSED nreq)
 {
     SS_ENTER(ss_aio_suspend, herr_t);

 #if defined(SSLIB_ASYNC_AIO)
     if (aio_suspend(aio, (int)nreq, NULL)<0)
         SS_ERROR_FMT(FAILED, ("aio_suspend failed: %s", strerror(errno)));
 SS_CLEANUP:
 #elif defined(SSLIB_ASYNC_THREADS)
     size_t              i;
     for (i=0; i<nreq; i++) {
         pthread_mutex_lock(&(aio[i]->in_progress));
         pthread_mutex_unlock(&(aio[i]->in_progress));
     }
 #else
     /* Nothing to do for faked async I/O */
 #endif
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	 herr_t
 ss_aio_write(ss_aio_t *aio)
 {
     SS_ENTER(ss_aio_write, herr_t);

 #if defined(SSLIB_ASYNC_AIO)
     if (aio_write(aio)<0)
         SS_ERROR_FMT(FAILED, ("aio_write failed: %s", strerror(errno)));
 SS_CLEANUP:

 #elif defined(SSLIB_ASYNC_THREADS)
     hbool_t locked=FALSE;

     /* Initialize the aio control struct */
     aio->errnum = EINPROGRESS;
     pthread_mutex_init(&(aio->in_progress), NULL);
     pthread_mutex_lock(&(aio->in_progress));

     /* Append the new request to the queue */
     pthread_mutex_lock(&(ss_aio_g.mutex));
     locked = TRUE;
     if (ss_aio_g.nused>=ss_aio_g.nalloc)
         SS_EXTEND(ss_aio_g.req, MAX(64,ss_aio_g.nused+1), ss_aio_g.nalloc);
     ss_aio_g.req[ss_aio_g.nused++] = aio;
     pthread_cond_signal(&(ss_aio_g.cond));
     pthread_mutex_unlock(&(ss_aio_g.mutex));
 SS_CLEANUP:
     if (locked) pthread_mutex_unlock(&(ss_aio_g.mutex));

 #else
     size_t size = aio->aio_nbytes;
     char *buf = aio->aio_buf;
     if (lseek(aio->aio_fildes, aio->aio_offset, SEEK_SET)<0)
         SS_ERROR_FMT(FAILED, ("lseek failed: %s", strerror(errno)));
     while (size>0) {
         ssize_t n = write(aio->aio_fildes, buf, size);
         if (n<0 && EINTR==errno) continue;
         if (n<0) {
             aio->errnum = errno;
             SS_ERROR_FMT(FAILED, ("write failed: %s", strerror(errno)));
         }
         size -= (size_t)n;
         buf += n;
     }
     if (0==size) aio->errnum = 0;
 SS_CLEANUP:
 #endif

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 void *
 ss_array_get(ss_array_t *array,                 /* Array from which to retrieve data. */
              hid_t mtype,                       /* Datatype for memory. Pass ss_pers_tm (or preferably negative) for an array
                                                  * of persistent object links. */
              size_t offset,                     /* First element to be returned. It is an error to specify a starting element
                                                  * that is outside the valid range of values defined for the array. */
              size_t nelmts,                     /* Number of elements to return.  The OFFSET and NELMTS define a range of
                                                  * elements to be returned. If the range extends beyond the end of the defined
                                                  * range of elements for ARRAY then an error is raised; but if NELMTS is the
                                                  * constant SS_NOSIZE then all elements up to and including the last element
                                                  * are returned. */
              void *buffer                       /* The optional caller-supplied buffer to be filled in by the request. If the
                                                  * caller didn't supply a buffer then one will be created. */
              )
 {
     SS_ENTER(ss_array_get, ss_pers_tP);
     size_t      mtype_size;                     /* Size of each array element in memory. */

     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));

     /* Check requested range of values against those currently defined for the array */
     if (offset>array->nelmts)
         SS_ERROR_FMT(DOMAIN, ("starting offset %lu but array has only %lu elements",
                               (unsigned long)offset, (unsigned long)(array->nelmts)));
     if (SS_NOSIZE==nelmts) {
         nelmts = array->nelmts - offset;
     } else if (offset+nelmts>array->nelmts) {
         SS_ERROR_FMT(DOMAIN, ("requested elements %lu through %lu but array has only %lu elements",
                               (unsigned long)offset, (unsigned long)(offset+nelmts-1), (unsigned long)(array->nelmts)));
     }
     if (0==nelmts) {
         if (!buffer && NULL==(buffer=malloc(1))) SS_ERROR(RESOURCE);
         goto done;
     }

     /* Make sure data has been converted to memory format. */
     if (ss_array_cache(array, mtype)<0) SS_ERROR(FAILED);

     /* Copy data into return value */
     if (0==(mtype_size=H5Tget_size(mtype>0?mtype:ss_pers_tm))) SS_ERROR(HDF5);
     if (!buffer && NULL==(buffer=malloc(nelmts*mtype_size))) SS_ERROR(RESOURCE);
     memcpy(buffer, (char*)(array->mbuf)+offset*mtype_size, nelmts*mtype_size);

 done:
 SS_CLEANUP:
     SS_LEAVE(buffer);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 size_t
 ss_array_nelmts(const ss_array_t *array)
 {
     SS_ENTER(ss_array_nelmts, size_t);

     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));

 SS_CLEANUP:
     SS_LEAVE(array->nelmts);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 herr_t
 ss_array_put(ss_array_t *array,                 /* The array whose value will be modified. */
              hid_t mtype,                       /* The datatype of the values pointed to by VALUE. If the array contains
                                                  * persistent object links then pass ss_pers_tm (or preferably negative). */
              size_t offset,                     /* The array element number at which to put VALUE. */
              size_t nelmts,                     /* The number of array elements in VALUE. If this is the constant SS_NOSIZE
                                                  * then we assume that VALUE contains enough data to fill up the current size
                                                  * of the array beginning at the specified OFFSET. */
              const void *value                  /* The value to be written into the array. */
              )
 {
     SS_ENTER(ss_array_put, herr_t);
     size_t      mtype_size=0;                   /* Size of MTYPE in bytes */

     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));

     /* Check requested range of elements against those defined for the array */
     if (offset>array->nelmts)
         SS_ERROR_FMT(DOMAIN, ("starting offset %lu but array has only %lu elements",
                               (unsigned long)offset, (unsigned long)(array->nelmts)));
     if (SS_NOSIZE==nelmts) nelmts = array->nelmts - offset;
     if (offset+nelmts>array->nelmts)
         SS_ERROR_FMT(DOMAIN, ("elements %lu through %lu selected but array has only %lu elements",
                               (unsigned long)offset, (unsigned long)(offset+nelmts-1), (unsigned long)(array->nelmts)));

     /* Make sure array values are in memory. */
     /* ISSUE: there really isn't any point in actually converting the existing values to memory format and initializing the
      *        array's mbuf if we're about to overwrite the whole thing anyway. */
     if (ss_array_cache(array, mtype)<0) SS_ERROR(FAILED);

     /* Copy data from client into array */
     if (0==(mtype_size=H5Tget_size(array->mtype>0?array->mtype:ss_pers_tm))) SS_ERROR(HDF5);
     memcpy((char*)(array->mbuf)+offset*mtype_size, value, nelmts*mtype_size);
     array->dirty = TRUE;

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 herr_t
 ss_array_reset(ss_array_t *array)
 {
     SS_ENTER(ss_array_reset, herr_t);
     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));
     if (ss_string_reset(&(array->fbuf))<0) SS_ERROR(HDF5);
     if (ss_string_reset(&(array->enc_ftype))<0) SS_ERROR(HDF5);
     if (array->mtype>0) H5Tclose(array->mtype);
     if (array->ftype>0) H5Tclose(array->ftype);
     SS_FREE(array->mbuf);
     array->dirty = TRUE;
     memset(array, 0, sizeof(*array));

  SS_CLEANUP:
     if (array) memset(array, 0, sizeof(*array));
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 herr_t
 ss_array_resize(ss_array_t *array,              /* Array whose size is to be changed. */
                 size_t nelmts                   /* Number of total elements to be contained in the array. */
                 )
 {
     SS_ENTER(ss_array_resize, herr_t);
     size_t              mtype_size;             /* Size of each array element in memory (i.e., in `mbuf') */

     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));
     if (array->nelmts==nelmts) goto done;

     /* Extend the memory buffer with zeros */
     if (array->mbuf && nelmts>array->nelmts) {
         mtype_size = H5Tget_size(array->mtype>0 ? array->mtype : ss_pers_tm);
         if (NULL==(array->mbuf=realloc(array->mbuf, nelmts*mtype_size))) SS_ERROR(RESOURCE);
         memset((char*)(array->mbuf)+array->nelmts*mtype_size, 0, (nelmts-array->nelmts)*mtype_size);
     }

     /* Mark as dirty so that the `fbuf' string gets updated */
     array->nelmts = nelmts;
     array->dirty = TRUE;

 done:
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 herr_t
 ss_array_target(ss_array_t *array,              /* Array whose datatype is to be modified. */
                 hid_t ftype                     /* Datatype of the array elements as stored in the file. */
                 )
 {
     SS_ENTER(ss_array_target, herr_t);

     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));
     if (ftype<=0 || H5Tequal(ftype, ss_pers_tf)) ftype = 0;

     if ((!ftype && array->ftype) ||
         (ftype && !array->ftype) ||
         (ftype && !H5Tequal(ftype, array->ftype))) {
         /* New type is different than old type */
         if (array->nelmts>0) SS_ERROR_FMT(USAGE, ("cannot retarget a non-empty array"));
         if (array->ftype>0) H5Tclose(array->ftype);
         array->ftype = ftype ? H5Tcopy(ftype) : 0;
         array->dirty = TRUE; /*because array->ftype is newer than array->enc_ftype*/
     }

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 hid_t
 ss_array_targeted(ss_array_t *array)
 {
     SS_ENTER(ss_array_targeted, hid_t);
     hid_t retval=-1;

     if (!array) SS_ERROR_FMT(USAGE, ("no ss_array_t supplied"));
     if ((retval=H5Tcopy(array->ftype?array->ftype:ss_pers_tf))<0) SS_ERROR(FAILED);
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 size_t
 ss_attr_count(ss_pers_t *owner,
               const char *name
               )
 {
     SS_ENTER(ss_attr_count, size_t);
     size_t      retval;

     if (NULL==ss_attr_find(owner, name, 0, SS_NOSIZE, &retval, SS_PERS_TEST)) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 const char *
 ss_attr_describe(ss_attr_t *attr,               /* The attribute to be described. */
                  ss_pers_t *owner,              /* OUT: Optional object to which attribute belongs. */
                  hid_t *type,                   /* OUT: Optional datatype of attribute data. The caller should invoke
                                                  * H5Tclose() when this is no longer needed. */
                  size_t *nelmts                 /* OUT: Optional number of elements stored by the attribute. */
                  )
 {
     SS_ENTER(ss_attr_describe, const_charP);
     const char *retval=NULL;

     SS_ASSERT_MEM(attr, ss_attr_t);

     if (owner) *owner = SS_ATTR(attr)->owner;
     if (type && (*type=ss_array_targeted(SS_ATTR_P(attr,value)))<0) SS_ERROR(FAILED);
     if (nelmts && (SS_NOSIZE==(*nelmts=ss_array_nelmts(SS_ATTR_P(attr,value))))) SS_ERROR(FAILED);
     if (NULL==(retval=ss_string_ptr(SS_ATTR_P(attr,name)))) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	 ss_attr_t *
 ss_attr_find(ss_pers_t *owner,                  /* The object for which we're searching for attributes. */
              const char *name,                  /* An optional attribute name on which to restrict the search. */
              size_t nskip,                      /* Skip the first SKIP matching attributes. */
              size_t maxret,                     /* Return at most MAXRET matching attributes. If the caller passes SS_NOSIZE
                                                  * then all matching attributes are returned. If more than MAXRET attributes
                                                  * could be returned the remainder are simply discarded.  If RESULT is
                                                  * non-null then this argument should reflect the size of that array. */
              size_t *nret,                      /* OUT: The number of attributes stored in the returned array of links. */
              ss_attr_t *result                  /* An optional buffer in which to store links to the matching attributes. If
                                                  * supplied, this will be the successful return value. The constant
                                                  * SS_PERS_TEST can be supplied in order to prevent the library from
                                                  * allocating a return value (this is useful if the caller simply wants to
                                                  * count the matches). */
              )
 {
     SS_ENTER(ss_attr_find, ss_attr_tP);
     static ss_attr_t    *key;                   /* Key of values to use when searching the attribute table */
     ss_attrobj_t        mask;                   /* What parts of KEY are significant and how? */
     ss_scope_t          scope=SS_SCOPE_NULL;    /* The scope containing OWNER */

     SS_ASSERT_CLASS(owner, ss_pers_t);
     if (!nret) SS_ERROR_FMT(USAGE, ("NRET argument was null"));
     if (NULL==ss_pers_scope(owner, &scope)) SS_ERROR(FAILED);

     /* Create or reset key and mask */
     memset(&mask, 0, sizeof mask);
     if (!key && NULL==(key=SS_PERS_NEW(sslib_g.temp.tscope, ss_attr_t, 0))) {
         SS_ERROR(FAILED);
     } else if (ss_pers_reset((ss_pers_t*)key, 0)<0) {
         SS_ERROR(FAILED);
     }

     /* Initialize key and mask with values for which to search */
     SS_ATTR(key)->owner = *owner;
     memset(&(mask.owner), SS_VAL_CMP_DFLT, 1);
     if (name) {
         ss_string_set(SS_ATTR_P(key,name), name);
         memset(&(mask.name), SS_VAL_CMP_DFLT, 1);
     }

     /* Search */
     *nret = maxret;
     if (NULL==(result=(ss_attr_t*)ss_pers_find(&scope, (ss_pers_t*)key, (ss_persobj_t*)&mask, nskip, nret,
                                                (ss_pers_t*)result, NULL))) {
         SS_ERROR(FAILED);
     }

 SS_CLEANUP:
     if (nret) *nret = 0;
     SS_LEAVE(result);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	 void *
 ss_attr_get(ss_attr_t *attr,                    /* The attribute in question. */
             hid_t type,                         /* The desired datatype of the returned value. */
             size_t offset,                      /* The first element of the value to return (an element index, not byte index) */
             size_t nelmts,                      /* The total number of elements to return. If the OFFSET and NELMTS arguments
                                                  * describe a range of elements that is outside that which is known to the
                                                  * attribute then an error is raised. If NELMTS is SS_NOSIZE then the number
                                                  * of returned values is not limited (except perhaps by the non-zero OFFSET). */
             void *buffer                        /* The optional buffer in which to store the returned values. */
             )
 {
     SS_ENTER(ss_attr_get, voidP);

     SS_ASSERT_MEM(attr, ss_attr_t);
     if (NULL==(buffer=ss_array_get(SS_ATTR_P(attr,value), type, offset, nelmts, buffer))) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(buffer);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	 herr_t
 ss_attr_modify(ss_attr_t *attr,                 /* The attribute whose size will be changed. */
                hid_t type,                      /* The new datatype for the attribute, or H5I_INVALID_HID if the type is not
                                                  * to be changed. If the datatype is changed but is conversion compatible with
                                                  * the previous type then the attribute's data will be converted to the new
                                                  * datatype. Otherwise the attribute's data will be initialized to all zero. */
                size_t nelmts,                   /* The new number of elements in the attribute value, or SS_NOSIZE if the
                                                  * number of elements is not to be changed. If the number of elements
                                                  * decreases then the extra elements are discarded. If the number of elements
                                                  * increases then the new elements will be initialized to all zero bytes. */
                unsigned flags                   /* Bit flags such as SS_ALLSAME. */
                )
 {
     SS_ENTER(ss_attr_modify, herr_t);
     void                *values=NULL;
     size_t              old_nelmts;

     SS_ASSERT_MEM(attr, ss_attr_t);

     if (type>0) {
         if (NULL==(values=ss_array_get(SS_ATTR_P(attr,value), type, (size_t)0, SS_NOSIZE, NULL))) {
             /* Types are not conversion compatible; we'll zero them instead */
             SS_STATUS_OK;
         }
         if (SS_NOSIZE==(old_nelmts=ss_array_nelmts(SS_ATTR_P(attr,value)))) SS_ERROR(FAILED);
         if (ss_pers_modified((ss_pers_t*)attr, flags)<0) SS_ERROR(FAILED);
         if (ss_array_resize(SS_ATTR_P(attr,value), 0)<0) SS_ERROR(FAILED); /*zero size or else we can't change the type*/
         if (ss_array_target(SS_ATTR_P(attr,value), type)<0) SS_ERROR(FAILED);
         if (ss_array_resize(SS_ATTR_P(attr,value), old_nelmts)<0) SS_ERROR(FAILED); /*restore original size*/
         if (values && ss_array_put(SS_ATTR_P(attr,value), type, (size_t)0, old_nelmts, values)<0) SS_ERROR(FAILED);
         values = SS_FREE(values);
     }

     if (SS_NOSIZE!=nelmts) {
         if (ss_array_resize(SS_ATTR_P(attr,value), nelmts)<0) SS_ERROR(FAILED);
     }

 SS_CLEANUP:
     SS_FREE(values);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 ss_attr_t *
 ss_attr_new(ss_pers_t *owner,                   /* The object with which the new attribute is associated. */
             const char *name,                   /* The name of the new attribute. */
             hid_t type,                         /* The datatype of the attribute. */
             size_t count,                       /* Number of values in the attribute. */
             const void *value,                  /* Optional array of COUNT values each of type TYPE. If this array is not
                                                  * supplied then the attribute's value will be initialized to all zero bytes. */
             unsigned flags,                     /* Bit flags, such as SS_ALLSAME. */
             ss_attr_t *buf,                     /* The optional buffer for the returned attribute link. */
             ss_prop_t *props                    /* Attribute properties (none defined yet). */
             )
 {
     SS_ENTER(ss_attr_new, ss_attr_tP);
     ss_attr_t   *attr=NULL;                     /* The returned attribute linke */
     ss_scope_t  scope;                          /* The scope containing OWNER and in which the attribute will be stored */

     /* Check arguments */
     SS_ASSERT_CLASS(owner, ss_pers_t);
     if (SS_MAGIC(ss_attr_t)==SS_MAGIC_OF(owner)) SS_ERROR_FMT(USAGE, ("attribute owner must not be an attribute"));
     if (!name || !*name) SS_ERROR_FMT(USAGE, ("attribute name must be specified"));
     if (count<=0) SS_ERROR_FMT(USAGE, ("attribute count must be positive"));

     /* Create a new attribute object */
     if (NULL==ss_pers_scope(owner, &scope)) SS_ERROR(FAILED);
     if (NULL==(attr=(ss_attr_t*)ss_pers_new(&scope, SS_MAGIC(ss_attr_t), NULL, flags, (ss_pers_t*)buf, props))) SS_ERROR(FAILED);

     /* Initialize the attribute */
     SS_ATTR(attr)->owner = *owner;
     if (ss_string_set(SS_ATTR_P(attr,name), name)<0) SS_ERROR(FAILED);
     if (ss_array_target(SS_ATTR_P(attr,value), type)<0) SS_ERROR(FAILED);
     if (ss_array_resize(SS_ATTR_P(attr,value), count)<0) SS_ERROR(FAILED);
     if (value && ss_array_put(SS_ATTR_P(attr,value), type, (size_t)0, count, value)<0) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(attr);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 herr_t
 ss_attr_put(ss_attr_t *attr,                    /* The attribute in question. */
             hid_t type,                         /* The datatype of VALUE. */
             size_t offset,                      /* The element number at which to put VALUE. */
             size_t nelmts,                      /* The number of elements in VALUE. */
             const void *value,                  /* The value to be written to the attribute. */
             unsigned flags                      /* Flags such as SS_ALLSAME. */
             )
 {
     SS_ENTER(ss_attr_put, herr_t);
     SS_ASSERT_MEM(attr, ss_attr_t);

     if (ss_pers_modified((ss_pers_t*)attr, flags)<0) SS_ERROR(FAILED);
     if (ss_array_put(SS_ATTR_P(attr,value), type, offset, nelmts, value)<0) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

	 herr_t
 ss_blob_bind_f(ss_blob_t *blob,                 /* The blob to which a dataset is associated. */
                hid_t dset,                      /* The dataset to associate with the blob. The handle is duplicated by SSlib,
                                                  * allowing the caller to close its handle at any time. */
                hid_t dspace,                    /* A selection that describes which elements of DSET are owned by the blob. If
                                                  * non-positive then the entire dataset is owned by the blob. */
                unsigned flags                   /* Various bit flags affecting the operation of this function. */
                )
 {
     SS_ENTER(ss_blob_bind_f, herr_t);
     ss_scope_t          topscope=SS_SCOPE_NULL; /* The top scope for the blob (obtained from blob or passed as BLOB argument) */
     ss_gblob_t          *gblob=NULL;            /* The gfile->gblob pointer for convenience */
     size_t              d_idx=SS_NOSIZE;        /* Index into gblob->d table */
     H5G_stat_t          sb;                     /* Stat buffer for the supplied dataset handle */
     H5G_stat_t          sb_link;                /* Stat buffer for dataset in blob storage directory */
     hid_t               dset_duped=-1;          /* Dataset handle duplicated by this function to be closed on error*/
     hid_t               dtype_duped=-1;         /* Dataset type opened in this function to be closed on error */
     hid_t               dspace_duped=-1;        /* Dataset space opened in this function to be closed on error */
     char                dsetname[64];           /* Dataset name as it appears in blob storage group */
     hbool_t             new_entry=FALSE;        /* Are we appending a new entry to the gblob table? */
     hid_t               dcpl=-1;                /* Dataset creation property list */
     int                 ndims=-1;               /* Dataset dimensionality */
     hsize_t             dsize[H5S_MAX_RANK];    /* Current size of DSET */
     hsize_t             newsize[H5S_MAX_RANK];  /* New required size of the dataset */
     int                 root;                   /* Rank of blob task zero in the file communicator */
     int                 self;                   /* Rank of the calling task in the file communicator */
     MPI_Comm            filecomm=SS_COMM_NULL;  /* The file communicator */
     htri_t              extendible=-1;          /* Is the dataset extendible? */
     int                 i;

     /* Communicator related stuff */
     if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
     if (blob) SS_ASSERT_MEM(blob, ss_blob_t);
     else dspace = -1;
     if (ss_scope_comm(&topscope, &filecomm, &self, NULL)<0) SS_ERROR(FAILED);

     if (dset<=0) SS_ERROR_FMT(USAGE, ("no dataset handle"));
     if (H5Gget_objinfo(dset, ".", FALSE, &sb)<0) SS_ERROR(FAILED);
     gblob = SS_GFILE_LINK(&topscope)->gblob;

     /* Mark the blob as dirty here near the beginning of the function so we don't have to worry about it anymore. This makes
      * it easy if an error occurs half way through the function. No need to mark as unsynchronized since a precondition is
      * that we're being called collectively with all tasks having compatible arguments. */
     if (blob) SS_BLOB(blob)->m.pers.dirty = TRUE;

     /* Unbind any old dataset from the blob. We do this fairly early because we'd like to have it unbound if there was an
      * error in binding. Do not unbind memory. */
     if (blob && SS_BLOB(blob)->dsetaddr) {
         if (SS_NOSIZE==(d_idx=ss_blob_didx(blob))) SS_ERROR(FAILED);
         SS_ASSERT(ss_eq_nos(gblob->d[d_idx].stat.objno,sb.objno));
         SS_BLOB(blob)->dsetaddr = 0;
         memset(SS_BLOB(blob)->start, 0, sizeof(SS_BLOB(blob)->start));
         memset(SS_BLOB(blob)->count, 0, sizeof(SS_BLOB(blob)->count));
     }

     /* Make sure that the data space is suitable. Save the selection starts and counts in the blob object. */
     memset(SS_BLOB(blob)->start, 0, sizeof(SS_BLOB(blob)->start));
     memset(SS_BLOB(blob)->count, 0, sizeof(SS_BLOB(blob)->count));
     if (blob && (ndims=ss_blob_ckspace(dspace, SS_MAXDIMS, NULL, SS_BLOB(blob)->start, SS_BLOB(blob)->count, NULL))<0)
         SS_ERROR(FAILED);

     /* Is the dataset extendible? */
     if ((dcpl=H5Dget_create_plist(dset))<0) SS_ERROR(HDF5);
     extendible = H5D_CHUNKED == H5Pget_layout(dcpl);
     if (H5Pclose(dcpl)<0) SS_ERROR(HDF5);
     dcpl = -1;

     /* If the SS_BLOB_EXTENDIBLE flag is set then make sure the dataset is extendible */
     if ((flags & SS_BLOB_EXTEND) && !extendible)
         SS_ERROR_FMT(HDF5, ("SS_BLOB_EXTENDIBLE set but dataset is not extendible"));

     /* Every task allocates a record to the gblob table for the file, or updates a record if the dataset is already there
      * because some other blob is (or was) bound to it. */
     for (d_idx=0; d_idx<gblob->d_nused; d_idx++) {
         if (ss_eq_nos(gblob->d[d_idx].stat.objno,sb.objno) && ss_eq_nos(gblob->d[d_idx].stat.fileno,sb.fileno)) {
             break;
         }
     }
     if (d_idx >= gblob->d_nused) {
         SS_EXTEND(gblob->d, MAX(64,gblob->d_nused+1), gblob->d_nalloc);
         d_idx = gblob->d_nused; /*increment on success*/
         memset(gblob->d + d_idx, 0, sizeof(gblob->d[0]));
         new_entry = TRUE;
     }

     /* If the dataset was not already in the gblob table then make sure the dataset has a name in the blob storage group and
      * duplicate the dataset handle. Also obtain the datatype (see ss_blob_boot_cb() for reason). */
     if (gblob->d[d_idx].dset <= 0) {
         gblob->d[d_idx].stat = sb;
         SS_ASSERT(gblob->storage>0);
         /*sprintf(dsetname, "%lu", (unsigned long)(sb.objno));*/
         sprintf(dsetname, "%lu", (unsigned long)sb.objno[0]);
         if (H5Gget_objinfo(gblob->storage, dsetname, FALSE, &sb_link)>=0) {
             if (!ss_eq_nos(sb.objno,sb_link.objno)) SS_ERROR_FMT(CORRUPT, ("mis-linked blob storage for `%s'", dsetname));
         } else {
             if (H5Glink2(dset, ".", H5G_LINK_HARD, gblob->storage, dsetname)<0) SS_ERROR(HDF5);
         }
         if ((gblob->d[d_idx].dset = dset_duped = H5Dopen(dset, "."))<0) SS_ERROR(HDF5);
         if ((gblob->d[d_idx].dtype = dtype_duped = H5Dget_type(dset_duped))<0) SS_ERROR(HDF5);
         if ((gblob->d[d_idx].dspace = dspace_duped = H5Dget_space(dset_duped))<0) SS_ERROR(HDF5);
         gblob->d[d_idx].is_extendible = extendible;
     }

     /* If the SS_BLOB_EXTEND bit is set then extend the dataset if necessary so that the blob fits inside it. We can only make
      * the determination on the blob tasks but all file tasks need to know the result in order to call H5Dextend(). To further
      * complicate matters, the non-blob tasks don't know which task is the blob's task zero. */
     if (flags & SS_BLOB_EXTEND) {
         if ((ndims=ss_blob_ckspace(gblob->d[d_idx].dspace, SS_MAXDIMS, dsize, NULL, NULL, NULL))<0) SS_ERROR(FAILED);
         if ((root=ss_mpi_elect(blob?(ss_pers_t*)blob:(ss_pers_t*)&topscope))<0) SS_ERROR(FAILED);
         if (blob && root==self) {
             for (i=0; i<ndims; i++) {
                 newsize[i] = MAX(dsize[i], SS_BLOB(blob)->start[i]+SS_BLOB(blob)->count[i]);
             }
         }
         if (ss_mpi_bcast(newsize, (size_t)ndims, MPI_HSIZE_T, root, filecomm)<0) SS_ERROR(FAILED);
         for (i=0; i<ndims; i++) {
             if (newsize[i]>dsize[i]) {
                 if (H5Dextend(gblob->d[d_idx].dset, newsize)<0) SS_ERROR(HDF5);
                 if (H5Sclose(gblob->d[d_idx].dspace)<0) SS_ERROR(HDF5);
                 if ((gblob->d[d_idx].dspace=H5Dget_space(gblob->d[d_idx].dset))<0) SS_ERROR(HDF5);
                 if (dspace_duped>0) dspace_duped = gblob->d[d_idx].dspace;
                 if (ss_blob_async_aggregators(filecomm, gblob, d_idx, ndims, newsize)<0) SS_ERROR(FAILED);
                 break;
             }
         }
     }


     /* Final adjustments to the blob */
     if (blob) {
         SS_ASSERT(ss_eq_nos(sb.objno,gblob->d[d_idx].stat.objno));
         SS_BLOB(blob)->dsetaddr = *((haddr_t*)sb.objno);
         SS_BLOB(blob)->m.d_idx = d_idx;
     }

     /* Adjust counters just before successful return */
     if (new_entry) gblob->d_nused++;

  SS_CLEANUP:
     if (dset_duped>0) H5Dclose(dset_duped);
     if (dtype_duped>0) H5Tclose(dtype_duped);
     if (dspace_duped>0) H5Sclose(dspace_duped);
     if (dcpl>0) H5Pclose(dcpl);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	 herr_t
 ss_blob_bind_f1(ss_blob_t *blob,                /* The blob to which a dataset is associated. */
                 hid_t dset,                     /* The dataset to associate with the blob. The handle is duplicated by SSlib,
                                                  * allowing the caller to close its handle at any time. */
                 hsize_t offset,                 /* Offset into the array for the region of the dataset owned by this blob. */
                 hsize_t size,                   /* Number of elements owned by this blob. */
                 unsigned flags                  /* Bit flags to pass down to ss_blob_bind_f() */
                 )
 {
     SS_ENTER(ss_blob_bind_f1, herr_t);
     hid_t               dspace=-1;
     int                 ndims;

     if ((dspace=H5Dget_space(dset))<0) SS_ERROR(HDF5);
     if ((ndims=H5Sget_simple_extent_ndims(dspace))<0) SS_ERROR(HDF5);
     if (ndims!=1 && ndims!=0) SS_ERROR_FMT(USAGE, ("dataset is not one-dimensional or scalar"));

     if (SS_MAGIC(ss_scope_t)==SS_MAGIC_OF(blob)) {
         /* This task is in the file communicator but not the scope communicator */
         if (H5Sselect_none(dspace)<0) SS_ERROR(HDF5);
     } else {
         if (H5Sselect_slab(dspace, H5S_SELECT_SET, (hsize_t)0, &offset, &size)<0) SS_ERROR(HDF5);
     }
     if (ss_blob_bind_f(blob, dset, dspace, flags)<0) SS_ERROR(FAILED);
     if (H5Sclose(dspace)<0) SS_ERROR(HDF5);
     dspace = -1;

  SS_CLEANUP:
     if (dspace>0) H5Sclose(dspace);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 herr_t
 ss_blob_bind_m(ss_blob_t *blob,                 /* The blob to which memory is associated */
                void *mem,                       /* The memory to which the blob will now point */
                hid_t mtype,                     /* The datatype of each element of the memory. This datatype will be copied
                                                  * into the blob so the caller is free to close the handle at any time. */
                hid_t mspace                     /* The extent of memory and a selection of elements in that memory. This data
                                                  * space will be copied into the blob, so the caller should  close its handle. */
                )
 {
     SS_ENTER(ss_blob_bind_m, herr_t);
     hid_t       hid;

     SS_ASSERT_MEM(blob, ss_blob_t);

     /* Unbind */
     SS_BLOB(blob)->m.mem = NULL;
     if (SS_BLOB(blob)->m.mtype>0) {
         if (H5Tclose(SS_BLOB(blob)->m.mtype)<0) SS_ERROR(HDF5);
         SS_BLOB(blob)->m.mtype = 0;
     }
     if (SS_BLOB(blob)->m.mspace>0) {
         if (H5Sclose(SS_BLOB(blob)->m.mspace)<0) SS_ERROR(HDF5);
         SS_BLOB(blob)->m.mspace = 0;
     }

     /* Bind */
     if (mem) {
         if (ss_blob_ckspace(mspace, SS_MAXDIMS, NULL, NULL, NULL, NULL)<0) SS_ERROR(FAILED);
         SS_BLOB(blob)->m.mem = mem;
         if ((hid=H5Tcopy(mtype))<0) SS_ERROR(HDF5);
         SS_BLOB(blob)->m.mtype = hid;
         if ((hid=ss_blob_normalize(mspace))<0) SS_ERROR(FAILED);
         SS_BLOB(blob)->m.mspace = hid;
     }

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 herr_t
 ss_blob_bind_m1(ss_blob_t *blob,                /* The blob to which memory is associated. */
                 void *mem,                      /* The memory to be associated with the blob. */
                 hid_t mtype,                    /* The datatype of each element of the memory. This datatype will be copied
                                                  * into the blob so the caller is free to close the handle at any time. */
                 hsize_t nelmts                  /* Number of elements pointed to by MEM. */
                 )
 {
     SS_ENTER(ss_blob_bind_m1, herr_t);
     hid_t       mspace=-1;

     /* We have to use unlimited dimensions here because nelmts might be zero and HDF5 won't allow that */
     if (mem && (mspace=H5Screate_simple(1, &nelmts, ss_blob_unlim_g))<0) SS_ERROR(HDF5);
     if (ss_blob_bind_m(blob, mem, mtype, mspace)<0) SS_ERROR(FAILED);
     if (mem && H5Sclose(mspace)<0) SS_ERROR(HDF5);
     mspace = -1;

  SS_CLEANUP:
     if (mspace>0) H5Sclose(mspace);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	 int
 ss_blob_bound_f(ss_blob_t *blob,                /* Blob to query. */
                 hid_t *dset,                    /* OUT: Optional returned dataset handle. The handle is not duplicated and the
                                                  * caller should not close it. This is due to the fact that the handle
                                                  * duplication function (H5Dopen()) in HDF5 is file collective but this SSlib
                                                  * function is not. */
                 hsize_t *offsets,               /* OUT: Optional offset per dataset dimension for the starting position of the
                                                  * data owned by this blob. The array should be large enough to hold SS_MAXDIMS
                                                  * offsets. */
                 hsize_t *sizes,                 /* OUT: Optional size per dataset dimension for the portion of data owned by this
                                                  * blob. The array should be large enough to hold SS_MAXDIMS offsets. */
                 hid_t *fspace,                  /* OUT: Optional data space to be returned. This is the data space of the
                                                  * underlying dataset with a selection representing the blob's portion of that
                                                  * data space.  The caller should close this data space when no longer needed. */
                 hid_t *ftype                    /* OUT: Optional file datatype to be returned. The caller should close this
                                                  * datatype handle when no longer needed. */
                 )
 {
     SS_ENTER(ss_blob_bound_f, int);
     ss_gblob_t  *gblob=NULL;                    /* The gblob table associated with the file owning BLOB */
     size_t      d_idx=SS_NOSIZE;                /* An index into the gblob->d table */
     hid_t       fspace_duped=-1;                /* Duplicated data space to be closed on error */
     hid_t       ftype_duped=-1;                 /* Duplicated datatype to be closed on error */
     int         ndims=0;                        /* Number of dimensions; dimension counter; return value */
     int         i;

     SS_ASSERT_MEM(blob, ss_blob_t);
     if (!SS_BLOB(blob)->dsetaddr) SS_ERROR_FMT(USAGE, ("blob is not bound to a dataset"));
     if (SS_NOSIZE==(d_idx=ss_blob_didx(blob))) SS_ERROR(FAILED);
     gblob = SS_GFILE_LINK(blob)->gblob;
     SS_ASSERT(gblob);
     SS_ASSERT(SS_BLOB(blob)->dsetaddr==*((haddr_t*)&(gblob->d[d_idx].stat.objno)[0]));

     /* Dataset */
     if (dset) *dset = gblob->d[d_idx].dset;

     /* Offsets and/or sizes and the return value */
     if ((ndims=H5Sget_simple_extent_ndims(gblob->d[d_idx].dspace))<0) SS_ERROR(HDF5);
     for (i=0; i<ndims; i++) {
         if (offsets) offsets[i] = SS_BLOB(blob)->start[i];
         if (sizes) sizes[i] = SS_BLOB(blob)->count[i];
     }

     /* Data space and selection */
     if (fspace) {
         if ((*fspace = fspace_duped = H5Scopy(gblob->d[d_idx].dspace))<0) SS_ERROR(HDF5);
         if (H5Sselect_slab(*fspace, H5S_SELECT_SET, (hsize_t)0, SS_BLOB(blob)->start, SS_BLOB(blob)->count)<0)
             SS_ERROR(HDF5);
     }

     /* Datatype */
     if (ftype && (*ftype = ftype_duped = H5Tcopy(gblob->d[d_idx].dtype))<0) SS_ERROR(HDF5);

  SS_CLEANUP:
     if (fspace_duped>0) H5Sclose(fspace_duped);
     if (ftype_duped>0) H5Tclose(ftype_duped);
     SS_LEAVE(ndims);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 herr_t
 ss_blob_bound_f1(ss_blob_t *blob,               /* Blob to query. */
                  hid_t *dset,                   /* OUT: Optional returned dataset handle. The handle is not duplicated and the
                                                  * caller should not close it. */
                  hsize_t *offset,               /* OUT: Optional starting offset for the data owned by BLOB. */
                  hsize_t *size,                 /* OUT: Optional number of elements owned by BLOB. */
                  hid_t *ftype                   /* OUT: Optional datatype of the underlying dataset. The caller should close this
                                                  * datatype handle when no longer needed. */
                  )
 {
     SS_ENTER(ss_blob_bound_f1, herr_t);
     hsize_t     offsets[SS_MAXDIMS], sizes[SS_MAXDIMS];
     int         ndims;

     if ((ndims=ss_blob_bound_f(blob, dset, offsets, sizes, NULL, ftype))<0) SS_ERROR(FAILED);
     if (ndims>1) SS_ERROR_FMT(USAGE, ("dataset is multi-dimensional"));
     if (0==ndims) {
         if (offset) *offset = 0;
         if (size) *size = 0;
     } else {
         if (offset) *offset = offsets[0];
         if (size) *size = sizes[0];
     }

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 void *
 ss_blob_bound_m(ss_blob_t *blob,                /* Blob to query. */
                 hid_t *mtype,                   /* OUT: Optional pointer for memory datatype, duplicated from that stored in
                                                  * the blob. */
                 hid_t *mspace                   /* OUT: Optional pointer for memory dataspace (extent and selection),
                                                  * duplicated from that stored in the blob. */
                 )
 {
     SS_ENTER(ss_blob_bound_m, voidP);
     void        *retval=NULL;
     hid_t       type=-1;

     SS_ASSERT_MEM(blob, ss_blob_t);

     if (NULL==(retval=SS_BLOB(blob)->m.mem)) SS_ERROR_FMT(USAGE, ("blob is not bound to memory"));
     if (mtype && (*mtype = type = H5Tcopy(SS_BLOB(blob)->m.mtype))<0) SS_ERROR(HDF5);
     if (mspace && (*mspace = H5Scopy(SS_BLOB(blob)->m.mspace))<0) SS_ERROR(HDF5);

  SS_CLEANUP:
     if (type>0) H5Tclose(type);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 void *
 ss_blob_bound_m1(ss_blob_t *blob,               /* Blob to query. */
                  hid_t *mtype,                  /* OUT: Optional pointer for memory datatype, duplicated from that stored in
                                                  * the blob. */
                  hsize_t *size                  /* OUT: Optional pointer to receive the number of elements pointed to by the
                                                  * memory bound to the blob. The extent and selection must be identical. */
                  )
 {
     SS_ENTER(ss_blob_bound_m1, voidP);
     void        *retval=NULL;
     hid_t       type=-1;
     int         ndims;
     hsize_t     start, count;

     SS_ASSERT_MEM(blob, ss_blob_t);

     if (NULL==(retval=SS_BLOB(blob)->m.mem)) SS_ERROR_FMT(USAGE, ("blob is not bound to memory"));
     if (mtype && (*mtype = type = H5Tcopy(SS_BLOB(blob)->m.mtype))<0) SS_ERROR(HDF5);

     if (size) {
         if ((ndims=ss_blob_ckspace(SS_BLOB(blob)->m.mspace, 1, size, &start, &count, NULL))<0) SS_ERROR(FAILED);
         if (0==ndims) {
             *size = 1;
         } else {
             if (start) SS_ERROR_FMT(USAGE, ("memory selection has non-zero offset"));
             if (count!=*size) SS_ERROR_FMT(USAGE, ("memory selection is not all elements of extent"));
         }
     }

  SS_CLEANUP:
     if (type>0) H5Tclose(type);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

	 herr_t
 ss_blob_extend(ss_blob_t *blob,                 /* Blob which is possibly to be extended. */
                const hsize_t *size,             /* New size of the blob on each calling task per dataset dimension */
                unsigned flags,                  /* Bit flags such as SS_ALLSAME. */
                ss_prop_t UNUSED *props          /* Optional property list (none defined yet). */
                )
 {
     SS_ENTER(ss_blob_extend, herr_t);
     ss_scope_t          topscope=SS_SCOPE_NULL; /* Top scope for BLOB */
     ss_scope_t          blobscope=SS_SCOPE_NULL;
     hsize_t             newsize[SS_MAXDIMS], dsize[SS_MAXDIMS];
     ss_gblob_t          *gblob=NULL;
     size_t              d_idx=SS_NOSIZE;
     hid_t               dspace=-1;
     int                 i, ndims;
     MPI_Comm            blobcomm=SS_COMM_NULL;

     if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
     gblob = SS_GFILE_LINK(&topscope)->gblob;
     if (blob) SS_ASSERT_MEM(blob, ss_blob_t);

     /* The blob must be bound to a dataset */
     if (!SS_BLOB(blob)->dsetaddr) SS_ERROR_FMT(USAGE, ("blob is not bound to a dataset"));
     if (SS_NOSIZE==(d_idx=ss_blob_didx(blob))) SS_ERROR(FAILED);
     SS_ASSERT(SS_BLOB(blob)->dsetaddr==*((haddr_t*)(&gblob->d[d_idx].stat.objno)[0]));
     SS_ASSERT(gblob->d[d_idx].dset>0);
     if ((ndims=H5Sget_simple_extent_ndims(gblob->d[d_idx].dspace))<0) SS_ERROR(HDF5);

     if (blob) {
         /* MAX-Reduce the size in each dimension */
         if (flags & SS_ALLSAME) {
             for (i=0; i<ndims; i++) newsize[i] = size[i];
         } else {
             if (NULL==ss_pers_scope((ss_pers_t*)blob, &blobscope)) SS_ERROR(FAILED);
             if (ss_scope_comm(&blobscope, &blobcomm, NULL, NULL)<0) SS_ERROR(FAILED);
 #ifdef HAVE_PARALLEL
             {
                 unsigned long lsize[SS_MAXDIMS], lsize2[SS_MAXDIMS];
                 for (i=0; i<ndims; i++) lsize[i] = size[i];
                 if (MPI_Allreduce(lsize, lsize2, ndims, MPI_UNSIGNED_LONG, MPI_MAX, blobcomm)) SS_ERROR(MPI);
                 for (i=0; i<ndims; i++) newsize[i] = lsize2[i];
             }
 #else
             for (i=0; i<ndims; i++) newsize[i] = size[i];
 #endif
         }

         /* Make sure that the dataset is extendible or already large enough. We could actually delay this and let
          * ss_blob_bind_f() check it, but then we might unbind the blob if it fails.  */
         ss_blob_ckspace(gblob->d[d_idx].dspace, ndims, dsize, NULL, NULL, NULL);
         if (gblob->d[d_idx].is_extendible) {
             for (i=0; i<ndims; i++) {
                 dsize[i] = MAX(dsize[i], SS_BLOB(blob)->start[i]+newsize[i]);
             }
         } else {
             for (i=0; i<ndims; i++) {
                 if (SS_BLOB(blob)->start[i]+newsize[i]>dsize[i]) {
                     SS_ERROR_FMT(OVERFLOW,
                                  ("blob(start=%lu,count=%lu) extends past end of non-extendible dataset(%lu) in dimension %d",
                                   (unsigned long)(SS_BLOB(blob)->start[i]), (unsigned long)newsize[i],
                                   (unsigned long)(dsize[i]), i));
                 }
             }
         }

         /* Create a new data space for the rebind operation */
         if ((dspace=H5Screate_simple(ndims, dsize, ss_blob_unlim_g))<0) SS_ERROR(HDF5);
         if (H5Sselect_slab(dspace, H5S_SELECT_SET, (hsize_t)0, SS_BLOB(blob)->start, newsize)<0) SS_ERROR(HDF5);
     }

     /* All tasks rebind the blob to a dataset. The `dspace' argument is ignored on the non-blob tasks */
     if (ss_blob_bind_f(blob?blob:(ss_blob_t*)&topscope, gblob->d[d_idx].dset, dspace, SS_BLOB_EXTEND)<0) SS_ERROR(FAILED);

     /* Successful cleanup */
     if (dspace>0 && H5Sclose(dspace)<0) SS_ERROR(HDF5);
     dspace = -1;

 SS_CLEANUP:
     if (dspace>0) H5Sclose(dspace);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 herr_t
 ss_blob_extend1(ss_blob_t *blob,                /* Blob which is possibly to be extended. */
                 hsize_t size,                   /* The new size of the blob in elements. */
                 unsigned flags,                 /* Bit flags such as SS_ALLSAME. */
                 ss_prop_t *props                /* Optional property list (see ss_blob_extend()). */
                 )
 {
     SS_ENTER(ss_blob_extend1, herr_t);
     hsize_t     msize[H5S_MAX_RANK];

     memset(msize, 0, sizeof msize);
     msize[0] = size;
     if (ss_blob_extend(blob, msize, flags, props)<0) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	 herr_t
 ss_blob_flush(ss_scope_t *topscope,     /* Determines the file being flushed, and thus the collectivity of the function. */
               ss_blob_t *blob,          /* Optional argument to restrict the flushing to a single dataset: the dataset to
                                          * which BLOB refers, which might also be used by other blobs.  If BLOB is not
                                          * specified then all blob datasets for the file are flushed.  When BLOB is defined on
                                          * a subset of the FILE communicator, the tasks that don't own the blob should pass
                                          * a non-null object (passing the FILE argument a second time is recommended) in order
                                          * to distinguish between this single-dataset case and the all-datasets case without
                                          * the need for collective communication. */
               unsigned flags,           /* Bit flags that describe how to flush the selected datasets. See
                                          * ss_blob_async_flush() for details. If none of the !FLUSH or !REAP bits are set then
                                          * async two-phase I/O is started but nothing is reaped. */
               ss_prop_t *props          /* Flushing properties (none defined at this time). */
               )
 {
     SS_ENTER(ss_blob_flush, herr_t);
     ss_gfile_t          *gfile=NULL;
     size_t              d_idx=SS_NOSIZE;
     ss_prop_t           *syncprops = NULL;

     gfile = SS_GFILE_LINK(topscope);
     SS_ASSERT(gfile);

     /* Initiate two-phase I/O for the specified dataset(s) */
     if (blob) {
         if (NULL==(syncprops=ss_prop_new("blob sync props"))) SS_ERROR(FAILED);
         d_idx = SS_BLOB(blob)->m.d_idx;
         if (ss_prop_add(syncprops, "dset", H5T_NATIVE_HID, &(gfile->gblob->d[d_idx].dset))<0) SS_ERROR(FAILED);
     }
     if (ss_blob_synchronize(topscope, syncprops)<0) SS_ERROR(FAILED);

     /* Wait for two-phase I/O to complete according to FLAGS. The ss_blob_async_flush_all() is independent. */
     if (flags & (SS_STRICT|SS_BLOB_FLUSH_SHIP|SS_BLOB_FLUSH_WRITE|SS_BLOB_REAP_SHIP|SS_BLOB_REAP_WRITE)) {
         SS_ASSERT(!blob || d_idx!=SS_NOSIZE)
         if (ss_blob_async_flush_all(gfile->gblob, d_idx, gfile->dxpl_independent, flags)<0) SS_ERROR(FAILED);
     }

     /* Successful cleanup */
     if (syncprops) ss_prop_dest(syncprops);
     syncprops = NULL;

     SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 ss_prop_t *
 ss_blob_get_2pio(ss_blob_t *blob,       /* Optional blob whose file settings are to be retreived. If no blob is specified then
                                          * the library-wide defaults are returned. */
                  ss_prop_t *props       /* Optional property list to hold the results. Only the properties defined in the list
                                          * will be returned. If no property list is specified then a new one is created and
                                          * all two-phase I/O properties are returned. See [Aggregation Properties]. */
                  )
 {
     SS_ENTER(ss_blob_get_2pio, ss_prop_tP);
     ss_blob_2pio_t      *agg=NULL;
     ss_scope_t          topscope=SS_SCOPE_NULL;
     ss_gblob_t          *gblob=NULL;

     /* Get the property list */
     if (!props) {
         if (NULL==(props=ss_blob_init_2pio(NULL, "defaults"))) SS_ERROR(FAILED);
     } else {
         SS_ASSERT_TYPE(props, ss_prop_t);
     }

     /* Get the property values */
     if (!blob) {
         agg = &ss_blob_2pio_g;
     } else {
         if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
         gblob = SS_GFILE_LINK(&topscope)->gblob;
         agg = &(gblob->agg);
     }

     /* Set the property values */
     if (ss_prop_has(props, "minbufsize")  && ss_prop_set_u(props, "minbufsize",  agg->minbufsize)<0)  SS_ERROR(FAILED);
     if (ss_prop_has(props, "alignment")   && ss_prop_set_u(props, "alignment",   agg->alignment)<0)   SS_ERROR(FAILED);
     if (ss_prop_has(props, "maxaggtasks") && ss_prop_set_u(props, "maxaggtasks", agg->maxaggtasks)<0) SS_ERROR(FAILED);
     if (ss_prop_has(props, "sendqueue")   && ss_prop_set_u(props, "sendqueue",   agg->sendqueue)<0)   SS_ERROR(FAILED);
     if (ss_prop_has(props, "aggbuflimit") && ss_prop_set_u(props, "aggbuflimit", agg->aggbuflimit)<0) SS_ERROR(FAILED);
     if (ss_prop_has(props, "asynchdf5")   && ss_prop_set_i(props, "asynchdf5",   agg->asynchdf5)<0)   SS_ERROR(FAILED);
     if (ss_prop_has(props, "aggbase")     && ss_prop_set_i(props, "aggbase",     agg->aggbase)<0)     SS_ERROR(FAILED);
     if (ss_prop_has(props, "tpn")         && ss_prop_set_i(props, "tpn",         agg->tpn)<0)         SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(props);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

	 herr_t
 ss_blob_mkstorage(ss_blob_t *blob,              /* The blob for which a dataset should be created. As a temporary work around
                                                  * for HDF5 limitations, tasks that are part of the blob's file communicator
                                                  * but not the blob's scope communicator should pass the top-level scope for
                                                  * the file that contains the blob. See the parallel notes for details. */
                   hsize_t *size,                /* OUT: Optional pointer which, upon successful return, will point to the
                                                  * cumulative number of elements from all lower-rank MPI tasks.  This can be
                                                  * useful in some cases for the caller to compute the starting offset of a
                                                  * task's contribution to the dataset when it is known that all tasks will
                                                  * output data contiguously in task rank order. The reason it's computed by
                                                  * this function is because this function must perform collective
                                                  * communication anyway in order to determine the dataset size. In SS_ALLSAME
                                                  * mode the return value will be zero because each tasks data starts at the
                                                  * beginning of the blob. Likewise, for SS_BLOB_EACH mode the return value is
                                                  * zero because each task has its own blob to describe where that tasks data
                                                  * starts in the dataset shared by all the tasks. */
                   unsigned flags,               /* Certain bit flags that affect the operation of this function. See the
                                                  * description for details. */
                   ss_prop_t *props              /* Optional properties (see Blob Properties). If a dataset creation property
                                                  * list and/or dataset name is supplied then they must be the same across all
                                                  * calling tasks. */
                   )
 {
     SS_ENTER(ss_blob_mkstorage, herr_t);
     ss_scope_t          topscope=SS_SCOPE_NULL; /* Top scope for BLOB */
     ss_scope_t          blobscope=SS_SCOPE_NULL;/* Scope in which the blob lives if this is a blob task */
     ss_gblob_t          *gblob=NULL;            /* The gblob table from the top scope's gfile entry */
     hid_t               dcpl=H5P_DEFAULT;       /* Dataset creation property list */
     hid_t               dcpl_close=-1;          /* Dataset creation property list to close during cleanup */
     long                my_nelmts_l=0;          /* Should be hssize_t but long is the biggest MPI type supported by reduce */
     long                all_nelmts_l=0;         /* Sum of all my_nelmts across all tasks in the file communicator. */
     hsize_t             my_nelmts;              /* Number of dataset elements to be owned by the BLOB */
     hsize_t             all_nelmts;             /* Same as all_nelmts except type is hsize_t for passing ptr to HDF5 */
     hsize_t             dset_size;              /* Number of elements in the created dataset */
     hsize_t             dset_maxsize;           /* The maximum size in elements of the created dataset */
     hid_t               dset=-1, fspace=-1;     /* Dataset and space to be cleaned up on return */
     hid_t               fid=-1;                 /* File handle, not to be closed on return */
     MPI_Comm            filecomm;               /* File communicator */
     int                 root;                   /* Root task w.r.t. file communicator for broadcast */
     int                 blob_self=-1;           /* Rank of calling task in the blob communicator, or negative */
     int                 blob_ntasks=0;          /* Number of tasks in the blob communicator, or zero */
     int                 file_ntasks=0;          /* Number of tasks in the file communicator. */
     size_t              elmt_size;              /* Size of a single element of the dataset in the file */
     hsize_t             chunk_size=64*1024;     /* Size of chunk: 64 kB adjusted later to elements instead of bytes */
     const char          *dsetname=NULL;         /* Optional additional dataset name */
     ss_file_t           blobfile=SS_FILE_NULL;  /* The file in which BLOB appears */
     hsize_t             offset;                 /* Blob's offset into the dataset */

     if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
     gblob = SS_GFILE_LINK(&topscope)->gblob;
     if (blob) SS_ASSERT_MEM(blob, ss_blob_t);

     SS_ASSERT(((flags & SS_ALLSAME)?1:0) + ((flags & SS_BLOB_EACH)?1:0) + ((flags & SS_BLOB_RANK)?1:0) <= 1);

     /* Blob and file communicator info */
     if (blob) {
         if (NULL==ss_pers_scope((ss_pers_t*)blob, &blobscope)) SS_ERROR(FAILED);
         if (ss_scope_comm(&blobscope, NULL, &blob_self, &blob_ntasks)<0) SS_ERROR(FAILED);
     }
     if (ss_scope_comm(&topscope, &filecomm, NULL, &file_ntasks)<0) SS_ERROR(FAILED);

     /* Dataset creation properties -- same for *all* tasks */
     if (!props || NULL==ss_prop_get(props, "dcpl", H5T_NATIVE_HID, &dcpl)) {
         SS_STATUS_OK;
         if (flags & SS_BLOB_EXTEND) {
             if ((dcpl=dcpl_close=H5Pcreate(H5P_DATASET_CREATE))<0) SS_ERROR(HDF5);
             if (0==(elmt_size=H5Tget_size(SS_BLOB(blob)->m.mtype))) SS_ERROR(HDF5);
             chunk_size = MAX(1, (chunk_size+elmt_size/2)/elmt_size);
             if (H5Pset_chunk(dcpl, 1, &chunk_size)<0) SS_ERROR(HDF5);
         }
     } else if (H5D_CHUNKED!=H5Pget_layout(dcpl)) {
         SS_ERROR_FMT(USAGE, ("SS_BLOB_EXTEND flag set but supplied dataset creation property list is not chunked"));
     }

     /* Optional dataset name */
     if (!props || NULL==ss_prop_get(props, "name", H5T_NATIVE_VOIDP, &dsetname)) {
         SS_STATUS_OK;
         dsetname = NULL;
     }

     /* Determine how much total data we have. We only have to sum this across the scope communicator but we need the result
      * across the file communicator. If the the SS_ALLSAME or SS_BLOB_RANK flag is set then the size will be calculated and
      * broadcast from blob task zero. If blob_ntasks==file_ntasks then all calling tasks must necessarily also be blob
      * tasks and we may be able to avoid some communication. */
     if (blob && SS_BLOB(blob)->m.mem)
         if ((my_nelmts_l = H5Sget_select_npoints(SS_BLOB(blob)->m.mspace))<0) SS_ERROR(HDF5);
     if (flags & SS_ALLSAME) {
         /* All blob tasks are bound to the same size memory, but only one will be used as the total dataset size. */
         if (blob_ntasks!=file_ntasks) {
             if ((root=ss_mpi_elect(blob?(ss_pers_t*)blob:(ss_pers_t*)&topscope))<0) SS_ERROR(FAILED);
             ss_mpi_bcast(&my_nelmts_l, (size_t)1, MPI_UNSIGNED_LONG, root, filecomm);
         }
         all_nelmts_l = my_nelmts_l;
     } else if (flags & SS_BLOB_RANK) {
         /* All blob tasks are bound to the same size memory; total size is the sum across all blob tasks */
         all_nelmts_l = my_nelmts_l * blob_ntasks;
         if (blob_ntasks!=file_ntasks) {
             if ((root=ss_mpi_elect(blob?(ss_pers_t*)blob:(ss_pers_t*)&topscope))<0) SS_ERROR(FAILED);
             ss_mpi_bcast(&all_nelmts_l, (size_t)1, MPI_UNSIGNED_LONG, root, filecomm);
         }
     } else {
         /* Every task may be bound to a different memory size; total size is the sum across all blob tasks */
 #ifdef HAVE_PARALLEL
         if (MPI_Allreduce(&my_nelmts_l, &all_nelmts_l, 1, MPI_UNSIGNED_LONG, MPI_SUM, filecomm)) SS_ERROR(MPI);
 #else
         all_nelmts_l = my_nelmts_l;
 #endif
     }
     my_nelmts = my_nelmts_l;            /* How many elements belong to this task's blob? Zero on non-blob tasks. */
     all_nelmts = all_nelmts_l;          /* How big is the whole dataset? */

     /* If the user is asking for a scanned SIZE then return that now since we're doing communication anyway. We could have
      * done an allgather of the local size and done the reduction and scan in this function, but separate MPI_Allreduce() and
      * MPI_Scan() seem more readable and use less memory.. */
     if (flags & SS_ALLSAME) {
         offset = 0;
         if (size) *size = offset;
     } else if (flags & SS_BLOB_RANK) {
         offset = blob_self * my_nelmts_l;
         if (size) *size = offset;
     } else {
 #ifdef HAVE_PARALLEL
         if (MPI_Scan(&my_nelmts_l, &all_nelmts_l, 1, MPI_UNSIGNED_LONG, MPI_SUM, filecomm)) SS_ERROR(MPI);
         offset = all_nelmts_l - my_nelmts_l; /* exclusive scan */
 #else
         offset = 0;
 #endif
         if (size) {
             *size = (flags & SS_BLOB_EACH) ? 0 : offset;
         }
     }

     /* It doesn't make much sense to create a zero-size dataset, but there might be some cases where all tasks just happened
      * to have no data. We have two choices with HDF5: create a zero size extendible dataset or create a very small contiguous
      * dataset. We will use a 1d, contiguous dataset of size one when possible because that occupies the least file space and the
      * dimensionality matches what ss_blob_normalize() returns for a null space. */
     if (flags & SS_BLOB_EXTEND) {
         dset_size = all_nelmts;
         dset_maxsize = H5S_UNLIMITED;
     } else {
         dset_size = MAX(1, all_nelmts);
         dset_maxsize = dset_size;
     }
     if ((fspace=H5Screate_simple(1, &dset_size, &dset_maxsize))<0) SS_ERROR(HDF5);

     /* Create the new dataset using either the name supplied in the property list or a temporary name */
     if (dsetname) {
         if (NULL==ss_pers_file((ss_pers_t*)blob, &blobfile)) SS_ERROR(FAILED);
         if ((fid=ss_file_isopen(&blobfile, NULL))<0) SS_ERROR(FAILED);
         if ((dset=H5Dcreate(fid, dsetname, SS_BLOB(blob)->m.mtype, fspace, dcpl))<0) SS_ERROR(HDF5);
     } else {
         if ((dset=H5Dcreate(gblob->storage, "TEMP", SS_BLOB(blob)->m.mtype, fspace, dcpl))<0) SS_ERROR(HDF5);
         if (H5Gunlink(gblob->storage, "TEMP")<0) SS_ERROR(HDF5);
     }

     /* Bind the dataset to the blob(s) */
     if ((flags & SS_ALLSAME) || (flags & SS_BLOB_EACH)) {
         if (H5Sselect_slab(fspace, H5S_SELECT_SET, (hsize_t)0, &offset, &my_nelmts)<0) SS_ERROR(HDF5);
     } else {
         if (H5Sselect_slab(fspace, H5S_SELECT_SET, (hsize_t)0, NULL, &all_nelmts)<0) SS_ERROR(HDF5);
     }
     if (ss_blob_bind_f(blob, dset, fspace, (flags & SS_BLOB_EXTEND))<0) SS_ERROR(FAILED);

     /* Successful cleanup */
     if (dcpl_close>0) H5Pclose(dcpl_close);
     dcpl_close = -1;

  SS_CLEANUP:
     if (dset>0) H5Dclose(dset);
     if (fspace>0) H5Sclose(fspace);
     if (dcpl_close>0) H5Pclose(dcpl_close);

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 ss_blob_t *
 ss_blob_new(ss_scope_t *scope,                  /* Scope where the new blob will be created */
             unsigned flags,                     /* Flags such as SS_ALLSAME */
             ss_blob_t *buf                      /* OUT: Optional buffer to receive blob link */
             )
 {
     SS_ENTER(ss_blob_new, ss_blob_tP);
     ss_blob_t   *retval=NULL;

     if (NULL==(retval=(ss_blob_t*)ss_pers_new(scope, SS_MAGIC(ss_blob_t), NULL, flags, (ss_pers_t*)buf, NULL))) SS_ERROR(FAILED);
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

	 void *
 ss_blob_read(ss_blob_t *blob,                   /* The blob from which data should be read. This is the blob's top scope for
                                                  * tasks that are participating for collectivity and are members of the blob's
                                                  * file communicator but not the blob's scope communicator. */
              hid_t iospace,                     /* This is an optional hyperslab describing the part of the blob that is to
                                                  * be read. The extent and selection are relative to the portion of the
                                                  * dataset owned by the blob and described in some previous call to
                                                  * ss_blob_bind_f() (perhaps in an earlier execution). If not specified then
                                                  * all of the blob's data is read. Such a selection is generally constructed
                                                  * by calling ss_blob_space() and applying the selection. */
              unsigned flags,                    /* Various bit flags commonly passed to this function. */
              ss_prop_t UNUSED *props            /* See [Blob Properties]. (Unused at this time.) */
              )
 {
     SS_ENTER(ss_blob_read, voidP);
     ss_scope_t          topscope=SS_SCOPE_NULL; /* The top scope for BLOB */
     ss_gblob_t          *gblob=NULL;            /* Global blob record for the file */
     size_t              d_idx=SS_NOSIZE;        /* Index into gblob->d table */
     void                *buffer=NULL;           /* Result buffer */
     hid_t               iom=-1, iof=-1;         /* Data spaces for memory and file -- extent and selections */
     hid_t               dxpl=-1;                /* Dataset transfer property list -- not copied here so do not close */
     hid_t               mtype=-1;               /* Memory datatype saved after unbind */
     herr_t              status;                 /* Return status of called functions */
     size_t              tsize=SS_NOSIZE;        /* Datatype size in bytes */
     hssize_t            nelmts;                 /* Number of elements in the I/O operation */

     if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
     gblob = SS_GFILE_LINK(&topscope)->gblob;

     if (blob) {
         /* Verify data space consistency to the extent possible without actually calling H5Dread(). This also generates the
          * dataset-dimension data spaces for memory and file. We have to do this before unbinding the memory but we still want
          * to unbind it if necessary. So the error return is delayed until after the unbinding. */
         if ((status = ss_blob_ckspaces(blob, iospace, &iom, &iof))<0) SS_SAVE;

         /* Get a buffer for the result and unbind memory if so requested. If not bound to memory we'll allocate a buffer after
          * we've checked that we're bound to a dataset. */
         if ((buffer = SS_BLOB(blob)->m.mem)) {
             if (flags & SS_BLOB_UNBIND) {
                 SS_BLOB(blob)->m.mem = NULL;
                 mtype = SS_BLOB(blob)->m.mtype; /*will be closed at end*/
                 SS_BLOB(blob)->m.mtype = 0;
                 if (H5Sclose(SS_BLOB(blob)->m.mspace)<0) SS_ERROR(HDF5);
                 SS_BLOB(blob)->m.mspace = 0;
             } else {
                 if ((mtype = H5Tcopy(SS_BLOB(blob)->m.mtype))<0) SS_ERROR(HDF5);
             }
         }

         /* Now that we've had an opportunity to unbind, raise the ss_blob_ckspaces() error if there was one. */
         if (status<0) {
             SS_REFAIL;
             SS_ERROR(FAILED);
         }

         /* Make sure the blob is bound to a dataset */
         if (!SS_BLOB(blob)->dsetaddr) SS_ERROR_FMT(USAGE, ("blob is not bound to a dataset"));
         if (SS_NOSIZE==(d_idx=ss_blob_didx(blob))) SS_ERROR(FAILED);
         SS_ASSERT(SS_BLOB(blob)->dsetaddr==*((haddr_t*)(&gblob->d[d_idx].stat.objno)[0]));
         SS_ASSERT(gblob->d[d_idx].dset>0);

         /* Allocate a buffer if we don't have one by now. */
         if (!buffer) {
             SS_ASSERT(mtype<0);
             if ((mtype = H5Tget_native_type(gblob->d[d_idx].dtype, H5T_DIR_DEFAULT))<0) SS_ERROR(HDF5);
             if (0==(tsize=H5Tget_size(mtype))) SS_ERROR(HDF5);
             if ((nelmts = H5Sget_select_npoints(iom))<0) SS_ERROR(HDF5);
             if (NULL==(buffer=malloc(MAX((size_t)1, (size_t)(nelmts*tsize))))) SS_ERROR(RESOURCE);
         }

         /* Get the dataset transfer property list. We do not allow this to be specified by the caller because SSlib does too
          * many things under the covers to make that reliable. */
         dxpl = flags & SS_BLOB_COLLECTIVE ? SS_GFILE_LINK(&topscope)->dxpl_collective : SS_GFILE_LINK(&topscope)->dxpl_independent;

         /* Read the data */
         /* ISSUE: The two-phase I/O optimization for reads is not implemented. */
         if (H5Dread(gblob->d[d_idx].dset, mtype, iom, iof, dxpl, buffer)<0) SS_ERROR(HDF5);

         /* Cleanup */
         if (H5Sclose(iom)<0) SS_ERROR(HDF5);
         iom = -1;
         if (H5Sclose(iof)<0) SS_ERROR(HDF5);
         iof = -1;
         if (H5Tclose(mtype)<0) SS_ERROR(HDF5);
         mtype = -1;
     }

  SS_CLEANUP:
     if (iom>0) H5Sclose(iom);
     if (iof>0) H5Sclose(iof);
     if (mtype>0) H5Tclose(mtype);

     SS_LEAVE(buffer);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 void *
 ss_blob_read1(ss_blob_t *blob,                  /* The blob from which data should be read. */
               hsize_t offset,                   /* Offset w.r.t. the blob's data for the first element to be read. */
               hsize_t nelmts,                   /* Number of elements to be read from the blob's data. */
               unsigned flags,                   /* See the FLAGS argument of ss_blob_read(). */
               ss_prop_t *props                  /* See [Blob Properties]. */
               )
 {
     SS_ENTER(ss_blob_read1, voidP);
     hid_t       iospace=-1;
     void        *retval=NULL;
     int         ndims;

     SS_ASSERT_MEM(blob, ss_blob_t);
     if ((ndims=ss_blob_space(blob, NULL, &iospace))<0) SS_ERROR(FAILED);
     if (1!=ndims && 0!=ndims) SS_ERROR_FMT(USAGE, ("blob is not one-dimensional or scalar"));

     /* Select the elements of the `iospce'. Even if `nelmts' is zero we still have to call ss_blob_read() for some side
      * effects like for the SS_BLOB_UNBIND bit flag. */
     if (0==ndims) {
         SS_ASSERT(0==nelmts || 1==nelmts);
         SS_ASSERT(0==offset || 0==nelmts);
         if (0==nelmts) {
             if (H5Sselect_none(iospace)<0) SS_ERROR(HDF5);
         } else {
             if (H5Sselect_all(iospace)<0) SS_ERROR(HDF5);
         }
     } else {
         if (H5Sselect_slab(iospace, H5S_SELECT_SET, (hsize_t)0, &offset, &nelmts)<0) SS_ERROR(HDF5);
     }

     /* The actual write */
     if (NULL==(retval=ss_blob_read(blob, iospace, flags, props))) SS_ERROR(FAILED);

     /* Successful cleanup */
     if (H5Sclose(iospace)<0) SS_ERROR(HDF5);
     iospace = -1;

  SS_CLEANUP:
     if (iospace>0) H5Sclose(iospace);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	 herr_t
 ss_blob_set_2pio(ss_blob_t *blob,       /* Optional blob to which whose file these settings apply. If no blob is
                                          * specified then the settings apply to SSlib in general and can be overridden
                                          * by individual blobs. */
                  ss_prop_t *props       /* See [Aggregation Properties]. */
                  )
 {
     SS_ENTER(ss_blob_set_2pio, herr_t);
     int                 self, i;
     size_t              size;
     ss_blob_2pio_t      *agg=NULL;
     ss_scope_t          topscope=SS_SCOPE_NULL;
     ss_gblob_t          *gblob=NULL;
     char                *s=NULL;

     if (!blob && !props) {
         /* Broadcast SSLIB_2PIO environment variable from library task zero to all other library tasks */
         if ((self=ss_mpi_comm_rank(sslib_g.comm))<0) SS_ERROR(FAILED);
         if (0==self) {
             const char *s_const = getenv("SSLIB_2PIO");
             size = s_const ? strlen(s_const)+1 : 0;
             if (size) {
                 if (NULL==(s=malloc(size))) SS_ERROR(RESOURCE);
                 strcpy(s, s_const);
             }
         }
         if (ss_mpi_bcast(&size, 1, MPI_SIZE_T, 0, sslib_g.comm)<0) SS_ERROR(FAILED);
         if (size) {
             if (!s && NULL==(s=malloc(size))) SS_ERROR(RESOURCE);
             if (ss_mpi_bcast(s, size, MPI_CHAR, 0, sslib_g.comm)<0) SS_ERROR(FAILED);
         }

         /* Parse the SSLIB_2PIO value to create a property list */
         if (NULL==(props=ss_blob_init_2pio(NULL, "defaults"))) SS_ERROR(FAILED);
         if (NULL==(props=ss_blob_init_2pio(props, s))) SS_ERROR(FAILED);

         /* Use the property list to set properties */
         if (ss_blob_set_2pio(blob, props)<0) SS_ERROR(FAILED);
         if (ss_prop_dest(props)<0) SS_ERROR(FAILED);
         props = NULL;
         s = SS_FREE(s);

     } else {
         SS_ASSERT_TYPE(props, ss_prop_t);
         if (!blob) {
             agg = &ss_blob_2pio_g;
         } else {
             if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
             gblob = SS_GFILE_LINK(&topscope)->gblob;
             if (gblob->a) SS_ERROR_FMT(USAGE, ("cannot set file properties after I/O occurs"))
             agg = &(gblob->agg);
         }
         if (ss_prop_get(props, "minbufsize",  H5T_NATIVE_SIZE, &size)) agg->minbufsize  = size;
         if (ss_prop_get(props, "alignment",   H5T_NATIVE_SIZE, &size)) agg->alignment   = size;
         if (ss_prop_get(props, "maxaggtasks", H5T_NATIVE_SIZE, &size)) agg->maxaggtasks = size;
         if (ss_prop_get(props, "sendqueue",   H5T_NATIVE_SIZE, &size)) agg->sendqueue   = size;
         if (ss_prop_get(props, "aggbuflimit", H5T_NATIVE_SIZE, &size)) agg->aggbuflimit = size;
         if (ss_prop_get(props, "asynchdf5",   H5T_NATIVE_INT,  &i))    agg->asynchdf5   = i ? TRUE : FALSE;
         if (ss_prop_get(props, "aggbase",     H5T_NATIVE_INT,  &i))    agg->aggbase     = i;
         if (ss_prop_get(props, "tpn",         H5T_NATIVE_INT,  &i))    agg->tpn         = i;
         SS_STATUS_OK; /*ignore failures from ss_prop_get() calls*/
     }

  SS_CLEANUP:
     SS_FREE(s);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 int
 ss_blob_space(ss_blob_t *blob,                  /* The blob to query */
               hsize_t *size,                    /* OUT: Optional returned size per blob dimension */
               hid_t *space                      /* OUT: Optional returned data space for the blob */
               )
 {
     SS_ENTER(ss_blob_space, int);
     int         blob_ndims=0, dset_ndims, i;
     hsize_t     blobsize[SS_MAXDIMS];
     const hsize_t *maxdims=NULL;

     SS_ASSERT_MEM(blob, ss_blob_t);
     if ((dset_ndims=ss_blob_bound_f(blob, NULL, NULL, NULL, NULL, NULL))<0) SS_ERROR(FAILED);

     /* Copy the blob dimension sizes from the blob object. The `count' stored in the blob object has one element per dataset
      * dimension. To get the blob dimensions we just discard any sizes that are unity. */
     for (i=blob_ndims=0; i<dset_ndims; i++) {
         if (SS_BLOB(blob)->count[i]>1) {
             blobsize[blob_ndims] = SS_BLOB(blob)->count[i];
             if (size) size[blob_ndims] = blobsize[blob_ndims];
             blob_ndims++;
         } else if (0==SS_BLOB(blob)->count[i]) {
             blob_ndims = 1;
             blobsize[0] = 0;
             if (size) size[0] = 0;
             maxdims = ss_blob_unlim_g;
             break;
         }
     }

     /* Create the data space. Give it the dimensionality and extent of the blob (not the dataset). Data spaces are born with
      * the "all" selection. If the blob had any zero size dimensions then treat the blob as a one-dimensional, unlimited space
      * whose current size is zero (see also ss_blob_normalize()). */
     if (space && (*space=H5Screate_simple(blob_ndims, blobsize, maxdims))<0) SS_ERROR(HDF5);

  SS_CLEANUP:
     SS_LEAVE(blob_ndims);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

	 herr_t
 ss_blob_synchronize(ss_scope_t UNUSED_SERIAL *topscope,
                     ss_prop_t UNUSED_SERIAL *props      /* See [Blob Properties]. */
                     )
 {
     SS_ENTER(ss_blob_synchronize, herr_t);
 #ifdef HAVE_PARALLEL
     ss_gblob_t          *gblob=NULL;                    /* Blob related file-level information */
     size_t              a_idx;                          /* Index into gblob->a table */
     size_t              a_start=0;                      /* Virtual start of the gblob->a[] so we don't have to shift elmts */
     size_t              a_start_orig=0;                 /* Original starting value of a_start */
     size_t              d_idx;                          /* Index into gblob->d[] for dataset on which we're operating */
     size_t              *ndsets=NULL;                   /* Array of dataset counts for all tasks */
     size_t              ndsets_total;                   /* Sum-reduction of ndsets[] */
     size_t              req_idx;                        /* Index through the I/O requests */
     size_t              nreq_total;                     /* Total I/O requests across all tasks */
     MPI_Comm            filecomm;                       /* File communicator */
     int                 self, ntasks;                   /* Rank and size of file communicator */
     int                 task;                           /* MPI task counter */
     hsize_t             *sel=NULL;                      /* Selection metadata (starts and counts per dimension per request) */
     size_t              sel_nalloc=0;                   /* Number of elements allocated for `sel' array */
     size_t              *sel_start=NULL;                /* Exclusive sum scan for selection metadata counts */
     size_t              *sel_count=NULL;                /* Number of selection metadata values by task */
     size_t              sel_idx;                        /* Index into `sel' array */
     int                 ndims;                          /* Dataset dimensionality */
     haddr_t             smallest_objno;                 /* Object header address of current dataset */
     hsize_t             dset_size[H5S_MAX_RANK];        /* Current size of the dataset */
     hsize_t             bound_start[H5S_MAX_RANK];      /* Selection bounding box starting offsets */
     hsize_t             bound_end[H5S_MAX_RANK];        /* bound_start + bound_count */
     hid_t               one_dset=-1;                    /* Non-copied handle to the dataset being synchronized */
     haddr_t             one_dset_addr=0;                /* Nonzero if only synchronizing one dataset */
     H5G_stat_t          stat;                           /* Status info for the one_dset */
     int                 i, j;

     /* WARNING! DO NOT CHANGE THIS STRUCT W/O CHANGING THE dset_info_mt MPI DATATYPE! */
     struct dset_info_t {
         haddr_t         objno;                          /* HDF5 address for dataset object header */
         size_t          nreq;                           /* Number of I/O requests for this dataset */
     }                   *dset_info=NULL;                /* Information exchanged between MPI tasks */
     MPI_Datatype        dset_info_mt=MPI_DATATYPE_NULL; /* MPI datatype for struct dset_info_t elements */

     gblob = SS_GFILE_LINK(topscope)->gblob;
     if (ss_scope_comm(topscope, &filecomm, &self, &ntasks)<0) SS_ERROR(FAILED);

     /* Are the callers synchronizing blobs for a particular dataset or all blobs in the file? */
     if (!props || NULL==ss_prop_get(props, "dset", H5T_NATIVE_HID, &one_dset)) {
         SS_STATUS_OK;
         one_dset = -1;
         one_dset_addr = 0;
     } else {
         if (H5Gget_objinfo(one_dset, ".", FALSE, &stat)<0) SS_ERROR(HDF5);
         one_dset_addr = *((haddr_t*)stat.objno);
     }

     /* Sort async list by dataset address but keep ordering per dataset */
     SS_ASSERT(!ss_blob_async_sort_g);
     ss_blob_async_sort_g = gblob;
     qsort(gblob->a, gblob->a_nused, sizeof(gblob->a[0]), ss_blob_async_sort_cb);
     ss_blob_async_sort_g = NULL;

     /* Combine adjacent requests */
     /* ISSUE: This function makes no attempt to combine separate write requests from a single task into a single request. */

     /* Allocate arrays that we'll need later */
     if (NULL==(ndsets=malloc(ntasks*sizeof(*ndsets)))) SS_ERROR(RESOURCE);
     if (NULL==(dset_info=malloc(ntasks*sizeof(*dset_info)))) SS_ERROR(RESOURCE);
     if (NULL==(sel_start=malloc((ntasks+1)*sizeof(*sel_start)))) SS_ERROR(RESOURCE);
     if (NULL==(sel_count=malloc(ntasks*sizeof(*sel_count)))) SS_ERROR(RESOURCE);

     /* Create MPI datatype for dset_info elements */
     {
         static int counts[4] = {1, 1, 1, 1};
         static MPI_Aint starts[4] = {0, offsetof(struct dset_info_t, objno),
                                      offsetof(struct dset_info_t, nreq), sizeof(struct dset_info_t)};
         static MPI_Datatype types[4];
         if (!types[0]) {
             types[0] = MPI_LB;
             types[1] = MPI_HADDR_T;
             types[2] = MPI_SIZE_T;
             types[3] = MPI_UB;
         }
         if (MPI_Type_struct(4, counts, starts, types, &dset_info_mt)) SS_ERROR(MPI);
         if (MPI_Type_commit(&dset_info_mt)) SS_ERROR(MPI);
     }

     /* How many unique datasets does each task have to process? */
     for (a_idx=0, ndsets[self]=0; a_idx<gblob->a_nused; a_idx++) {
         if (one_dset_addr>0) {
             if (*((haddr_t*)(&gblob->d[gblob->a[a_idx].d_idx].stat.objno)[0])==one_dset_addr) {
                 a_start = a_idx;
                 ndsets[self] = 1;
                 break;
             }
         } else if (0==a_idx) {
             ndsets[self]++;
         } else if (!ss_eq_nos(gblob->d[gblob->a[a_idx].d_idx].stat.objno,gblob->d[gblob->a[a_idx-1].d_idx].stat.objno)) {
             ndsets[self]++;
         }
     }
     if (ss_mpi_allgather(ndsets, 1, MPI_SIZE_T, filecomm)<0) SS_ERROR(FAILED);
     for (task=0, ndsets_total=0; task<ntasks; task++) ndsets_total += ndsets[task];

     /* Process each dataset collectively. We could have done one big MPI_Allgather() of all the information we need for every
      * dataset, but that could be an awful lot of dataset I/O records. So instead we locally sort each gblob->a[] and then
      * repeatedly collectively choose the lowest-numbered dataset. */
     a_start_orig = a_start;
     while (ndsets_total) {
         /* Choose the lowest numbered dataset. We can't exchange information about the elements in the data space selection
          * until we know how many selections each task has. Pass zero for the `nreq' field if we don't have any more datasets. */
         if (a_start<gblob->a_nused) {
             dset_info[self].objno = gblob->d[gblob->a[a_start].d_idx].stat.objno;
             for (a_idx=1; a_start+a_idx<gblob->a_nused; a_idx++) {
                 if (*((haddr_t*)(&gblob->d[gblob->a[a_start+a_idx].d_idx].stat.objno)[0])!=dset_info[self].objno) break;
             }
             dset_info[self].nreq = a_idx;
         } else {
             memset(dset_info+self, 0, sizeof(*dset_info));
         }
         if (ss_mpi_allgather(dset_info, 1, dset_info_mt, filecomm)<0) SS_ERROR(FAILED);

         /* Choose the dataset with the lowest object header address or the one that matches one_dset_addr. */
         if (one_dset_addr) {
             smallest_objno = one_dset_addr;
         } else {
             for (task=0, smallest_objno=0; task<ntasks; task++) {
                 if (dset_info[task].nreq>0) {
                     if (smallest_objno==0) {
                         smallest_objno = dset_info[task].objno;
                     } else if (dset_info[task].objno < smallest_objno) {
                         smallest_objno = dset_info[task].objno;
                     }
                 }
             }
             SS_ASSERT(smallest_objno>0); /* someone must have a dataset since ndsets_total is nonzero */
         }

         /* Find information about the dataset by looking for the appropriate entry in the gblob->d array. That array should
          * probably be sorted, but we can't easily sort it here because the gblob->a array contains indices into the gblob->d
          * array. */
         for (d_idx=0; d_idx<gblob->d_nused; d_idx++) if (*((haddr_t*)(&gblob->d[d_idx].stat.objno)[0])==smallest_objno) break;
         SS_ASSERT(d_idx<gblob->d_nused);
         if ((ndims=H5Sget_simple_extent_dims(gblob->d[d_idx].dspace, dset_size, NULL))<0) SS_ERROR(HDF5);

         /* Clean up the exchanged dset_info() by pruning out all entries other than smallest_objno. At the same time compute
          * an exclusive sum scan of the number of integers that must be exchanged in order to fully describe the data space
          * selection of all of the I/O requests for this dataset (see below). */
         for (task=0; task<=ntasks; task++) {
             if (task<ntasks) {
                 if (smallest_objno!=dset_info[task].objno) memset(dset_info+task, 0, sizeof(*dset_info));
                 sel_count[task] = 2 * ndims * dset_info[task].nreq; /* start & count per dimension per request */
             }
             sel_start[task] = task ? sel_start[task-1] + sel_count[task-1] : 0;
         }

         /* Allocate the `sel' array. */
         SS_ASSERT(0 == sel_start[ntasks] % (2*ndims));
         nreq_total = sel_start[ntasks] / (2*ndims);
         SS_EXTEND(sel, sel_start[ntasks], sel_nalloc);

         /* Exchange information about the elements selected for the I/O operation for the smallest dataset.  Each task will
          * broadcast a list of starts (per dimension) and a list of counts (per dimension) repeated once for each I/O request.
          * For each I/O request we group the starts together and the counts together (instead of starts and counts
          * interleaved) because that's how the various HDF5 data space functions take the arguments. So we don't have to
          * shuffle things around as much. */
         for (a_idx=0; a_idx<dset_info[self].nreq; a_idx++) {
             if (ss_blob_ckspace(gblob->a[a_start+a_idx].iof, ndims, NULL,
                                 sel+sel_start[self]+a_idx*ndims*2+0/*starts*/,
                                 sel+sel_start[self]+a_idx*ndims*2+ndims/*counts*/, NULL)<0) SS_ERROR(FAILED);
         }
         if (ss_mpi_allgatherv(sel, sel_count, sel_start, MPI_HSIZE_T, filecomm)) SS_ERROR(MPI);

         /* Find the minimum bounding contiguous hyperslab for the I/O request and represent that with a multi-dimensional
          * start and end stored in bound_start[] and bound_end[] */
         for (i=0; i<ndims; i++) {
             bound_start[i] = sel[i];
             bound_end[i] = bound_start[i] + sel[ndims+i];
         }
         for (req_idx=1; req_idx<nreq_total; req_idx++) {
             for (i=0; i<ndims; i++) {
                 bound_start[i] = MIN(bound_start[i], sel[req_idx*ndims*2+i]);
                 bound_end[i] = MAX(bound_end[i], sel[req_idx*ndims*2+i]+sel[req_idx*ndims*2+ndims+i]);
             }
         }

         /* Extend dataset and reassign aggregators if appropriate */
         for (i=0; i<ndims; i++) {
             if (bound_end[i] > dset_size[i]) {
                 for (j=0; j<ndims; j++) dset_size[j] = MAX(dset_size[j], bound_end[j]);
                 if (H5Dextend(gblob->d[d_idx].dset, dset_size)<0) SS_ERROR(HDF5);
                 if (H5Sclose(gblob->d[d_idx].dspace)<0) SS_ERROR(HDF5);
                 if ((gblob->d[d_idx].dspace=H5Dget_space(gblob->d[d_idx].dset))<0) SS_ERROR(HDF5);
                 if (ss_blob_async_aggregators(filecomm, gblob, d_idx, ndims, dset_size)<0) SS_ERROR(FAILED);
                 break;
             }
         }

         /* If no aggregators are assigned yet then do that now. This takes care of the case when this is the first time
          * 2-phase I/O is performed on this dataset. */
         if (!gblob->d[d_idx].agg.tasks &&
             ss_blob_async_aggregators(filecomm, gblob, d_idx, ndims, dset_size)<0) SS_ERROR(FAILED);

         /* ISSUE: The data shipping code uses MPI async p2p functions even when the source and destination are the same task. */

         /* ISSUE: This function does not attempt to optimize the case when ss_blob_write() was called with the SS_ALLSAME bit
          *        flag. When this bit is set all blob tasks will have called ss_blob_write() with identical data and offsets and
          *        it may therefore be the case that an aggregation task has the data already available locally. */

         /* If the current task is an aggregator then post all receives for data. Allocation of the aggregation buffer might
          * cause us to block until I/O for some other dataset completes, hence *all* sends on other tasks to this task must be
          * posted for all prior datasets for which this task is an aggregator. */
         for (task=0; task<ntasks; task++) {
             for (sel_idx=sel_start[task]; sel_idx<sel_start[task+1]; sel_idx+=ndims*2) {
                 hsize_t *req_dstart = sel + sel_idx;            /* ultimate position of request in the dataset */
                 hsize_t *req_count  = sel + sel_idx + ndims;    /* size of the request */
                 ss_blob_stride_t agg_stride[H5S_MAX_RANK*2];    /* desc of intersection of request with aggregation buffer */
                 int nstrides = ss_blob_async_intersect(gblob, d_idx, self, dset_size, req_dstart, NULL, NULL,
                                                        req_count, agg_stride, NULL);
                 if (nstrides<0) SS_ERROR(FAILED);
                 if (ss_blob_async_receives(gblob, d_idx, task, filecomm, nstrides, agg_stride)<0) SS_ERROR(FAILED);
             }
         }

         /* If the current task has data then post sends to the appropriate aggregators */
         for (a_idx=0; a_idx<dset_info[self].nreq; a_idx++) {
             hsize_t *req_dstart = sel + sel_start[self] + a_idx*ndims*2;          /* ultimate position of request in the dataset */
             hsize_t *req_count = sel + sel_start[self] + a_idx*ndims*2 + ndims;   /* size of the request */
             ss_blob_stride_t send_stride[H5S_MAX_RANK*2];       /* desc of send buffer / aggregation buffer intersection */
             hsize_t req_dfirst_1 = ss_blob_array_linear(ndims, dset_size, req_dstart, NULL);
             hsize_t req_dlast_1 = ss_blob_array_linear(ndims, dset_size, req_dstart, req_count);
             hsize_t min_aggseq = req_dfirst_1 / gblob->d[d_idx].agg.elmts_per_agg;
             hsize_t max_aggseq = req_dlast_1 / gblob->d[d_idx].agg.elmts_per_agg;
             hsize_t mem_size[H5S_MAX_RANK], req_mstart[H5S_MAX_RANK];
             hsize_t aggseq;
             int aggtask, nstrides;

             SS_ASSERT(max_aggseq<gblob->d[d_idx].agg.n);
             if (ss_blob_ckspace(gblob->a[a_start+a_idx].iom, ndims, mem_size, req_mstart, NULL, NULL)<0) SS_ERROR(FAILED);
             for (aggseq=min_aggseq; aggseq<=max_aggseq; aggseq++) {
                 aggtask = gblob->d[d_idx].agg.tasks[aggseq];
                 nstrides = ss_blob_async_intersect(gblob, d_idx, aggtask, dset_size, req_dstart, mem_size, req_mstart,
                                                    req_count, NULL, send_stride);
                 if (nstrides<0) SS_ERROR(FAILED);
                 if (ss_blob_async_sends(gblob, d_idx, aggtask, filecomm, nstrides, send_stride,
                                         gblob->a[a_start+a_idx].buffer, gblob->a[a_start+a_idx].flags)<0)
                     SS_ERROR(FAILED);
                 gblob->a[a_start+a_idx].flags &= ~SS_BLOB_FREE; /* should only be marked for freeing once! */
             }
         }

         /* Update dataset counters based on which tasks have requests for this dataset */
         a_start += dset_info[self].nreq;
         for (task=0; task<ntasks; task++) {
             if (dset_info[task].objno) --ndsets_total;
         }
     }

     /* Delete all the async requests that were just processed */
     for (a_idx=a_start_orig; a_idx<a_start; a_idx++) {
         H5Tclose(gblob->a[a_idx].mtype);
         H5Sclose(gblob->a[a_idx].iom);
         H5Sclose(gblob->a[a_idx].iof);
         /* Do not free gblob->a[a_idx].buffer because we are sending that data to the aggregators. The caller is
          * responsible for freeing that if desired once they know the data shipping has been completed. */
     }
     H5Eclear(); /*we don't care about errors in the above loop*/
     memmove(gblob->a+a_start_orig, gblob->a+a_start, (gblob->a_nused-a_start)*sizeof(gblob->a[0]));
     gblob->a_nused -= a_start - a_start_orig;
     SS_FREE(ndsets);
     SS_FREE(dset_info);
     SS_FREE(sel_count);
     SS_FREE(sel_start);
     SS_FREE(sel);
     if (MPI_Type_free(&dset_info_mt)) SS_ERROR(MPI);
     dset_info_mt = MPI_DATATYPE_NULL;

  SS_CLEANUP:
     /* ISSUE: Lots of error-related stuff needs to go here! */
 #endif /*HAVE_PARALLEL*/

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

	 herr_t
 ss_blob_write(ss_blob_t *blob,                  /* The blob for which data is written, which must be bound to both memory
                                                  * and a dataset. Any task that is part of the file communicator but not the
                                                  * scope communicator is participating soley for the sake of collectivity and
                                                  * should pass the blob's top scope here instead. */
               hid_t iospace,                    /* This is an optional hyperslab describing the part of the blob that is to
                                                  * be written. The extent and selection are relative to the portion of the
                                                  * dataset owned by the blob and described in some previous call to
                                                  * ss_blob_bind_f() (perhaps in an earlier execution). If not specified then
                                                  * all of the blob's data is written. */
               unsigned flags,                   /* Various bit flags commonly passed to this function. */
               ss_prop_t UNUSED *props           /* See [Blob Properties]. (Unused at this time.) */
               )
 {
     SS_ENTER(ss_blob_write, herr_t);
     ss_scope_t          topscope=SS_SCOPE_NULL; /* The top scope for BLOB */
     ss_scope_t          blobscope=SS_SCOPE_NULL;/* Scope that contains BLOB */
     ss_gblob_t          *gblob=NULL;            /* Global blob table from the file */
     size_t              d_idx=SS_NOSIZE;        /* Index into gblob->d table */
     void                *buffer=NULL;           /* Source buffer that was bound to the blob */
     hid_t               iom=-1, iof=-1;         /* Data spaces for memory and file -- extent and selections */
     hid_t               dxpl=-1;                /* Dataset transfer property list -- not copied here so do not close */
     hid_t               mtype=-1;               /* Memory datatype saved after unbind */
     herr_t              status;                 /* Return status of called functions */
     void                *conv_buf=NULL;         /* Conversion buffer */
     int                 blobtask=-1;            /* The rank of the calling task in the blob communicator */
     ss_gfile_t          *gfile=NULL;            /* The file descriptor for the top scope */
     static ss_prop_t    *syncprops=NULL;        /* Synchronization properties */
     MPI_Comm            blobcomm=SS_COMM_NULL;  /* Communicator for the blob's scope */

 #ifdef HAVE_PARALLEL
     int                 ndims;                  /* Dimensionality */
     ss_blob_stride_t    iom_stride;             /* Stride description of memory buffer */
     ss_blob_stride_t    conv_stride;            /* Stride description of conversion buffer */
     hsize_t             buf_size[H5S_MAX_RANK]; /* Size of memory buffer */
     hsize_t             slab_start[H5S_MAX_RANK];/* Starting address of slab in buffer */
     hsize_t             slab_count[H5S_MAX_RANK];/* Size of the slab for I/O */
     hsize_t             nelmts_h;               /* Bigger, temporary version of `nelmts' */
     size_t              nelmts;                 /* Total number of elements being written */
     size_t              max_tsize;              /* Maximum of memory and file datatype sizes */
 #endif

     if (flags & SS_ALLSAME) flags |= SS_BLOB_COLLECTIVE;
     if (!ss_mpi_extras((ss_pers_t**)&blob, &topscope)) SS_ERROR(FAILED);
     gfile = SS_GFILE_LINK(&topscope);
     gblob = gfile->gblob;

     /* Create synchronization property list */
     if (!syncprops) {
         if (NULL==(syncprops=ss_prop_new("blob sync props"))) SS_ERROR(FAILED);
         if (ss_prop_add(syncprops, "dset", H5T_NATIVE_HID, NULL)<0) SS_ERROR(FAILED);
     }

     if (blob) {
         /* Get blob's scope, communicator, and MPI task number in that communicator */
         if (NULL==ss_pers_scope((ss_pers_t*)blob, &blobscope)) SS_ERROR(FAILED);
         if (ss_scope_comm(&blobscope, &blobcomm, &blobtask, NULL)<0) SS_ERROR(FAILED);

         /* Verify data space consistency to the extent possible without actually calling H5Dwrite(). This also generates the
          * dataset-dimension data spaces for memory and file. We have to do this before unbinding the memory but we still want
          * to unbind it if necessary. So the error return is delayed until after the unbinding. */
         if ((status = ss_blob_ckspaces(blob, iospace, &iom, &iof))<0) SS_SAVE;

         /* Get the source buffer at this early stage so we can unbind before most errors if so requested. */
         if (NULL==(buffer=SS_BLOB(blob)->m.mem)) SS_ERROR_FMT(USAGE, ("blob is not bound to memory"));

         /* Unbind memory */
         if (flags & SS_BLOB_UNBIND) {
             SS_BLOB(blob)->m.mem = NULL;
             mtype = SS_BLOB(blob)->m.mtype; /*will be closed at end*/
             SS_BLOB(blob)->m.mtype = 0;
             if (H5Sclose(SS_BLOB(blob)->m.mspace)<0) SS_ERROR(HDF5);
             SS_BLOB(blob)->m.mspace = 0;
         } else {
             if ((mtype = H5Tcopy(SS_BLOB(blob)->m.mtype))<0) SS_ERROR(HDF5);
         }

         /* Now that we've had an opportunity to unbind, raise the ss_blob_ckspaces() error if there was one. */
         if (status<0) {
             SS_REFAIL;
             SS_ERROR(FAILED);
         }

         if ((flags & SS_BLOB_FREE) && !(flags & SS_BLOB_UNBIND)) SS_ERROR_FMT(USAGE, ("SS_BLOB_FREE requires SS_BLOB_UNBIND"));

         /* Make sure the blob is bound to a dataset. Perhaps this can be relaxed in the future, making it symmetric with
          * ss_blob_read() which can operate when the blob is not bound to memory. */
         if (!SS_BLOB(blob)->dsetaddr) SS_ERROR_FMT(USAGE, ("blob is not bound to a dataset"));
         if (SS_NOSIZE==(d_idx=ss_blob_didx(blob))) SS_ERROR(FAILED);
         SS_ASSERT(SS_BLOB(blob)->dsetaddr==*((haddr_t*)(&gblob->d[d_idx].stat.objno)[0]));
         SS_ASSERT(gblob->d[d_idx].dset>0);

 #ifdef HAVE_PARALLEL
         /* Synchronous or asynchronous two-phase I/O. We can use two-phase I/O if it is enabled and either the SS_BLOB_ASYNC
          * or SS_BLOB_COLLECTIVE flags are set. However, if the SS_ALLSAME flag is set then we fall back to the basic
          * H5Dwrite() because two-phase I/O has not been optimized for that case: the basic H5Dwrite() is probably faster. */
         if (gblob->agg.maxaggtasks>0 &&
             (flags & (SS_BLOB_ASYNC|SS_BLOB_COLLECTIVE)) &&
             0==(flags & SS_ALLSAME)) {
             if ((nelmts_h=H5Sget_select_npoints(iom))>0) {
                 SS_ASSERT(nelmts_h<(hsize_t)SS_NOSIZE); /*because we cast it below*/
                 nelmts = (size_t)nelmts_h;
                 if ((flags & SS_BLOB_COPY) || !H5Tequal(mtype, gblob->d[d_idx].dtype)) {
                     max_tsize = MAX(H5Tget_size(mtype), H5Tget_size(gblob->d[d_idx].dtype));
                     if (NULL==(conv_buf=malloc(max_tsize*nelmts))) SS_ERROR(RESOURCE);
                     ss_blob_sendbuf_total_g++; /*total number of buffers allocated; not bytes!*/
                     if ((ndims = ss_blob_ckspace(iom, H5S_MAX_RANK, buf_size, slab_start, slab_count, NULL))<0) SS_ERROR(FAILED);
                     SS_ASSERT(ndims>0); /*probably doesn't work for scalar? [rpm 2004-06-23]*/
                     if (ss_blob_stride(ndims, buf_size, slab_start, slab_count, &iom_stride)<0) SS_ERROR(FAILED);
                     if (ss_blob_stride_1((hsize_t)0, (hsize_t)nelmts, &conv_stride)<0) SS_ERROR(FAILED);
                     if (ss_blob_stride_copy(conv_buf, &conv_stride, buffer, &iom_stride, H5Tget_size(mtype))<0) SS_ERROR(FAILED);
                     if (H5Tconvert(mtype, gblob->d[d_idx].dtype, nelmts, conv_buf, NULL, H5P_DEFAULT)<0) SS_ERROR(FAILED);
                     if (flags & SS_BLOB_FREE) SS_FREE(buffer);
                     buffer = conv_buf;
                     flags |= SS_BLOB_FREE;
                     if (H5Sclose(iom)<0) SS_ERROR(HDF5);
                     if ((iom = H5Screate_simple(ndims, slab_count, slab_count))<0) SS_ERROR(HDF5);
                 }
                 if (ss_blob_async_append(gblob, d_idx, mtype, iom, iof, buffer, flags)<0) SS_ERROR(FAILED);
                 mtype = iom = iof = -1;
             }

             /* If the ASYNC flag is not set (then the COLLECTIVE flag _must_ be set) then we must block for the two-phase
              * I/O operation to complete: both data shipping and the H5Dwrite() call. */
             if (0==(flags & SS_BLOB_ASYNC)) {
                 SS_ASSERT(flags & SS_BLOB_COLLECTIVE);
                 if (ss_prop_set(syncprops, "dset", H5T_NATIVE_HID, &(gblob->d[d_idx].dset))<0) SS_ERROR(FAILED);
                 if (ss_blob_synchronize(&topscope, syncprops)<0) SS_ERROR(FAILED); /*initiate data shipping*/
                 if (ss_blob_async_flush(gblob, d_idx, gfile->dxpl_independent, SS_STRICT)<0) SS_ERROR(FAILED);
                 /* ISSUE: I don't think an MPI_Barrier() is sufficient to make the aggregators' independent H5Dwrite()
                  *        data to become available to the other tasks for reading. We may need either an MPI_File_sync()
                  *        or we may need to have the tasks write collectively. [rpm 2004-07-26] */
                 if (ss_mpi_barrier(blobcomm)<0) SS_ERROR(FAILED); /*wait for aggregators' independent H5Dwrite() calls*/
             }
             goto done;
         }
 #endif

         /* Write the data synchronously */
         if (flags & SS_ALLSAME) {
             /* Only one task needs to write the data. We use blob task zero by default. However, all tasks must synchronize
              * because the other tasks were expecting to not return until their data had been written. */
             if (0==blobtask) {
                 dxpl = SS_GFILE_LINK(&topscope)->dxpl_independent;
                 if (H5Dwrite(gblob->d[d_idx].dset, mtype, iom, iof, dxpl, buffer)<0) SS_ERROR(HDF5);
             }
             /* ISSUE: I don't think an MPI_Barrier() is sufficient here. We may need either an MPI_File_sync() or we may need
              *        to have the tasks write collectively but only one supplying data. [rpm 2004-07-26] */
             if (ss_mpi_barrier(blobcomm)<0) SS_ERROR(FAILED);
         } else {
             /* All tasks have data to write */
             dxpl = flags & SS_BLOB_COLLECTIVE ?
                    SS_GFILE_LINK(&topscope)->dxpl_collective :
                    SS_GFILE_LINK(&topscope)->dxpl_independent;
             if (H5Dwrite(gblob->d[d_idx].dset, mtype, iom, iof, dxpl, buffer)<0) SS_ERROR(HDF5);
         }
         if (flags & SS_BLOB_FREE) SS_FREE(buffer);
     }

 #ifdef HAVE_PARALLEL
  done:
 #endif

     /* Successful cleanup */
     if (iom>0 && H5Sclose(iom)<0) SS_ERROR(HDF5);
     iom = -1;
     if (iof>0 && H5Sclose(iof)<0) SS_ERROR(HDF5);
     iof = -1;
     if (mtype>0 && H5Tclose(mtype)<0) SS_ERROR(HDF5);
     mtype = -1;

  SS_CLEANUP:
     if (iom>0) H5Sclose(iom);
     if (iof>0) H5Sclose(iof);
     if (mtype>0) H5Tclose(mtype);
     SS_FREE(conv_buf);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 herr_t
 ss_blob_write1(ss_blob_t *blob,                 /* The blob for which data is written. This blob must be bound to both memory
                                                  * and a dataset */
                hsize_t offset,                  /* Offset into the blob data for the first element to be written. */
                hsize_t nelmts,                  /* Number of consecutive elements to be written. */
                unsigned flags,                  /* See ss_blob_write(). */
                ss_prop_t *props                 /* See [Blob Properties]. */
                )
 {
     SS_ENTER(ss_blob_write1, herr_t);
     hid_t       iospace=-1;
     int         ndims;

     SS_ASSERT_MEM(blob, ss_blob_t);
     if ((ndims=ss_blob_space(blob, NULL, &iospace))<0) SS_ERROR(FAILED);
     if (1!=ndims && 0!=ndims) SS_ERROR_FMT(USAGE, ("blob is not one-dimensional or scalar"));

     /* Select the elements of the `iospace'. Even if `nelmts' is zero we still have to call ss_blob_write() for some side
      * effects like for the SS_BLOB_UNBIND bit flag. */
     if (0==ndims) {
         SS_ASSERT(0==nelmts || 1==nelmts);
         SS_ASSERT(0==offset || 0==nelmts);
         if (0==nelmts) {
             if (H5Sselect_none(iospace)<0) SS_ERROR(HDF5);
         } else {
             if (H5Sselect_all(iospace)<0) SS_ERROR(HDF5);
         }
     } else {
         if (H5Sselect_slab(iospace, H5S_SELECT_SET, (hsize_t)0, &offset, &nelmts)<0) SS_ERROR(HDF5);
     }

     /* The actual write */
     if (ss_blob_write(blob, iospace, flags, props)<0) SS_ERROR(FAILED);

     /* Successful cleanup */
     if (H5Sclose(iospace)<0) SS_ERROR(HDF5);
     iospace = -1;

  SS_CLEANUP:
     if (iospace>0) H5Sclose(iospace);

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	 char *
 ss_bytes(hsize_t nbytes,
          char *buf              /* Optional buffer to hold the results. If the user supplies the buffer then it should be
                                  * large enough to hold the result. On a 64-bit machine that would be at least 62 bytes. If
                                  * the caller passes the null pointer then one of six static buffers will be used (don't
                                  * make more than six calls to this function in a single printf() argument list). */
          )
 {
     SS_ENTER(ss_bytes, charP);
     static char buffers[6][64];
     static int ncalls=0;
     char tmp[32], join[2];
     size_t ng = nbytes >> 30;
     size_t nm = (nbytes >> 20) & 0x3ff;
     size_t nk = (nbytes >> 10) & 0x3ff;
     size_t nb = nbytes & 0x3ff;

     if (!buf)
         buf = buffers[ncalls++ % 4];

     /* The decimal part with commas */
     sprintf(tmp, "%llu", (unsigned long_long)nbytes);
     if (NULL==ss_insert_commas(tmp)) SS_ERROR(FAILED);
     strcpy(buf, tmp);

     /* The parenthesised part */
     join[0] = join[1] = '\0';
     if (nbytes>=1024) {
         strcat(buf, " (");
         if (ng) {
             sprintf(tmp, "%lu", (unsigned long)ng);
             if (NULL==ss_insert_commas(tmp)) SS_ERROR(FAILED);
             sprintf(buf+strlen(buf), "%sG", tmp);
             *join = '+';
         }
         if (nm) {
             sprintf(buf+strlen(buf), "%s%luM", join, (unsigned long)nm);
             *join = '+';
         }
         if (nk)
             sprintf(buf+strlen(buf), "%s%luk", join, (unsigned long)nk);
         if (nb)
             sprintf(buf+strlen(buf), "+%lu", (unsigned long)nb);
         strcat(buf, ")");
     }
 SS_CLEANUP:
     SS_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	 herr_t
 ss_debug(void)
 {
     SS_ENTER(ss_debug, herr_t);
     char        line[1024], c[1];
     int         i, self;

     if (sslib_g.command_fd<0) goto done;
     self = ss_mpi_comm_rank(SS_COMM_WORLD);

     while (1) {
         /* Prompt */
         if (isatty(sslib_g.command_fd))
             fprintf(stderr, "SSlib-%d> ", self);

         /* Read a line of input */
         for (i=0, line[0]='\0'; (size_t)i+1<sizeof line; i++) {
             ssize_t nread = read(sslib_g.command_fd, c, 1);
             if (0==nread) {
                 if (0==i) strcpy(line, "detach");
                 break;
             }
             if (nread<0) SS_ERROR_FMT(CORRUPT, ("read failed from fd %d: %s", sslib_g.command_fd, strerror(errno)));
             if ('\n'==*c) break;
             line[i] = *c;
             line[i+1] = '\0';
         }
         if (!strcmp(line, "detach")) break;

         /* Process the command, but if an error occurs print it and continue as normal */
         if (ss_debug_s(line)<0) SS_ERROR_NOW(FAILED, (""));
     }

 done:
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

	 herr_t
 ss_debug_env(MPI_Comm UNUSED_SERIAL comm,       /* The library communicator. Pass any integer value when using a version of
                                                  * SSlib compiled without MPI support. */
          const char *s_const                    /* Optional string to use instead of looking at the SSLIB_DEBUG environment
                                                  * variable. Pass null to use SSLIB_DEBUG instead. Passing an empty string
                                                  * (or all white space) accomplishes nothing. Task zero broadcasts this string
                                                  * to all the other tasks. */
          )
 {
     SS_ENTER(ss_debug_env, herr_t);
     const char  *s_hdf5=NULL;                   /* value of the HDF5_DEBUG environment variable */
     int         s_len[2];                       /* length of SSLIB_DEBUG and HDF5_DEBUG environment variable values */
     char        *s=NULL, *s_here=NULL;          /* malloc'd version of SSLIB_DEBUG's value; `s' is for strtok() 1st arg */
     char        *rest=NULL;                     /* ptr into `s' for first char after parsing a number with strtol() */
     int         fd=2;                           /* file number for output, defaults to stderr */
     int         self, ntasks;                   /* MPI rank and size of COMM */
     char        buf1[1024], buf2[1024], buf3[1024];/* temporary buffers */
     char        *filename=NULL;                 /* Name of file to be opened */
     hbool_t     *task_enabled=NULL;             /* array specifying which tasks are affected by the following terms */
     hbool_t     debugger_started=FALSE;         /* has the `debugger' keyword been processed already? */
     long        nl;                             /* return value from strtol() */
     size_t      nchars;
     int         i, n, sign, nterms;
     const char  *source=NULL;

     /* Initializations */
     if ((self=ss_mpi_comm_rank(comm))<0) SS_ERROR(FAILED);
     if ((ntasks=ss_mpi_comm_size(comm))<0) SS_ERROR(FAILED);
     if (NULL==(task_enabled=malloc(ntasks*sizeof(*task_enabled)))) SS_ERROR(RESOURCE);
     for (i=0; i<ntasks; i++) task_enabled[i] = TRUE;

     /* Task zero gets the values of SSLIB_DEBUG and HDF5_DEBUG and broadcasts their lengths to the other tasks. We use
      * `int' for the string lengths because the MPI_SIZE_T type isn't initialized by ss_mpi_init() until after we've
      * parsed the SSLIB_DEBUG environment variable. */
     if (0==self) {
         if (s_const) {
             source = "supplied string";
         } else {
             source = "$SSLIB_DEBUG";
             s_const = getenv("SSLIB_DEBUG");
         }
         s_len[0] = s_const ? (int)strlen(s_const)+1 : 0;
         s_hdf5 = getenv("HDF5_DEBUG");
         s_len[1] = s_hdf5 ? (int)strlen(s_hdf5)+1 : 0;
     }
     if (ss_mpi_bcast(&s_len, 2, MPI_INT, 0, comm)<0) SS_ERROR(FAILED);

     if (s_len[0]>0) {
         /* Broadcast the SSLIB_ERROR value */
         if (NULL==(s=s_here=malloc((size_t)MAX(s_len[0], s_len[1])))) SS_ERROR(RESOURCE);
         if (0==self) strcpy(s, s_const);
         if (ss_mpi_bcast(s, (size_t)(s_len[0]), MPI_CHAR, 0, comm)<0) SS_ERROR(FAILED);

         /* Parse the SSLIB_ERROR value */
         while (s && *s) {
             if (s[0]==';') {
                 s++;
             } else if (!strncmp(s, "task=", 5)) {
                 /* Select certain tasks */
                 s += 5;
                 sign = 0;
                 nterms = 0;

                 while (*s && ';'!=*s) {

                     /* Get the leading `+' or `-' sign. It applies to all subsequent task numbers in the list */
                     while (*s && isspace(*s)) s++;
                     if ('-'==*s) {
                         sign = -1;
                         s++;
                     } else if ('+'==*s) {
                         sign = 1;
                         s++;
                     }

                     while (*s && isspace(*s)) s++;
                     if (!strncmp(s, "all", 3)) {
                         for (i=0; i<ntasks; i++) task_enabled[i] = TRUE;
                         s += 3;
                     } else if (!strncmp(s, "none", 4)) {
                         for (i=0; i<ntasks; i++) task_enabled[i] = FALSE;
                         s += 4;
                     } else if ((nl=strtol(s, &rest, 0)) || rest!=s) {
                         if (nl<0 || nl>=ntasks) SS_ERROR_FMT(DOMAIN, ("task rank %ld is not valid in %s", nl, source));
                         if (sign>0) {
                             task_enabled[nl] = TRUE;
                         } else if (sign<0) {
                             task_enabled[nl] = FALSE;
                         } else {
                             if (0==nterms) {
                                 for (i=0; i<ntasks; i++) task_enabled[i] = FALSE;
                             }
                             task_enabled[nl] = TRUE;
                         }
                         s = rest;
                     } else {
                         SS_ERROR_FMT(USAGE, ("malformed task specification in %s at: %s", source, s));
                     }
                     if (','==*s) s++;
                     nterms++;
                 }

             } else if (!strncmp(s, "error=", 6)) {
                 if ((0==(nl=strtol(s+6, &rest, 0)) && rest==s) || (*rest!=';' && *rest!='\0'))
                     SS_ERROR_FMT(USAGE, ("malformed error number in %s at: %s", source, s));
                 if (task_enabled[self]) {
                     sslib_g.show_error_ids = TRUE;
                     sslib_g.debug_error = nl;
                 }
                 s = rest;

             } else if (!strncmp(s, "error", 5) && (';'==s[5] || !s[5])) {
                 if (task_enabled[self]) sslib_g.show_error_ids = TRUE;
                 s += 5;

             } else if (!strncmp(s, "file=", 5)) {
                 /* Select file descriptor and/or open a file */
                 s += 5;

                 /* Look for a leading integer optionally followed by a comma */
                 if ((0==(nl=strtol(s, &rest, 0)) && rest==s) ||                 /* if no leading integer, or ... */
                     (*rest!=',' && *rest!=';' && *rest!='\0')) {                /* something other than ',' or ';' follows... */
                     n = -1;                                                     /* then there is no leading file descriptor. */
                 } else {
                     SS_ASSERT(nl<=INT_MAX);
                     n = (int)nl;
                     s = ','==*rest ? rest+1 : rest;                             /* otherwise skip the descriptor and ',' */
                 }

                 /* Look for a file name. It is an error if there's no name and the destination fd is negative */
                 if ((!s || !*s || ';'==*s) && n<0) {
                     SS_ERROR_FMT(USAGE, ("malformed file term in %s", source));
                 } else if (!strncmp(s, "none", 4) && (';'==s[4] || !s[4])) {
                     if (task_enabled[self]) {
                         s += 4;
                         if (n>=0) SS_ERROR_FMT(USAGE, ("file descriptor and `none' both specified in %s", source));
                         fd = -1;
                     }
                 } else if (*s && ';'!=*s) {
                     if ((rest=strchr(s, ';'))) {
                         SS_ASSERT((size_t)(rest-s) < sizeof buf1);
                         strncpy(buf1, s, (size_t)(rest-s));
                         buf1[rest-s] = '\0';
                         sprintf(buf2, buf1, self);
                         sprintf(buf3, buf1, -1); /*for comparison later*/
                         s = rest;
                     } else {
                         sprintf(buf2, s, self);
                         sprintf(buf3, s, -1); /*for comparison later*/
                         s = NULL;
                     }
                     if ('<'==buf2[0]) {
                         /* The file is being opened for reading. */
                         if (task_enabled[self]) {
                             filename = buf2+1;
                             fd = open(filename, O_RDONLY);
                             if (fd<0) SS_ERROR_FMT(FAILED, ("cannot open file `%s': %s", filename, strerror(errno)));
                         }
                     } else if (!strcmp(buf2, buf3)) {
                         /* All tasks are opening the same file. The lowest numbered task will create or truncate the file and
                          * then everyone else will open it for appending. This prevents tasks from clobbering each other's
                          * output. */
                         for (i=0; i<ntasks; i++) if (task_enabled[i]) break;
                         if (i==self) {
                             /* The first task should create/truncate the file */
                             fd = open(buf2, O_RDWR|O_CREAT|O_TRUNC|O_APPEND, 0666);
                             if (fd<0) SS_ERROR_FMT(FAILED, ("cannot create file `%s': %s", buf2, strerror(errno)));
                         }
                         ss_mpi_barrier(comm);
                         if (task_enabled[self] && i!=self) {
                             /* All other tasks just open the file */
                             fd = open(buf2, O_RDWR|O_APPEND, 0666);
                             if (fd<0) SS_ERROR_FMT(FAILED, ("cannot open file `%s': %s", buf2, strerror(errno)));
                         }
                     } else if (task_enabled[self]) {
                         /* All tasks are opening different files */
                         fd = open(buf2, O_RDWR|O_CREAT|O_TRUNC|O_APPEND, 0666);
                         if (fd<0) SS_ERROR_FMT(FAILED, ("cannot create file `%s': %s", buf2, strerror(errno)));
                     }
                     if (task_enabled[self] && n>=0) {
                         if (dup2(fd, n)<0) SS_ERROR_FMT(FAILED, ("dup2 failed: %s", strerror(errno)));
                         close(fd);
                         fd = n;
                     }
                 } else if (n>0) {
                     if (task_enabled[self]) fd = n;
                 }

             } else if (!strncmp(s, "stop", 4) && (';'==s[4] || !s[4])) {
                 /* Stop all affected tasks immediately */
                 s += 4;
                 if (task_enabled[self]) {
 #ifdef HAVE_KILL
                     sprintf(buf1, "SSLIB: MPI task %d, PID %d is stopping with SIGSTOP\n", self, getpid());
                     if (strlen(buf1)!=(size_t)write(fd, buf1, strlen(buf1))) write(2, buf1, strlen(buf1));
                     kill(getpid(), SIGSTOP);
 #else
                     SS_ERROR_FMT(NOTIMP, ("keyword `stop' is not supported in %s on this platform", source));
 #endif
                 }

             } else if (!strncmp(s, "pause=", 6)) {
                 if ((0==(nl=strtol(s+6, &rest, 0)) && rest==s) || nl<0 || (*rest!=';' && *rest!='\0'))
                     SS_ERROR_FMT(USAGE, ("malformed pause value in %s at: %s", source, s));
                 if (task_enabled[self]) {
                     fprintf(stderr, "SSLIB: MPI task %d, PID %d is pausing for %ld second%s\n", self, getpid(), nl, 1==nl?"":"s");
 #ifdef WIN32
                     if (nl) Sleep((unsigned)nl*1000);
 #else
                     if (nl) sleep((unsigned)nl);
 #endif
                 }
                 s = rest;

             } else if (!strncmp(s, "banner=", 7)) {
                 s += 7;
                 for (nchars=0; s[nchars] && ';'!=s[nchars]; nchars++) /*void*/;
                 sslib_g.banner = SS_FREE(sslib_g.banner);
                 if (nchars) {
                     if (NULL==(sslib_g.banner=malloc(nchars+1))) SS_ERROR_FMT(RESOURCE, ("banner string"));
                     strncpy(sslib_g.banner, s, nchars);
                     sslib_g.banner[nchars] = '\0';
                 }
                 s += nchars;

             } else if (!strncmp(s, "debugger=", 9)) {
                 s += 9;
                 if ((rest = strchr(s, ';'))) {
                     nchars = MIN(sizeof(sslib_g.debugger)-1, (size_t)(rest-s));
                     strncpy(sslib_g.debugger, s, nchars);
                     sslib_g.debugger[nchars] = '\0';
                     s = rest;
                 } else {
                     nchars = MIN(sizeof(sslib_g.debugger)-1, strlen(s));
                     strncpy(sslib_g.debugger, s, nchars);
                     sslib_g.debugger[nchars] = '\0';
                     s = NULL;
                 }

             } else if (!strncmp(s, "debug", 5) && (';'==s[5] || !s[5])) {

                 /* Spawn a debugger and attach it to the first affected task */
                 s += 5;
                 if (task_enabled[self]) {
                     if (ss_debug_start(sslib_g.debugger)<0) SS_ERROR(FAILED);
                     debugger_started = TRUE;
                     sslib_g.debug_signal = FALSE;
                 }

             } else if (!strncmp(s, "signal", 6) && (';'==s[6] || !s[6])) {
                 /* Cause certain program error signals to start a debugger */
 #ifdef HAVE_SIGACTION
                 struct sigaction newaction;
                 s += 6;
                 if (task_enabled[self] && !debugger_started) {
                     sslib_g.debug_signal = TRUE;
                     newaction.sa_handler = ss_debug_signal;
                     sigemptyset(&(newaction.sa_mask));
                     newaction.sa_flags = 0;
                     sigaction(SIGABRT, &newaction, NULL);
                     sigaction(SIGSEGV, &newaction, NULL);
                     sigaction(SIGILL,  &newaction, NULL);
                     sigaction(SIGBUS,  &newaction, NULL);
                     sigaction(SIGFPE,  &newaction, NULL);
                 }
 #else
                 SS_ERROR_FMT(NOTIMP, ("keyword `signal' not supported in %s on this platform", source));
 #endif

             } else if (!strncmp(s, "stack", 5) && (';'==s[5] || !s[5])) {
                 /* Set file descriptor for stack traces */
                 s += 5;
                 if (task_enabled[self]) ss_err_cntl_g.fd = fd;

             } else if (!strncmp(s, "pid", 3) && (';'==s[3] || !s[3])) {
 #ifdef HAVE_GETPID
                 s += 3;
                 if (task_enabled[self]) {
                     sprintf(buf1, "SSLIB: MPI task %d has PID %d\n", self, getpid());
                     if (strlen(buf1)!=(size_t)write(fd, buf1, strlen(buf1))) write(2, buf1, strlen(buf1));
                 }
 #else
                 SS_ERROR_FMT(NOTIMP, ("keyword `pid' not supported in %s on this platform", source));
 #endif

             } else if (!strncmp(s, "commands", 8) && (';'==s[8] || !s[8])) {
                 s += 8;
                 if (task_enabled[self]) sslib_g.command_fd = fd;

             } else if (!strncmp(s, "mpi", 3) && (';'==s[3] || !s[3])) {
                 s += 3;
                 if (task_enabled[self]) sslib_g.ignore_mpierror = TRUE;

             } else if (!strncmp(s, "warnings", 8) && (';'==s[8] || !s[8])) {
                 s += 8;
                 if (task_enabled[self]) sslib_g.warnings = fdopen(fd, "w"); /*do not close old one*/

             } else if (!strncmp(s, "check=", 6)) {
                 /* check=sync        -- turn on default synchronization checking/debugging options
                  * check=!sync       -- turn off all synchronization checking/debugging options
                  * check=sync=bcast  -- turn on sync bcast debugging
                  * check=!sync=bcast -- turn off sync bcast debugging
                  * etc. */
                 s += 6;
                 while (*s && ';'!=*s) {
                     hbool_t turn_off=FALSE;
                     if ('-'==*s) {
                         turn_off = TRUE;
                         s++;
                     }
                     if (!strncmp(s, "sync", 4) && (';'==s[4] || ','==s[4] || '='==s[4] || !s[4])) {
                         s += 4;
                         if ('='==*s) {
                             s++;
                             while (*s && ';'!=*s) {
                                 if (!strncmp(s, "error", 5) && (';'==s[5] || ','==s[5] || !s[5])) {
                                     s += 5;
                                     if (task_enabled[self]) sslib_g.sync_check = turn_off ? FALSE : SS_STRICT;
                                 } else if (!strncmp(s, "bcast", 5) && (';'==s[5] || ','==s[5] || !s[5])) {
                                     s += 5;
                                     if (task_enabled[self]) sslib_g.sync_bcast = turn_off ? FALSE : TRUE;
                                 } else {
                                     SS_ERROR_FMT(USAGE, ("unknown attribute for check=%ssync in %s at: %s",
                                                          turn_off?"-":"", source, s));
                                 }
                                 while (*s && ','==*s) s++;
                             }
                         } else if (task_enabled[self]) {
                             if (turn_off) {
                                 sslib_g.sync_check = FALSE;
                                 sslib_g.sync_bcast = FALSE;
                             } else {
                                 /* Default values */
                                 sslib_g.sync_check = TRUE;
                                 sslib_g.sync_bcast = FALSE;
                             }
                         }
                     } else if (!strncmp(s, "2pio", 4) && (';'==s[4] || ','==s[4] || !s[4])) {
                         s += 4;
                         sslib_g.tpio_alloc = turn_off ? FALSE : TRUE; /*regardless of task_enabled[]*/
                     } else {
                         SS_ERROR_FMT(USAGE, ("unknown category for check in %s at: %s%s",
                                              source, turn_off?"-":"", s));
                     }
                     while (*s && ','==*s) s++;
                 }

             } else {
                 SS_ERROR_FMT(USAGE, ("unknown term in %s at: %s", source, s));
             }

             while (s && ';'==*s) s++;
         }

 #if 0 /* disable because there is no H5debug_mask() yet. --rpm 2003-09-12 */
         /* Broadcast the HDF5_DEBUG value and reinitialize HDF5's debug settings */
         if (H5debug_mask("-all")<0) SS_ERROR(HDF5);
         if (s_hdf5) {
             if (0==self) strcpy(s_here, s_hdf5);
             if (MPI_Bcast(s_here, s_len[1], MPI_CHAR, 0, comm)) SS_ERROR(MPI);
             if (H5debug_mask(s_here)<0) SS_ERROR(HDF5);
         }
 #endif

         /* Cleanup */
         s_here = SS_FREE(s_here);
     }
  task_enabled = SS_FREE(task_enabled);

  SS_CLEANUP:
     SS_FREE(s_here);
     SS_FREE(task_enabled);

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

	 herr_t
 ss_debug_s(const char *cmd)
 {
     SS_ENTER(ss_debug_s, herr_t);
     static size_t       old_begin[3] = {3, 0, 0};       /* beginning file, scope, object indices from previous command */
     static size_t       old_final[3] = {3, 0, 0};       /* ending (inclusive) file, scope, and object indices from previous */
     size_t              cur_begin[3], cur_final[3];     /* beginning and ending indices for the current command */
     hbool_t             indirect;                       /* whether the `i' or `I' is seen before a number */
     int                 self=0;                         /* MPI task rank */
     unsigned            seq;                            /* Magic sequence number for object classes */
     char                *rest;                          /* for strtol(), actually points to const char* */
     char                command[64];                    /* The first word of the command string */
     size_t              gfile_idx, scope_idx, obj_idx;  /* Indices for GFile, scope, and object */
     ss_gfile_t          *gfile=NULL;                    /* The GFile struct for the object being dumped */
     ss_scope_t          scope=SS_SCOPE_NULL;            /* The scope for the object being dumped */
     ss_pers_t           pers=SS_PERS_NULL;              /* The handle for the object being dumped */
     ss_persobj_t        *persobj=NULL;                  /* Pointer to the persistent object */
     char                intro[32];                      /* Prefix for each line of output */
     const char          *cs;                            /* Temporary pointer into CMD */
     ss_table_t          *table=NULL;                    /* Table holding the object to be dumped */

     int                 i;                              /* Counters */
     size_t              at;

     self = ss_mpi_comm_rank(SS_COMM_WORLD);
     sprintf(intro, "SSlib-%d: ", self);

     /* Extract the command word from the beginning of the string and advance CMD to the beginning of the arguments */
     at = 0;
     while (*cmd && isspace(*cmd)) cmd++;
     while (*cmd && !isspace(*cmd)) {
         if (at+1>=sizeof command) SS_ERROR_FMT(USAGE, ("command name is too long"));
         command[at++] = *cmd++;
     }
     command[at] = '\0';
     while (*cmd && isspace(*cmd)) cmd++;

     /* Check for commands that are class names. Such commands are followed by up to three comma-separated indices or index
      * ranges, one for the file, one for the scope within the file, and one for the object within the table (the table that is
      * used is implied by the command, e.g, the "set" table for the "set" command). An index range is two indices separated by
      * a dash (such as `4-8') or a single `*'. An index is either a nonnegative integer preceded by an optional `i' or `I' to
      * indicate an indirect index. */
     for (seq=0; seq<SS_PERS_NCLASSES; seq++) {
         if (NULL==SS_PERS_CLASS(seq) || strcmp(command, SS_PERS_CLASS(seq)->name)) continue;

         /* Count the comma-separated indices and/or index ranges. There should be one, two, or three */
         for (cs=cmd, i=0; strchr(cs, ','); cs=strchr(cs, ',')+1, i++) /*void*/;
         if (i>2) SS_ERROR_FMT(USAGE, ("malformed arguments for `%s' command: %s", command, cmd));

         /* Parse each argument, skipping over the leading elements of cur_begin and cur_final that are not specified with
          * arguments. Use old_begin[] and old_final[] as defaults for missing index ranges. */
         memcpy(cur_begin, old_begin, sizeof cur_begin);
         memcpy(cur_final, old_final, sizeof cur_final);
         for (i=2-i; i<3 && *cmd; i++) {
             if ('*'==*cmd) {
                 cur_begin[i] = 0;
                 cur_final[i] = SS_NOSIZE;
                 for (cmd++; *cmd && isspace(*cmd); cmd++) /*void*/;
             } else {
                 /* First index in the range */
                 if ('i'==*cmd || 'I'==*cmd) {
                     indirect = TRUE;
                     cmd++;
                 } else {
                     indirect = FALSE;
                 }
                 errno = 0;
                 cur_begin[i] = strtol(cmd, &rest, 0);
                 if (rest==cmd || errno)
                     SS_ERROR_FMT(USAGE, ("bad arg list for `%s' command beginning at: %s", command, cmd));
                 if (indirect) cur_begin[i] |= SS_TABLE_INDIRECT;
                 for (cmd=rest; *cmd && isspace(*cmd); cmd++) /*void*/;

                 /* Second index in the range */
                 if ('-'==*cmd) {
                     for (cmd++; *cmd && isspace(*cmd); cmd++) /*void*/;
                     if ('i'==*cmd || 'I'==*cmd) {
                         indirect = TRUE;
                         cmd++;
                     } else {
                         indirect = FALSE;
                     }
                     errno = 0;
                     cur_final[i] = strtol(cmd, &rest, 0);
                     if (rest==cmd || errno)
                         SS_ERROR_FMT(USAGE, ("bad arg list for `%s' command beginning at: %s", command, cmd));
                     if (indirect) cur_final[i] |= SS_TABLE_INDIRECT;
                     for (cmd=rest; *cmd && isspace(*cmd); cmd++) /*void*/;
                     if (cur_final[i]<cur_begin[i])
                         SS_ERROR_FMT(USAGE, ("%s index range for `%s' is inverted: %lu-%lu",
                                              (0==i?"file":(1==i?"scope":"object")), command,
                                              (unsigned long)(cur_begin[i]), (unsigned long)(cur_final[i])));
                 } else {
                     cur_final[i] = cur_begin[i];
                 }

                 if (','==*cmd)
                     for (cmd++; *cmd && isspace(*cmd); cmd++) /*void*/;
             }
         }
         if (cmd && *cmd)
             SS_ERROR_FMT(USAGE, ("malformed arguments for `%s' command beginning at: %s", command, cmd));

         /* Save values as defaults for next command */
         memcpy(old_begin, cur_begin, sizeof cur_begin);
         memcpy(old_final, cur_final, sizeof cur_final);

         /* Dump everything */
         for (gfile_idx=cur_begin[0]; gfile_idx<=cur_final[0]; gfile_idx++) {
             gfile = SS_GFILE_IDX(gfile_idx);
             if (!gfile) {
                 if (SS_NOSIZE==cur_final[0]) break;
                 SS_ERROR_FMT(NOTFOUND, ("GFile entry %lu does not exist", (unsigned long)gfile_idx));
             }

             for (scope_idx=cur_begin[1]; scope_idx<=cur_final[1]; scope_idx++) {
                 if (NULL==ss_pers_refer_c(gfile->topscope, SS_MAGIC(ss_scope_t), scope_idx, (ss_pers_t*)&scope) ||
                     NULL==SS_SCOPE(&scope)) {
                     if (SS_NOSIZE==cur_final[1]) break;
                     SS_ERROR_FMT(FAILED, ("failed to create handle for scope %lu", (unsigned long)scope_idx));
                 }

                 if (cur_begin[2]==cur_final[2]) {
                     obj_idx = cur_begin[2];
                     if (NULL==ss_pers_refer_c(&scope, seq, obj_idx, &pers))
                         SS_ERROR_FMT(FAILED, ("failed to create handle for object %lu", (unsigned long)obj_idx));
                     if (ss_pers_update(&pers)<0) SS_ERROR(FAILED);
                     ss_pers_dump(&pers, stdout, "  ", "dumping %s %lu,%lu,%s%lu",
                                  command, (unsigned long)gfile_idx, (unsigned long)scope_idx,
                                  (obj_idx & SS_TABLE_INDIRECT) ? "I" : "",
                                  (unsigned long)(obj_idx & ~SS_TABLE_INDIRECT));
                 } else {
                     /* We could just loop over the specified objects like above with ss_pers_refer_c() and call ss_pers_dump()
                      * for each one, but those two functions are happy to create links or to dump objects that don't even
                      * exist. Therefore we will query the table to see what objects exist and only dump those. */
                     if (NULL==(table=ss_scope_table(&scope, seq, NULL))) SS_ERROR(FAILED);
                     for (obj_idx=cur_begin[2]; obj_idx<=cur_final[2]; obj_idx++) {
                         persobj = ss_table_lookup(table, obj_idx, 0u);
                         if (!SS_MAGIC_OK(SS_MAGIC_OF(persobj))) break;
                         if (NULL==ss_pers_refer_c(&scope, seq, obj_idx, &pers))
                             SS_ERROR_FMT(FAILED, ("failed to create handle for object %lu", (unsigned long)obj_idx));
                         if (ss_pers_update(&pers)<0) SS_ERROR(FAILED);
                         ss_pers_dump(&pers, stdout, "  ", "dumping %s %lu,%lu,%s%lu",
                                      command, (unsigned long)gfile_idx, (unsigned long)scope_idx,
                                      (obj_idx & SS_TABLE_INDIRECT) ? "I" : "",
                                      (unsigned long)(obj_idx & ~SS_TABLE_INDIRECT));
                     }
                 }
             }
         }
         goto done;
     }

     /* Other commands */
     if (!strcmp(command, "classes")) {
         for (i=0; i<SS_PERS_NCLASSES; i++) {
             ss_pers_class_t *cls = SS_PERS_CLASS(i);
             if (!cls) continue;
             printf("%s#%-4d %s\n", intro, i, cls->name);
             printf("%s      tfm(%lu) tff(%lu) tm(%lu) tf(%lu) t_size(%lu)\n",
                    intro, (unsigned long)(cls->tfm), (unsigned long)(cls->tff), (unsigned long)(cls->tm),
                    (unsigned long)(cls->tf), (unsigned long)(cls->t_size));
         }
     } else if (!strcmp(command, "files")) {
         ss_gfile_debug_all(stdout);
     } else {
         SS_ERROR_FMT(USAGE, ("unknown debugging command: %s", command));
     }

 done:
     SS_STATUS_OK;
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 herr_t
 ss_error(void)
 {
     /* SS_ENTER -- skipped because this is error handling for the error stack */
     int self;

     if (ss_err_cntl_g.nerrors==sslib_g.debug_error) {
         self = ss_mpi_comm_rank(SS_COMM_WORLD);
         fprintf(stderr, "SSLIB: MPI task %d, PID %d encountered error %lu\n",
                 self, getpid(), (unsigned long)(ss_err_cntl_g.nerrors));
         ss_debug_start(sslib_g.debugger);
     }
     return 0;
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

	 herr_t
 ss_file_close(ss_file_t *file           /* The file to be closed */
               )
 {
     SS_ENTER(ss_file_close, herr_t);
     ss_gfile_t          *gfile=NULL;                    /* GFile array entry for the file owning the FILE object */
     ss_table_t          *table=NULL;                    /* A persistent object table */
     ss_scope_t          topscope=SS_SCOPE_NULL;         /* The top scope of FILE */
     ss_scope_t          *reg=NULL;                      /* Object registry entry */
     int                 nopen=0;                        /* Number of File objects explicitly open in this file */
     size_t              gfile_idx, nreg, reg_idx;
     htri_t              is_same;

     /* File must be explicitly open in order to be closed */
     if (ss_file_isopen(file, NULL)<=0) SS_ERROR_FMT(PERM, ("FILE is not an open file"));
     if (NULL==(gfile = SS_GFILE_LINK(file))) SS_ERROR(NOTFOUND);
     if (gfile->cur_open<=0) SS_ERROR_FMT(PERM, ("FILE is not explicitly open"));
     if (NULL==ss_file_topscope(file, &topscope)) SS_ERROR(FAILED);

     /* Flush the file before we even try anything else. We can skip this for a transient file. */
     if (!ss_file_istransient(file)) {
         if (ss_file_synchronize(file, NULL)<0) SS_ERROR(FAILED);
         if (ss_file_flush(file, NULL)<0) SS_ERROR(FAILED);
     }

     /* Look some things up before we start destroying data structures */
     if (NULL==(gfile=SS_GFILE_LINK(&topscope))) SS_ERROR(FAILED);

     /* Close the file for real if this is the last file that explicitly references the underlying HDF5 file. Do not
      * decrement the gfile->cur_open yet because some functions below will need to know that the file isn't completely
      * closed yet (e.g., ss_pers_deref()). */
     if (1==gfile->cur_open) {
         /* Find all top-level scopes that use this as a registry and remove that association */
         for (gfile_idx=0; NULL!=(gfile=SS_GFILE_IDX(gfile_idx)); gfile_idx++) {
             if (gfile->cur_open>0) {
                 nreg = gfile->reg_nused;
                 reg =  gfile->reg;
                 reg_idx = 0;
                 while (reg_idx++<nreg) {
                     if ((is_same=SS_PERS_EQ(&topscope, reg))<0) SS_ERROR(FAILED);
                     if (is_same) {
                         --nreg;
                         memmove(reg, reg+1, nreg*sizeof(*reg));
                         reg[nreg] = SS_SCOPE_NULL;
                         gfile->reg_nused -= 1;
                     } else {
                         reg++;
                     }
                 }
             }
         }

         /* Remove all this file's registries */
         gfile = SS_GFILE_LINK(&topscope);
         if (gfile->reg_nused) {
             gfile->reg_nused = 0;
             gfile->reg_nalloc = 0;
             gfile->reg = SS_FREE(gfile->reg);
         }

         /* Close all open scopes in the closing file. This removes the objects from memory (some of which may occupy a
          * substantial amount of memory) but leaves the relatively small indirect index mapping information so that any
          * persistent object that still points into the closing file will be able to convert indirect object links into direct
          * object links if necessary. It would be nice to be able to also close any File objects that might have been
          * explicitly opened, but alas, our current collectivity might not match that by which the contained File object was
          * opened and hence must be closed; but we can warn about that with some extra work. */
         if (NULL==(table=ss_scope_table(&topscope, SS_MAGIC(ss_scope_t), NULL))) SS_ERROR(FAILED);
         if (ss_table_scan(table, &topscope, 0, ss_file_close1_cb, &nopen)<0) SS_ERROR(FAILED);
         SS_ASSERT(nopen>0); /* because this file, which is File zero of the top scope, is explicitly open yet */
         if (nopen>1) SS_ERROR_FMT(USAGE, ("%d file%s still open in %s", nopen-1, 2==nopen?"":"s", gfile->name));

         /* Destroy the global blob table for this file */
         if (ss_blob_desttab(gfile->gblob)<0) SS_ERROR(FAILED);
         gfile->gblob = NULL;

         /* Close the HDF5 file (fid==1 implies transient file). This is where all those scope groups and table datasets get
          * closed since in the interest of less collectivity those functions just dropped the handles instead of closing them.
          * See the H5F_CLOSE_STRONG property in ss_file_open(). */
         if (gfile->fid>1 && H5Fclose(gfile->fid)<0) SS_ERROR(HDF5);
         gfile->fid = 0;

         /* Release other resources */
         if (gfile->dxpl_independent>0 && H5Pclose(gfile->dxpl_independent)<0) SS_ERROR(HDF5);
         gfile->dxpl_independent = 0;
         if (gfile->dxpl_collective>0 && H5Pclose(gfile->dxpl_collective)<0) SS_ERROR(HDF5);
         gfile->dxpl_collective = 0;
     }

     /* Decrement file open counter */
     --gfile->cur_open;

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 ss_file_t *
 ss_file_create(const char *name,        /* Name of file to be created. */
                unsigned flags,          /* HDF5-style file access flags (see ss_file_open()). */
                ss_prop_t *props         /* Optional file property list (see File Properties). */
                )
 {
     SS_ENTER(ss_file_create, ss_file_tP);
     ss_file_t *file = NULL;

     flags |= H5F_ACC_RDWR | H5F_ACC_TRUNC | H5F_ACC_CREAT;
     if (NULL==(file=ss_file_open(NULL, name, flags, props))) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(file);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 herr_t
 ss_file_flush(ss_file_t *file,          /* The file to be flushed. */
               ss_prop_t *props          /* Flushing properties. See ss_scope_flush(). */
               )
 {
     SS_ENTER(ss_file_flush, herr_t);
     ss_table_t          *table=NULL;
     ss_scope_t          topscope;

     if (ss_file_isopen(file, NULL)<=0) SS_ERROR_FMT(PERM, ("FILE is not open"));
     if (NULL==ss_file_topscope(file, &topscope)) SS_ERROR(FAILED);

     /* Flush all scopes of this file */
     if (NULL==(table=ss_scope_table(&topscope, SS_MAGIC(ss_scope_t), NULL))) SS_ERROR(FAILED);
     if (ss_table_scan(table, &topscope, 0, ss_scope_flush_cb, props)<0)
         SS_ERROR_FMT(FAILED, ("\"%s\"", SS_FILE(file)->name));

     /* Flush all pending asynchronous writes */
     if (ss_blob_flush(&topscope, NULL, SS_STRICT, NULL)<0) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 hid_t
 ss_file_isopen(ss_file_t *file,         /* Optional handle to a persistent File object. */
                const char *name         /* Optional real name of file to test for open status. */
                )
 {
     SS_ENTER(ss_file_isopen, hid_t);
     ss_gfile_t          *gfile=NULL;
     hid_t               retval=0;       /* zero is false and not a valid HDF5 file handle */
     char                *fixedname=NULL;
     size_t              i;

     if (file) SS_ASSERT_MEM(file, ss_file_t);

     if (file && name) {
         /* Check that FILE is opened with NAME */
         if (NULL==(gfile=SS_GFILE_LINK(file))) SS_ERROR(NOTFOUND);
         if (gfile->cur_open>0) {
             if (NULL==(fixedname=ss_file_fixname(name, NULL, NULL, 0, NULL))) SS_ERROR(FAILED);
             if (!strcmp(fixedname, gfile->name)) retval = gfile->fid;
             fixedname = SS_FREE(fixedname);
         }

     } else if (file) {
         /* Check that FILE is open */
         if (NULL==(gfile=SS_GFILE_LINK(file))) SS_ERROR(NOTFOUND);
         if (gfile->cur_open>0) retval = gfile->fid;
     } else if (name) {
         /* Check that NAME is open */
         if (NULL==(fixedname=ss_file_fixname(name, NULL, NULL, 0, NULL))) SS_ERROR(FAILED);
         if (SS_NOSIZE!=(i=ss_gfile_find_name(fixedname))) {
             gfile = SS_GFILE_IDX(i);
             if (gfile->cur_open>0) retval = gfile->fid;
         }
         fixedname = SS_FREE(fixedname);

     } else {
         SS_ERROR(USAGE);
     }

  SS_CLEANUP:
     SS_FREE(fixedname);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 htri_t
 ss_file_istransient(ss_file_t *file     /* A link to some File object */
                     )
 {
     SS_ENTER(ss_file_istransient, htri_t);
     ss_gfile_t          *gfile=NULL;

     if (ss_file_isopen(file, NULL)<=0) SS_ERROR_FMT(PERM, ("FILE is not open"));
     if (NULL==(gfile=SS_GFILE_LINK(file))) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(gfile->flags & H5F_ACC_TRANSIENT);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 htri_t
 ss_file_iswritable(ss_file_t *file      /* A link to some File object */
                    )
 {
     SS_ENTER(ss_file_iswritable, htri_t);
     htri_t              retval=-1;
     ss_gfile_t          *gfile=NULL;

     if (ss_file_isopen(file, NULL)<=0) SS_ERROR(NOTOPEN);
     if (NULL==(gfile=SS_GFILE_LINK(file))) SS_ERROR(NOTFOUND);
     retval = (gfile->flags & H5F_ACC_RDWR) ? TRUE : FALSE;
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

	 ss_file_t *
 ss_file_open(ss_file_t *file,           /* Optional handle to a persistent file object from a /File/ table. */
              const char *name,          /* Optional name of file to be opened. */
              unsigned flags,            /* HDF5-style file access flags. */
              ss_prop_t *props           /* Optional file property list (see File Properties). */
              )
 {
     SS_ENTER(ss_file_open, ss_file_tP);
     size_t              gfileidx;               /* Index into the GFile array */
     ss_gfile_t          *gfile=NULL;            /* An unused slot from the GFile array */
     char                *fixedname=NULL;        /* Normalized absolute name */
     hid_t               fapl_created=-1, fcpl_created=-1, fapl=-1, fcpl=-1;
     MPI_Comm            comm, comm_temp;
     hbool_t             comm_duped=FALSE;
     MPI_Info            info=MPI_INFO_NULL;
     htri_t              creating=FALSE;         /* Did we create a new file? */
     ss_table_t          *scopetab=NULL;
     ss_table_t          *filetab=NULL;
     ss_file_t           *retval=NULL;
     ss_fileobj_t        *fileobj;
     ss_gfile_t          orig_gfile;             /* Original value of the gfile slot to restore during error recovery*/
     size_t              udata[2];               /* Info to pass through to ss_file_boot2_cb() */
     ss_prop_t           *scope_props=NULL;      /* Properties for opening the top scope */
     ss_file_t           *file_here=NULL;        /* File object to destroy on error */

     memset(&orig_gfile, 0, sizeof orig_gfile);

     if (file && name) {
         /* Bind the name to the file. In other words, the file's entry in the file table contains one name but the caller
          * wants to use some other name instead. Perhaps the original file has been moved. */
         if (ss_file_isopen(file, NULL)<0) SS_ERROR(FAILED);
         if (NULL==(fixedname=ss_file_fixname(name, NULL, NULL, 0, NULL))) SS_ERROR(FAILED);
         if (SS_NOSIZE!=(gfileidx=ss_gfile_find_name(fixedname))) {
             gfile = SS_GFILE_IDX(gfileidx);
             if (gfile->cur_open>0) {
                 /* The global file by this name is already open. We can just make the FILE point to this gfile entry as
                  * an implicitly opened file. */
                 SS_FILE(file)->m.gfileidx = gfileidx;
                 if (NULL==(retval = ss_pers_file((ss_pers_t*)(gfile->topscope), NULL))) SS_ERROR(FAILED);
                 goto done;
             }
         }
         SS_STATUS_OK; /*clean up ss_gfile_find_name() failure*/
         if (NULL==(retval=ss_file_open(NULL, name, flags, props))) SS_ERROR(FAILED);

     } else if (file) {
         /* Open file with the name specified in SS_FILE(file) */
         if (NULL==(name=ss_string_ptr(SS_FILE_P(file,name)))) SS_ERROR(FAILED);
         if (NULL==(retval=ss_file_open(file, name, flags, props))) SS_ERROR(FAILED);

     } else {
         /* Obtain the MPI communicator.  If the caller is passing in a communicator then we should dup it so operations
          * performed by SSlib on that communicator don't interfere with the caller. HDF5 will also always dup the communicator
          * when the file is opened/created. */
         if (props && ss_prop_get(props, "comm", H5T_NATIVE_MPI_COMM, &comm_temp)) {
             if (ss_mpi_comm_dup(comm_temp, &comm)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
             comm_duped = TRUE;
         } else {
             SS_STATUS_OK; /*for possible failed ss_prop_get()*/
             comm = sslib_g.comm;
         }
         if (!props || NULL==ss_prop_get(props, "info", H5T_NATIVE_MPI_INFO, &info)) {
             SS_STATUS_OK; /*we don't care if ss_prop_get() failed*/
             info = MPI_INFO_NULL;
         }

         /* We want to open a file with the specified name. First scan through the gfile array to see if there's already an
          * entry for this name. If so, the named file is either open already or the name is referenced from the /File/ table
          * of one or more open files. Create an entry if we don't find one existing. */
         if (NULL==(fixedname = ss_file_fixname(name, NULL, NULL, 0, NULL))) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (SS_NOSIZE==(gfileidx=ss_gfile_find_name(fixedname))) {
             SS_STATUS_OK;
             if (SS_NOSIZE==(gfileidx = ss_gfile_new(comm))) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
             gfile = SS_GFILE_IDX(gfileidx);
             orig_gfile = *gfile;
             if (NULL==(gfile->name=malloc(strlen(fixedname)+1))) SS_ERROR_FMT(RESOURCE, ("file=\"%s\"", name));
             strcpy(gfile->name, fixedname);
             if (NULL==(gfile->dirname=malloc(strlen(fixedname)+1))) SS_ERROR_FMT(RESOURCE, ("file=\"%s\"", name));
             strcpy(gfile->dirname, gfile->name);

 #ifdef WIN32
             {
                 char *fwd_slash = strrchr(gfile->dirname, '/');
                 char *back_slash = strrchr(gfile->dirname, '\\');
                 SS_ASSERT(fwd_slash || back_slash);
                 if(fwd_slash && !back_slash) *fwd_slash='\0';
                 else if(!fwd_slash && back_slash) *back_slash='\0';
                 else if(fwd_slash > back_slash) *fwd_slash='\0';
                 else *back_slash='\0';
             }
 #else
             SS_ASSERT(strrchr(gfile->dirname, '/'));
             *(strrchr(gfile->dirname, '/')) = '\0';
 #endif

         } else {
             gfile = SS_GFILE_IDX(gfileidx);
             orig_gfile = *gfile;
         }

         /* If the gfile entry is an open file then we have an error. It should not be possible to open the same file more than
          * once concurrently. Increment the file-open counter early because some functions below (e.g., ss_pers_deref()) will
          * need to see that the file is at least in the process of being opened. */
         if (gfile->cur_open>0) SS_ERROR_FMT(PERM, ("file already open: %s", fixedname));
         gfile->cur_open++;
         gfile->open_serial++;

         /* Create file access and creation properties or use the ones supplied in PROPS. If we create them here we'll have to
          * close them below. */
         if (!props || NULL==ss_prop_get(props, "fapl", H5T_NATIVE_HID, &fapl) || fapl<=0) {
             SS_STATUS_OK; /*possible failed ss_prop_get()*/
             if ((fapl=fapl_created=H5Pcreate(H5P_FILE_ACCESS))<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
         }
         if (!props || NULL==ss_prop_get(props, "fcpl", H5T_NATIVE_HID, &fcpl) || fcpl<=0) {
             SS_STATUS_OK; /*possible failed ss_prop_get()*/
             if ((fcpl=fcpl_created=H5Pcreate(H5P_FILE_CREATE))<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
         }

         /* Create data transfer properties -- we modify them below if necessary */
         if (gfile->dxpl_independent<=0) gfile->dxpl_independent = H5Pcreate(H5P_DATASET_XFER);
         if (gfile->dxpl_collective<=0) gfile->dxpl_collective = H5Pcreate(H5P_DATASET_XFER);
         gfile->flags = flags;

         /* If neither fcpl nor fapl were supplied then set various things now in the ones we created. */
         if (fapl_created>=0 && fcpl_created>=0) {
 #if H5_VERS_NUMBER>=1005000
             /* The following property causes HDF5 to close all objects related to the file when the file is closed. This is
              * important for the MPI file driver to prevent HDF5 from making MPI calls after MPI_Finalize(), but it doesn't
              * hurt to do the same for the other drivers. In fact, doing this for the serial driver will help us detect errors
              * in SSlib if it tries to use an object after the object's file has been closed because HDF5 will report an invalid
              * object ID. */
             H5Pset_fclose_degree(fapl, H5F_CLOSE_STRONG);
 #endif
 #ifdef HAVE_PARALLEL
             if (1==ss_mpi_comm_size(comm)) {
                 /* Set the VFD to sec2 */
                 if (H5Pset_fapl_sec2(fapl)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
             } else {
                 /* Set the VFD to mpio. If we choose to use the mpiposix driver instead we'll reset it below. */
                 if (H5Pset_fapl_mpio(fapl, comm, MPI_INFO_NULL)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
                 if (H5Pset_dxpl_mpio(gfile->dxpl_independent, H5FD_MPIO_INDEPENDENT)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
                 if (H5Pset_dxpl_mpio(gfile->dxpl_collective, H5FD_MPIO_COLLECTIVE)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));

                 /* GPFS on LLNL's SP systems grants all file tokens to the first process that writes at file offset zero,
                  * resulting in extra overhead when other processes need to write to parts of the file. Therefore, we tell HDF5
                  * to avoid ever writing into the first GPFS block of the file. Also, by using HDF5's MPI/POSIX driver we can
                  * bypass MPI-IO, but be warned that this is only expected to work if all tasks are on a single node or the
                  * files are on a parallel file system. */
 #if 0
                 if (!props || ss_prop_get_i(props, "use_mpiio")<=0) {
                     SS_STATUS_OK; /*possible failed ss_prop_get_i() has same meaning as use_mpiio==false*/
                     if (H5Pset_fapl_mpiposix(fapl, comm, TRUE)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
                     if (H5Pset_userblock(fcpl, (hsize_t)512*1024)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
                     if (H5Pset_alignment(fapl, (hsize_t)64*1024, (hsize_t)512*1024)<0) SS_ERROR_FMT(HDF5, ("file=\"%s\"", name));
                 }
 #endif
             }
 #endif /*HAVE_PARALLEL*/
         }

         /* Create or open the file. Use the supplied name just in case ss_file_fixname() has some problem. This would be much
          * easier if H5Fopen() worked more like unix open(), being able to create new files, truncate existing files, etc. */
         if (flags & H5F_ACC_TRANSIENT) {
             gfile->fid = 1; /* non-negative indicates no error, but not a valid hdf5 file handle*/
         } else if (flags & (H5F_ACC_TRUNC | H5F_ACC_EXCL)) {
             unsigned tempflags = flags & ~(H5F_ACC_RDWR|H5F_ACC_CREAT); /* H5Fcreate() is picky about these: they must be off */
             if ((gfile->fid=H5Fcreate(name, tempflags, fcpl, fapl))<0)
                 SS_ERROR_FMT(HDF5, ("unable to create file: %s", fixedname));
         } else {
             if ((gfile->fid=H5Fopen(name, flags, fapl))<0) SS_ERROR_FMT(HDF5, ("unable to open file: %s", fixedname));
         }

         /* Create or read the basic file structure. */
         if ((creating=ss_scope_boot_top(gfileidx, comm, comm_duped))<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         gfile = SS_GFILE_IDX(gfileidx); /*might have been clobbered by previous call*/

         /* Create or read the basic blob storage information */
         if (NULL==(gfile->gblob = ss_blob_boot(gfile->topscope, (hbool_t)creating))) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));

         /* If we're creating the file then the first entry of the top-scope's File table must be the file itself. This is an
          * appropriate place to call this function because the communicator for the top scope is the same as for the file,
          * which is the communicator over which ss_file_open() was called. */
         if (NULL==(filetab=ss_scope_table(gfile->topscope, SS_MAGIC(ss_file_t), NULL))) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (creating) {
             if (NULL==(file = file_here = SS_PERS_NEW(gfile->topscope, ss_file_t, SS_ALLSAME)))
                 SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
             if (ss_string_set(SS_FILE_P(file,name), name)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         } else {
             if (ss_table_read(filetab, gfile->topscope)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
             if (NULL==(fileobj=(ss_fileobj_t*)ss_table_lookup(filetab, 0, SS_STRICT)))
                 SS_ERROR_FMT(CORRUPT, ("top scope's file table is empty"));
             if (NULL==(file=file_here=(ss_file_t*)ss_pers_refer(gfile->topscope, (ss_persobj_t*)fileobj, NULL)))
                 SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         }

         /* Process all entries of all File tables by adding records to GFile array. Table slot zero is already in
          * the GFile array at location gfileidx. */
         udata[0] = gfileidx;
         udata[1] = comm;
         if (NULL==(scopetab=ss_scope_table(gfile->topscope, SS_MAGIC(ss_scope_t), NULL)))
             SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (ss_table_scan(scopetab, gfile->topscope, 0, ss_file_boot1_cb, udata)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         gfile = SS_GFILE_IDX(gfileidx); /*may have been clobbered by previous call*/

         /* Open this scope */
         if (NULL==(scope_props=ss_prop_new("scope open props"))) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (ss_prop_add(scope_props, "comm", H5T_NATIVE_MPI_COMM, &comm)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (ss_prop_add(scope_props, "duped", H5T_NATIVE_HBOOL, &comm_duped)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (ss_scope_open(gfile->topscope, gfile->flags, scope_props)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         if (ss_prop_dest(scope_props)<0) SS_ERROR_FMT(FAILED, ("file=\"%s\"", name));
         scope_props = NULL;

         /* Mark file as explicitly opened (gfile.cur_open was incremented above) */
         SS_FILE(file)->m.explicit_open = TRUE;
         retval = file;
         file = NULL;
     }

 done:
     /* successful cleanup */
     SS_FREE(fixedname);
     if (fapl_created>0) H5Pclose(fapl_created);
     if (fcpl_created>0) H5Pclose(fcpl_created);

 SS_CLEANUP:
     SS_FREE(fixedname);

     /* Destroy the `file' return value */
     if (file_here) {
         ss_pers_dest((ss_pers_t*)file_here);
         file_here = SS_FREE(file_here);
     }

     /* Restore the `gfile' entry to the original value */
     if (gfile) {
         if (gfile->name!=orig_gfile.name) SS_FREE(gfile->name);
         if (gfile->fid>0 && gfile->fid!=orig_gfile.fid) H5Fclose(gfile->fid);
         if (gfile->topscope && gfile->topscope!=orig_gfile.topscope) ss_scope_dest(gfile->topscope);
         SS_ASSERT(NULL==gfile->gblob || NULL==orig_gfile.gblob || gfile->gblob==orig_gfile.gblob);
         if (gfile->dxpl_independent>0 && gfile->dxpl_independent!=orig_gfile.dxpl_independent) H5Pclose(gfile->dxpl_independent);
         if (gfile->dxpl_collective>0 && gfile->dxpl_collective!=orig_gfile.dxpl_collective) H5Pclose(gfile->dxpl_collective);
         SS_ASSERT(NULL==gfile->reg || gfile->reg==orig_gfile.reg);
         *gfile = orig_gfile;
     }

     if (scope_props) ss_prop_dest(scope_props);
     if (fapl_created>0) H5Pclose(fapl_created);
     if (fcpl_created>0) H5Pclose(fcpl_created);
     if (comm_duped) ss_mpi_comm_free(&comm);

     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 herr_t
 ss_file_openall(size_t nfiles,                  /* Number of entries in the FILEREF array. */
                 ss_file_ref_t *fileref,         /* Array of information for files to be opened. */
                 unsigned flags,                 /* Flags to control how files are opened. */
                 ss_prop_t *props                /* Additional file opening properties (see File Properties). */
                 )
 {
     SS_ENTER(ss_file_openall, herr_t);
     size_t              i;
     ss_file_t *file;

     for (i=0; i<nfiles; i++) {
         file = ss_file_open(&(fileref[i].file), fileref[i].newname, flags, props);
         if (NULL==file)
             SS_ERROR_FMT(FAILED, ("fileref %lu with name `%s'", (unsigned long)i, fileref[i].newname));
         SS_FREE(file);
     }

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 herr_t
 ss_file_readonly(ss_file_t *file)
 {
     SS_ENTER(ss_file_readonly, herr_t);
     ss_gfile_t  *gfile=NULL;

     if (ss_file_isopen(file, NULL)<=0) SS_ERROR(NOTOPEN);
     if (NULL==(gfile=SS_GFILE_LINK(file))) SS_ERROR(NOTFOUND);
     gfile->flags &= ~H5F_ACC_RDWR;
     gfile->flags |= H5F_ACC_RDONLY;
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

	 ss_file_ref_t *
 ss_file_references(ss_file_t *master,           /* The file in question */
                    size_t *nfiles,              /* INOUT: Upon return this argument will point to the number of valid entries
                                                  * in the return value.  If FILEREF is non-null then the input value of this
                                                  * pointer specifies the maximum number of file reference entries to
                                                  * initialize in FILEREF and if there are more than that many that are found
                                                  * in the MASTER file then an error is raised. */
                    ss_file_ref_t *fileref,      /* Optional pointer to an array of file reference information that will be
                                                  * initialized by this function and returned (if non-null) as the successful
                                                  * return value of this function. */
                    ss_prop_t UNUSED *props      /* File properties (none defined yet) */
                    )
 {
     SS_ENTER(ss_file_references, ss_file_ref_tP);
     ss_scope_t          topscope;
     ss_scope_t          scope;
     unsigned            scope_idx, file_idx;
     size_t              nused=0, nalloc=0;
     ss_gfile_t          *gfile=NULL;
     ss_file_ref_t       *retval=fileref;
     ss_file_t           file;
     char                *pathname=NULL;
     const char          *filename=NULL;

     SS_ASSERT(nfiles);
     if (!ss_file_isopen(master, NULL)) SS_ERROR_FMT(PERM, ("file is not open"));
     if (NULL==ss_file_topscope(master, &topscope)) SS_ERROR(FAILED);
     if (NULL==(gfile=SS_GFILE_LINK(master))) SS_ERROR(FAILED);

     /* The "pathname" is the directory part of the normalized, absolute master name. */
 #ifdef WIN32
     /*handle windows case where absolute path is like "c:\" or "d://"*/
     SS_ASSERT((gfile->name[0]=='/' && gfile->name[1]) ||
               (strlen(gfile->name)>=3 && gfile->name[1]==':' && (gfile->name[2]=='/' || gfile->name[2]=='\\')));
 #else
     SS_ASSERT(gfile->name[0]=='/' && gfile->name[1]);
 #endif
     if (NULL==(pathname=malloc(strlen(gfile->name)+1))) SS_ERROR(RESOURCE);
     strcpy(pathname, gfile->name);
 #ifdef WIN32
     {
         char *fwd_slash = strrchr(pathname, '/');
         char *back_slash = strrchr(pathname, '\\');
         SS_ASSERT(fwd_slash || back_slash);
         if(fwd_slash && !back_slash) *fwd_slash='\0';
         else if(!fwd_slash && back_slash) *back_slash='\0';
         else if(fwd_slash > back_slash) *fwd_slash='\0';
         else *back_slash='\0';
     }
 #else
     SS_ASSERT(strrchr(pathname, '/'));
     *(strrchr(pathname, '/')) = '\0';
 #endif

     /* For each scope in the file */
     for (scope_idx=0; /*void*/; scope_idx++) {
         if (NULL==ss_pers_refer_c(&topscope, SS_MAGIC(ss_scope_t), scope_idx, (ss_pers_t*)&scope)) SS_ERROR(FAILED);
         if (NULL==SS_SCOPE(&scope)) break;

         /* For each file in that scope except the first one (which is the MASTER) */
         for (file_idx=1; /*void*/; file_idx++) {
             if (NULL==ss_pers_refer_c(&scope, SS_MAGIC(ss_file_t), file_idx, (ss_pers_t*)&file)) SS_ERROR(FAILED);
             if (NULL==SS_FILE(&file)) break;

             /* Extend the return value array if necessary. */
             if (!fileref) {
                 SS_EXTEND(retval, MAX(32,nused+1), nalloc);
             } else if (nused>=*nfiles) {
                 SS_ERROR(OVERFLOW);
             }

             /* The name of the file is either absolute or relative to the master file. If relative then we need to make it
              * relative to the current working directory. */
             filename = ss_string_ptr(SS_FILE_P(&file,name));
             if ('/'==filename[0]) {
                 if (NULL==(retval[nused].newname=malloc(strlen(filename)+1))) SS_ERROR(RESOURCE);
                 strcpy(retval[nused].newname, filename);
             } else {
                 if (NULL==(retval[nused].newname=ss_file_fixname(ss_string_ptr(SS_FILE_P(&file,name)), pathname, ".", 0, NULL)))
                     SS_ERROR(RESOURCE);
             }

             /* Save other stuff */
             retval[nused].file = file;
             nused++;
         }
     }
     SS_FREE(pathname);

     *nfiles=nused;
     if (0==nused && !retval && NULL==(retval=calloc(1, sizeof(*retval)))) SS_ERROR(RESOURCE);

 SS_CLEANUP:
     if (!fileref) SS_FREE(retval);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 herr_t
 ss_file_registry(ss_file_t *file,       /* The file that is getting the new registry. */
                  ss_scope_t *registry   /* The open scope to serve as the registry. This need not be a top-level scope though
                                          * it usually is. It could even be some scope within FILE in an extreme case. */
                  )
 {
     SS_ENTER(ss_file_registry, herr_t);
     ss_gfile_t          *gfile=NULL;

     if (ss_file_isopen(file, NULL)<=0) SS_ERROR_FMT(PERM, ("FILE is not an open file"));
     if (ss_scope_isopen(registry)<=0) SS_ERROR_FMT(USAGE, ("REGISTRY is not an open scope"));
     if (NULL==(gfile=SS_GFILE_LINK(file))) SS_ERROR(NOTFOUND);

     /* Add this registry to the end of the list of registries for the file */
     SS_EXTEND(gfile->reg, gfile->reg_nused+1, gfile->reg_nalloc);
     gfile->reg[gfile->reg_nused] = *registry;
     gfile->reg_nused++;

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	 herr_t
 ss_file_synchronize(ss_file_t *file,    /* The file to synchronize. */
                     ss_prop_t *props    /* Optional synchronization properties. */
                     )
 {
     SS_ENTER(ss_file_synchronize, herr_t);
     ss_scope_sync_t     sync_data;      /* Stuff to pass through ss_table_scan() */
     ss_table_t          *scopetab=NULL; /* The top-scope's scope table */
     unsigned            tableidx;       /* Counter through valid tables of each scope */
     ss_scope_t          topscope;       /* Top scope of FILE */
     static ss_prop_t    *syncprops=NULL;
     int                 pass=0, old_transient_errors=0;

     if (!syncprops) {
         if (NULL==(syncprops=ss_prop_new(_func))) SS_ERROR(FAILED);
         if (ss_prop_add(syncprops, "err_newptrs", H5T_NATIVE_INT, NULL)<0) SS_ERROR(FAILED);
     }
     if (!props) props = syncprops;

     if (ss_file_isopen(file, NULL)<=0) SS_ERROR_FMT(PERM, ("FILE is not open"));

     /* If the file is read-only there should be nothing to do. However, it is still possible that the client modified the
      * object anyway and the only possible way to detect that is to attempt to synchronize. So if the library is compiled for
      * debugging then we'll descend, otherwise we'll return now. */
 #ifdef NDEBUG
     if (!ss_file_iswritable(file)) goto done;
 #endif

     /* Synchronize the top scope's scope table. This is file-collective because the top scope's communicator is the file
      * communicator. */
     if (NULL==ss_file_topscope(file, &topscope)) SS_ERROR(FAILED);
     if (ss_scope_synchronize(&topscope, SS_MAGIC(ss_scope_t), props)<0) SS_ERROR(FAILED);
     if (NULL==(scopetab=ss_scope_table(&topscope, SS_MAGIC(ss_scope_t), NULL))) SS_ERROR(FAILED);

     /* Now synchronize the rest of the tables. The outer loop is per table while the inner loop is per scope. This will
      * minimize the number of references to unsynchronized objects when one scope points to objects in another scope. */
     memset(&sync_data, 0, sizeof sync_data);
     sync_data.props = props;
     while (pass++<10) {
         sync_data.transient_errors = 0;
         for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
             if (!SS_PERS_CLASS(tableidx)) continue;
             if (tableidx==SS_MAGIC_SEQUENCE(SS_MAGIC(ss_scopeobj_t))) continue; /*already synced*/
             sync_data.tableidx = tableidx;
             if (ss_table_scan(scopetab, &topscope, 0, ss_scope_synchronize_cb, &sync_data)<0) SS_ERROR(FAILED);
         }
         if (0==sync_data.transient_errors) break;
         if (pass>0 && sync_data.transient_errors==old_transient_errors)
             SS_ERROR_FMT(FAILED, ("unable to resolve inter-file cycles in the object graph"));
         old_transient_errors = sync_data.transient_errors;
     }

 #ifdef NDEBUG
 done:
 #endif
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 htri_t
 ss_file_synchronized(ss_file_t *file    /* An open file */
                      )
 {
     SS_ENTER(ss_file_synchronized, htri_t);
     ss_prop_t           *props=NULL;
     htri_t              retval=TRUE;

     /* Build a synchronization property that says to only test synchronization */
     if (NULL==(props=ss_prop_new("test synchronization"))) SS_ERROR(FAILED);
     if (ss_prop_add(props, "test", H5T_NATIVE_HBOOL, &true)<0) SS_ERROR(FAILED);

     /* Test synchronization */
     if (ss_file_synchronize(file, props)<0) {
         const H5E_error2_t *einfo;
         SS_STATUS(0, einfo);
         if (einfo->min_num!=SS_MINOR_SKIPPED) {
             SS_REFAIL;
             SS_ERROR(FAILED);
         } else {
             SS_STATUS_OK;
             retval = FALSE;
             goto done;
         }
     }

  done:
     /* Clean up the properties */
     ss_prop_dest(props);
     props = NULL;

  SS_CLEANUP:
     if (props) ss_prop_dest(props);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 ss_scope_t *
 ss_file_topscope(ss_file_t *file,               /* File for which to obtain a link to a top scope. */
                  ss_scope_t *buf                /* Optional buffer in which to store the resulting link. */
                  )
 {
     SS_ENTER(ss_file_topscope, ss_scope_tP);
     ss_scope_t  *retval=NULL;

     SS_ASSERT_TYPE(file, ss_file_t);
     if (NULL==(retval=ss_pers_topscope((ss_pers_t*)file, buf))) SS_ERROR(FAILED);
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	 herr_t
 ss_finalize(void)
 {
     SS_ENTER(ss_finalize, herr_t);
     size_t          tableidx;
     ss_pers_class_t *pcls;

     if (sslib_g.initialized && !sslib_g.finalized) {
         /* Issue warnings about files that are still open with write access and close all files. */
         ss_file_closeall(sslib_g.warnings);

         /* Shut down asynchronous I/O threads */
         ss_aio_finalize();

         /* Free error reporting buffer */
         ss_err_cntl_g.ptr = SS_FREE(ss_err_cntl_g.ptr);
         ss_err_cntl_g.ptrlen = 0;

         /* Library has been finalized */
         sslib_g.finalized = TRUE;

 #ifdef HAVE_PARALLEL

         /* Free MPI structure for each type of class */
         for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
             pcls = SS_PERS_CLASS(tableidx);
             if (!pcls)continue;
             if (pcls->serialized)MPI_Type_free(&(pcls->serialized));
          }
 #endif

     }
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 herr_t
 ss_gfile_debug_all(FILE *out)
 {
     SS_ENTER(ss_gfile_debug_all, herr_t);
     size_t      gfileidx;
     char        prefix[32];

     for (gfileidx=0; SS_GFILE_IDX(gfileidx); gfileidx++) {
         sprintf(prefix, "\001#%-4lu ", (unsigned long)gfileidx);
         ss_gfile_debug_one(gfileidx, out, prefix);
     }

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

	 herr_t
 ss_gfile_debug_one(size_t idx, FILE *out, const char *prefix)
 {
     SS_ENTER(ss_gfile_debug_one, herr_t);
     int         self, fldsize=16;
     unsigned    flags;
     char        intro[32], white_space[128];
     ss_gfile_t  *gfile=NULL;
     hbool_t     first_only=FALSE;

     self = ss_mpi_comm_rank(SS_COMM_WORLD);
     sprintf(intro, "SSlib-%d: ", self);
     if (!prefix) prefix = "";
     if ('\001'==*prefix) {
         first_only = TRUE;
         prefix++;
     }

     /* The gfile general info */
     gfile = SS_GFILE_IDX(idx);
     fprintf(out, "%s%s%-*s", intro, prefix, fldsize, "global file:");
     fprintf(out, " direct(%lu) 0x%08lx ", (unsigned long)idx, (unsigned long)gfile);
     if (!gfile) {
         fprintf(out, "invalid\n");
         goto done;
     }
     fprintf(out, "serial(0x%08lx)\n", (unsigned long)(gfile->serial));

     /* Replace prefix with all white space if appropriate now that we displayed the first line */
     if (first_only) {
         assert(strlen(prefix)<sizeof white_space);
         memset(white_space, ' ', strlen(prefix));
         white_space[strlen(prefix)] = '\0';
         prefix = white_space;
     }

     /* The destination file */
     fprintf(out, "%s%s%-*s \"%s\"\n", intro, prefix, fldsize, "file name:", gfile->name);
     fprintf(out, "%s%s%-*s", intro, prefix, fldsize, "file status:");
     if (gfile->cur_open<=0) {
         fprintf(out, " closed\n");
         goto done;
     }
     fprintf(out, " open(%lu)", (unsigned long)(gfile->cur_open));
     fprintf(out, " flags(");
     flags = gfile->flags;
     fprintf(out, "%s", (flags & H5F_ACC_RDWR) ? "RDWR" : "RDONLY");
     flags &= ~H5F_ACC_RDWR;
     if (flags & H5F_ACC_TRANSIENT) {
         fprintf(out, "|TRANSIENT");
         flags &= ~H5F_ACC_TRANSIENT;
     }
     if (flags & H5F_ACC_TRUNC) {
         fprintf(out, "|TRUNC");
         flags &= ~H5F_ACC_TRUNC;
     }
     if (flags & H5F_ACC_EXCL) {
         fprintf(out, "|EXCL");
         flags &= ~H5F_ACC_EXCL;
     }
     if (flags & H5F_ACC_CREAT) {
         fprintf(out, "|CREAT");
         flags &= ~H5F_ACC_CREAT;
     }
     if (flags & H5F_ACC_DEBUG) {
         fprintf(out, "|DEBUG");
         flags &= ~H5F_ACC_DEBUG;
     }
     if (flags) {
         fprintf(out, "|0x%08lx", (unsigned long)flags);
     }
     fprintf(out, ")");
     if (0==gfile->fid) fprintf(out, " hdf5(closed)\n");
     else if (1==gfile->fid) fprintf(out, " hdf5(transient)\n");
     else if (gfile->fid<0) fprintf(out, " hdf5(error)\n");
     else fprintf(out, " hdf5(%lu)\n", (unsigned long)(gfile->fid));

 done:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4

	 #define ss_init(COMM) (ss_check_version(COMM,                                                                                  \
                                         SS_VERS_MAJOR, SS_VERS_MINOR, SS_VERS_RELEASE, SS_VERS_ANNOT,                          \
                                         SS_INSTALL_INCLUDEDIR),                                                                \
                        ss_init_func(COMM))









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102

	 herr_t
 ss_init_func(MPI_Comm communicator      /* Library communicator defining the maximal set of MPI tasks that can be involved in
                                          * various collective SSlib function calls. However, many collective SSlib functions
                                          * can operate on a subset of this communicator. If SSlib is implicitly initialized
                                          * then MPI_COMM_WORLD is assumed. When SSlib is compiled without MPI support then the
                                          * COMMUNICATOR argument is just an integer that's ignored by this function. */
         )
 {
     SS_ENTER(ss_init_func, herr_t);
     ss_prop_t           *tfile_props=NULL;
     MPI_Comm            selfcomm=SS_COMM_SELF;
     size_t              nbits;
     int                 self=0, ntasks=1;

     /* This is `static' so that we can edit the default path directly in the library binary if necessary. */
     static char         cfile_name[2048] = SS_INSTALL_SYSCONFDIR "/include/sslib.conf\0"
                                            "*** PRECEDING STRING IS 2048 BYTES TOTAL ***";

     if (sslib_g.initialized) SS_ERROR_FMT(INIT, ("the library is already initialized"));
     sslib_g.command_fd = -1;
     sslib_g.warnings = fdopen(2, "w");

 #ifdef HAVE_PARALLEL
     MPI_Comm_rank(communicator, &self);
     MPI_Comm_size(communicator, &ntasks);
     if (MPI_Comm_dup(communicator, &(sslib_g.comm))) SS_ERROR(MPI);
 #endif

     /* Set the HDF5 automatic error reporting. We can't do this directly with H5Eset_auto() because the SS_LEAVE() macro will
      * clobber that. */
     SS_ASSERT(1==sslib_g.call_depth); /*not really necessary, but will catch any potential problems from changing SS_LEAVE() */
     _efunc = ss_err_print;
     _edata = &ss_err_cntl_g;

     /* Initialize the job-wide serial numbers. The high order bits are the MPI rank number of this task within the library
      * communicator and the low order bits are initialized to zero. Whenever you need a unique number, just increment the
      * serial number. */
     for (nbits=0; nbits<8*sizeof(sslib_g.serial) && (size_t)(ntasks-1)>>nbits!=0; nbits++) /*void*/;
     sslib_g.serial = (size_t)self << (8*sizeof(sslib_g.serial) - nbits);

     /* Configure the library first by reading the configuration file and then by processing the SSLIB_DEBUG environment
      * variable. If the library isn't installed yet then the configuration file will be located in the source directory,
      * so look in the installation directory first, then the source directory. If the file can't be found then complain but
      * don't fail. */
     if (access(cfile_name, F_OK)<0) {
         strncpy(cfile_name, SS_INSTALL_SRCDIR "/sslib/lib/sslib.conf", sizeof cfile_name);
         if (access(cfile_name, F_OK)<0) {
 #ifndef PRODUCTION_COMPILE
             fprintf(sslib_g.warnings, "SSlib-%d: unable to find sslib.conf file in %s or %s.\n",
                     self, SS_INSTALL_SYSCONFDIR "/include/", cfile_name);
             fprintf(sslib_g.warnings, "SSlib-%d: The libss binary can be edited to fix the search path.\n", self);
 #endif
             cfile_name[0] = '\0';
         }
     }
     if (cfile_name[0] && ss_config(communicator, cfile_name)<0) SS_ERROR(FAILED);
     if (ss_debug_env(communicator, NULL)<0) SS_ERROR(FAILED);

 #ifdef HAVE_PARALLEL
     /* Create the MPI error handler and set it for this communicator. We save the error handler handle because we'll also use
      * it when setting the error handler for other communicators, such as scope communicators. */
     if (!sslib_g.ignore_mpierror) {
 #if 1 /*from MPICH header file*/
         MPI_Errhandler_create(ss_err_mpierror, &(sslib_g.ehandler));
         MPI_Errhandler_set(sslib_g.comm, sslib_g.ehandler);
 #else /*from "MPI: The Complete Reference: Vol 1" by Mark Snir et al*/
         MPI_Comm_create_errhandler(ss_err_mpierror, &(sslib_g.ehandler));
         MPI_Comm_set_errhandler(sslib_g.comm, sslib_g.ehandler);
 #endif
     }
 #else
     sslib_g.comm = SS_COMM_SELF;
 #endif /*HAVE_PARALLEL*/

     /* Initialize subsystems -- we can be pretty lazy here because most of them auto initialize properly. The only time they
      * don't get initialized as they should is when a subsystem exports a global variable and that global variable is used by
      * some other subsystem before any function of that subsystem is called. */
     if (ss_mpi_init()<0) SS_ERROR(FAILED);
     if (ss_pers_init()<0) SS_ERROR(FAILED);
     if (ss_attr_init()<0) SS_ERROR(FAILED);

     /* Initialize Library-Wide 2-Phase I/O Defaults and process the SSLIB_2PIO environment variable. */
     if (ss_blob_set_2pio(NULL, NULL)<0) SS_ERROR(FAILED);

     /* Create a transient file on each task */
     if (NULL==(tfile_props=ss_prop_new(SS_PERTASK_FILENAME ".props"))) SS_ERROR(FAILED);
     if (ss_prop_add(tfile_props, "comm", H5T_NATIVE_MPI_COMM, &selfcomm)<0) SS_ERROR(FAILED);
     if (NULL==(sslib_g.temp.file=ss_file_create(SS_PERTASK_FILENAME, H5F_ACC_TRANSIENT, tfile_props))) SS_ERROR(FAILED);
     if (NULL==(sslib_g.temp.tscope=ss_file_topscope(sslib_g.temp.file, NULL))) SS_ERROR(FAILED);
     if (ss_prop_dest(tfile_props)<0) SS_ERROR(FAILED);
     tfile_props = NULL;

     /* Print the welcome banner */
     if (sslib_g.banner && 0==ss_mpi_comm_rank(communicator)) fprintf(stderr, "SSlib-0: %s\n", sslib_g.banner);

     /* All was successful. Consider the library initialized. Stuff after here uses the SSlib API. */
     sslib_g.initialized = TRUE;

  SS_CLEANUP:
     if (tfile_props) ss_prop_dest(tfile_props);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6

	 htri_t
 ss_initialized(void)
 {
     SS_ENTER(ss_initialized, htri_t);
     SS_LEAVE(sslib_g.initialized && !sslib_g.finalized);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	 char *
 ss_insert_commas(char *buf)
 {
     SS_ENTER(ss_insert_commas, charP);
     char        sign[2];
     int         i;
     size_t      ndigits;

     /* Peel off the sign character and verify input value */
     sign[0] = sign[1] = '\0';
     if (!buf || !*buf) SS_ERROR_FMT(USAGE, ("empty or null input value"));
     if (!isdigit(*buf)) {
         *sign = *buf;
         memmove(buf, buf+1, strlen(buf));
     }
     if (!*buf || strspn(buf, "0123456789")!=strlen(buf)) SS_ERROR_FMT(USAGE, ("malformed input value: %s", sign, buf));

     /* Insert commas */
     if ((ndigits=strlen(buf))>4) {
         for (i=ndigits-3; i>0; i-=3) {
             memmove(buf+i+1, buf+i, strlen(buf+i)+1);
             buf[i] = ',';
         }
     }

     /* Prepend the sign */
     if (*sign) {
         memmove(buf+1, buf, strlen(buf)+1);
         *buf = *sign;
     }

 SS_CLEANUP:
     SS_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 herr_t
 ss_pers_cksum(ss_persobj_t *persobj,            /* Persistent object whose checksum will be computed. */
               ss_val_cksum_t *cksum             /* OUT: The computed checksum. */
               )
 {
     SS_ENTER(ss_pers_cksum, herr_t);
     ss_pers_class_t             *pc=NULL;

     SS_ASSERT_CLASS(persobj, ss_persobj_t);
     if (NULL==(pc=SS_PERS_CLASS(SS_MAGIC_SEQUENCE(SS_MAGIC_OF(persobj))))) SS_ERROR(NOTFOUND);
     if (ss_val_cksum(persobj, pc->valinfo_nused, pc->valinfo, NULL, cksum)<0) SS_ERROR(FAILED);
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

	 int
 ss_pers_cmp(ss_pers_t *p1,                      /* First of two objects to compare. */
             ss_pers_t *p2,                      /* Second of two objects to cmpare. */
             const ss_persobj_t *mask            /* Optional mask to use for deep comparisons. A null value implies a shallow
                                                  * comparison, which means that the comparison should only look at the object
                                                  * handles and not the objects themselves. */
             )
 {
     SS_ENTER(ss_pers_cmp, int);
     int         retval=0;

     SS_RETVAL(-2);                              /* Comparison functions return -2 for failure since -1 means P1<P2 */

     /* Check basic stuff that we need to do for both shallow and deep comparisons. */
     if (SS_PERS_ISNULL(p1) && SS_PERS_ISNULL(p2)) {
         goto done;
     } else if (SS_PERS_LINK_NULL==ss_pers_link_state(p1)) {
         retval = -1;
         goto done;
     } else if (SS_PERS_LINK_NULL==ss_pers_link_state(p2)) {
         retval = 1;
         goto done;
     }

     /* Some error checks */
     if (SS_PERS_LINK_RESERVED==ss_pers_link_state(p1) || SS_PERS_LINK_RESERVED==ss_pers_link_state(p2))
         SS_ERROR_FMT(USAGE, ("P1 and/or P2 have reserved state"));
     SS_ASSERT_CLASS(p1, ss_pers_t);
     SS_ASSERT_CLASS(p2, ss_pers_t);

     /* More stuff for both shallow and deep */
     if (SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p1)) < SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p2))) {
         retval = -1;
         goto done;
     } else if (SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p1)) > SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p2))) {
         retval = 1;
         goto done;
     }

     /* This stuff is only applicable to a shallow comparison. Object handles are unequal if:
      *   1. They point to different files, or
      *   2. They point to different scopes, or
      *   3. They point to different table entries */
     if (!mask) {
         if (ss_pers_link_gfileidx(p1) < ss_pers_link_gfileidx(p2)) {
             retval = -1;
             goto done;
         } else if (ss_pers_link_gfileidx(p1) > ss_pers_link_gfileidx(p2)) {
             retval = 1;
             goto done;
         } else if (ss_pers_link_scopeidx(p1) < ss_pers_link_scopeidx(p2)) {
             retval = -1;
             goto done;
         } else if (ss_pers_link_scopeidx(p1) > ss_pers_link_scopeidx(p2)) {
             retval = 1;
             goto done;
         }
         if (ss_pers_update(p1)<0) SS_ERROR(FAILED);
         if (ss_pers_update(p2)<0) SS_ERROR(FAILED);
         if (ss_pers_link_objidx(p1) < ss_pers_link_objidx(p2)) {
             retval = -1;
             goto done;
         } else if (ss_pers_link_objidx(p1) > ss_pers_link_objidx(p2)) {
             retval = 1;
             goto done;
         }
     }

     /* This stuff is only applicable to a deep comparison. */
     if (mask) {
         ss_persobj_t *po1, *po2;
         if (NULL==(po1=ss_pers_deref(p1))) SS_ERROR(FAILED);
         if (NULL==(po2=ss_pers_deref(p2))) SS_ERROR(FAILED);
         if (-2==(retval=ss_pers_cmp_(po1, po2, mask))) SS_ERROR(FAILED);
     }

 done:
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	 int
 ss_pers_cmp_(ss_persobj_t *p1,                  /* First of two objects to compare. This is normally considered to be the
                                                  * "haystack". */
              ss_persobj_t *p2,                  /* Second of two objects to compare. This is normally considered to be the
                                                  * "needle" and might contain special things like regular expressions, etc.
                                                  * depending on the values contained in the MASK. */
              const ss_persobj_t *mask           /* Which elements of P1 and P2 to compare. This isn't really a true object but
                                                  * rather a chunk of memory the same size as the objects that is filled with
                                                  * bytes that say which members of P1 and P2 to compare and how to compare
                                                  * them. */
              )
 {

     SS_ENTER(ss_pers_cmp_, int);
     unsigned            persseq;                /* Persistent object type sequence number */
     int                 retval=0;               /* Return value */
     ss_pers_class_t     *pc=NULL;

     SS_RETVAL(-2);                              /* Failure return value */
     SS_ASSERT_CLASS(p1, ss_persobj_t);
     SS_ASSERT_CLASS(p2, ss_persobj_t);
     persseq = SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p1));
     if (SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p2))!=persseq) SS_ERROR_FMT(USAGE, ("P1 and P2 must be same type"));
     SS_ASSERT(mask); /*must be present, but not necessarily a true ss_persobj_t object*/

     if (NULL==(pc=SS_PERS_CLASS(SS_MAGIC_SEQUENCE(SS_MAGIC_OF(p1))))) SS_ERROR(FAILED);
     if (-2==(retval=ss_val_cmp(p1, p2, mask, pc->valinfo_nused, pc->valinfo))) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 ss_pers_t *
 ss_pers_copy(ss_pers_t *pers,           /* The object to be copied. */
              ss_scope_t *scope,         /* The destination scope that will own the new object. */
              unsigned flags,            /* Creation flags like SS_ALLSAME (see ss_pers_new()). */
              ss_pers_t *buf,            /* Optional buffer for return value. */
              ss_prop_t *props           /* Additional properties (none defined yet) */
              )
 {
     SS_ENTER(ss_pers_copy, ss_pers_tP);
     ss_pers_t           *retval=NULL;
     unsigned            tableid;
     ss_persobj_t        *persobj=NULL;

     SS_ASSERT_CLASS(pers, ss_pers_t);

     tableid = SS_MAGIC_SEQUENCE(SS_MAGIC_OF(pers));
     if (NULL==(persobj=ss_pers_deref(pers))) SS_ERROR(FAILED);
     if (NULL==(retval=ss_pers_new(scope, tableid, persobj, flags, buf, props))) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 herr_t
 ss_pers_debug(ss_pers_t *pers)
 {
     SS_ENTER(ss_pers_debug, herr_t);
     if (ss_pers_dump(pers, stdout, NULL, NULL)<0) SS_ERROR(FAILED);
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 size_t
 ss_pers_decode_cb(void *buffer,                         /* Array of objects into which to decode SERBUF. */
                   const char *serbuf,                   /* Encoded information to be decoded. */
                   size_t size,                          /* Size of each element in BUFFER array. */
                   size_t nelmts                         /* Number of elements in BUFFER array. */
                   )
 {
     SS_ENTER(ss_pers_decode_cb, size_t);
     size_t              i, serial, scope_idx, item_idx, gfile_idx;
     ss_pers_t           *pers = (ss_pers_t*)buffer;
     ss_gfile_t          *gfile=NULL; /*used only for sizeof*/
     unsigned            table_idx;
     const char          *serbuf_orig=serbuf;

     SS_ASSERT(sizeof(ss_pers_t)==size);
     for (i=0; i<nelmts; i++, pers++) {
         memset(pers, 0, sizeof(*pers));
         SS_H5_DECODE(serbuf, 1, table_idx);
         if (0xff!=table_idx) {
             SS_H5_DECODE(serbuf, sizeof(gfile->serial), serial);
             SS_H5_DECODE(serbuf, 4, scope_idx);
             SS_H5_DECODE(serbuf, 4, item_idx);


             if (SS_NOSIZE==(gfile_idx=ss_gfile_find_serial(serial))) SS_ERROR(NOTFOUND);
             if (NULL==ss_obj_new((ss_obj_t*)pers, SS_MAGIC_CONS(SS_MAGIC(ss_pers_t), table_idx), sizeof(*pers), pers))
                 SS_ERROR(FAILED);
             ss_pers_link_setstate(pers, SS_PERS_LINK_CLOSED);
             ss_pers_link_setgfileidx(pers, gfile_idx);
             ss_pers_link_setscopeidx(pers, scope_idx);
             ss_pers_link_setobjidx(pers, item_idx);
         }
     }

 SS_CLEANUP:
     memset(buffer, 0, size*nelmts); /*make them all null links on failure*/
     SS_LEAVE((size_t)(serbuf-serbuf_orig));
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 ss_persobj_t *
 ss_pers_deref(ss_pers_t *pers)
 {
     SS_ENTER(ss_pers_deref, ss_persobj_tP);
     ss_persobj_t        *persobj=NULL;                  /* A pointer to the persistent object to be returned */

     SS_ASSERT(pers);
     SS_ASSERT_CLASS(pers, ss_pers_t);

     /* Make sure link is current */
     if (ss_pers_update(pers)<0) SS_ERROR(FAILED);

     /* Error conditions */
     if (SS_PERS_LINK_NULL==ss_pers_link_state(pers)) SS_ERROR_FMT(NOTFOUND, ("dereferencing a null link"));
     if (SS_PERS_LINK_RESERVED==ss_pers_link_state(pers)) SS_ERROR_FMT(CORRUPT, ("mangled object link"));
     if (SS_PERS_LINK_CLOSED==ss_pers_link_state(pers)) SS_ERROR_FMT(NOTFOUND, ("object not found"));

     /* Result */
     persobj = ss_pers_link_objptr(pers);
     SS_ASSERT(persobj);
     SS_ASSERT_CLASS(persobj, ss_persobj_t);
     SS_ASSERT(SS_MAGIC_SEQUENCE(SS_MAGIC_OF(persobj))==SS_MAGIC_SEQUENCE(SS_MAGIC_OF(pers)));

 SS_CLEANUP:
     SS_LEAVE(persobj);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8
9

	 herr_t
 ss_pers_dest(ss_pers_t *pers)
 {
     SS_ENTER(ss_pers_dest, herr_t);
     SS_ASSERT_CLASS(pers, ss_pers_t);
     SS_OBJ_DEST(pers);
  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 htri_t
 ss_pers_eq(ss_pers_t *pers1, ss_pers_t *pers2)
 {
     SS_ENTER(ss_pers_eq, htri_t);
     int                 cmp=-1;

     cmp = ss_pers_cmp(pers1, pers2, NULL);
     if (-2==cmp) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(0==cmp);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	 htri_t
 ss_pers_equal(ss_pers_t *pers1,
               ss_pers_t *pers2,
               ss_prop_t UNUSED *props   /* A property list to indicate how the comparison should proceed. No properties
                                          * are currently defined. If an object contains persistent object links then the
                                          * pointed-to objects will be compared with ss_pers_eq() instead of recursively
                                          * calling ss_pers_equal(). */
               )
 {
     SS_ENTER(ss_pers_equal, htri_t);
     int                 cmp=-1;
     static char         mask[1024];
     static int          ncalls;

     /* Build the mask used to compare the two objects. */
     if (0==ncalls++) {
 #ifndef NDEBUG
         int i;
         for (i=0; i<SS_PERS_NCLASSES; i++) {
             SS_ASSERT(ss_pers_class_g[i].t_size<=sizeof mask);
         }
 #endif
         memset(mask, SS_VAL_CMP_DFLT, sizeof mask);
     }

     if (-2==(cmp=ss_pers_cmp(pers1, pers2, (ss_persobj_t*)mask))) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(0==cmp);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 ss_file_t *
 ss_pers_file(ss_pers_t *pers,           /* Persistent object link to query */
              ss_file_t *file            /* OUT: Optional buffer for the result file link */
              )
 {
     SS_ENTER(ss_pers_file, ss_file_tP);
     ss_scope_t          topscope;

     if (NULL==ss_pers_topscope(pers, &topscope)) SS_ERROR(FAILED);
     if (NULL==(file=(ss_file_t*)ss_pers_refer_c(&topscope, SS_MAGIC(ss_file_t), 0, (ss_pers_t*)file))) SS_ERROR(FAILED);

 SS_CLEANUP:
     SS_LEAVE(file);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

	 ss_pers_t *
 ss_pers_find(ss_scope_t *scope,                 /* Scope to be searched */
              ss_pers_t *key,                    /* Value for which to search. This is required even if MASK is null because
                                                  * the KEY determines the type of objects for which to search. */
              ss_persobj_t *mask,                /* Which elements of KEY to consider when searching. It is an error if no bits
                                                  * of MASK are set, but if MASK is the null pointer then KEY is assumed to
                                                  * match every object. If non-null then MASK and KEY must be of the same
                                                  * type. The reason MASK is an object pointer rather than an object link is
                                                  * that the memory is really only used to store one-byte flags that control
                                                  * how the matching is performed. In other words, MASK isn't truly an
                                                  * object--it just has to be the same size as an object. */
              size_t nskip,                      /* Number of initial matched results that should be skipped. */
              size_t *nfound,                    /* INOUT:  The input value limits the matching to the specified number of
                                                  * objects, and on successful return this points to the number of objects
                                                  * actually found to match. This can be a null pointer as long as BUFFER is
                                                  * a null pointer, but if BUFFER is supplied then the incoming value of NFOUND
                                                  * indicates the number of elements in BUFFER. An incoming value of SS_NOSIZE
                                                  * indicates that the result is not to be truncated. */
              ss_pers_t *buffer,                 /* Optional buffer to fill in with handles to items that were found. If this
                                                  * is the constant SS_PERS_TEST then this function behaves exactly as if the
                                                  * caller had supplied a buffer but does not attempt to return links to the
                                                  * matching objects. */
              ss_prop_t *props                   /* Optional properties (See Persistent Object Properties) */
              )
 {
     SS_ENTER(ss_pers_find, ss_pers_tP);
     unsigned tableid;
     ss_table_t *table=NULL;
     ss_pers_find_t find_data;
     ss_scope_t *reg_scope=NULL;
     size_t regidx;
     int noregistries=0;
     ss_gfile_t *gfile=NULL;

     memset(&find_data, 0, sizeof find_data);    /* Necessary for error cleanup */

     SS_ASSERT_MEM(scope, ss_scope_t);
     SS_ASSERT_CLASS(key, ss_pers_t);
     if (buffer && NULL==nfound)
         SS_ERROR_FMT(USAGE, ("if BUFFER is specified then NFOUND must be non-null"));

     tableid = SS_MAGIC_SEQUENCE(SS_MAGIC_OF(key));
     if (NULL==(table = ss_scope_table(scope, tableid, NULL))) SS_ERROR(FAILED);

     /* Initialize data to pass through ss_table_scan() */
     if (NULL==(find_data.key = ss_pers_deref(key))) SS_ERROR(NOTFOUND);
     find_data.mask = mask;
     find_data.buffer = buffer;
     find_data.nalloc = buffer ? *nfound : 0;
     find_data.limit = nfound ? *nfound : SS_NOSIZE;
     find_data.nskip = nskip;
     find_data.overflowed = FALSE;
     find_data.scope = scope;
     if (NULL==ss_prop_get(props, "detect_overflow", H5T_NATIVE_INT, &(find_data.detect_overflow))) {
         SS_STATUS_OK;
         find_data.detect_overflow = FALSE;
     }

     /* Scan the entire table for matches. We could also check whether ss_table_scan() returned positive, which indicates that
      * we've found more matches than the find_data.limit value. */
     if (ss_table_scan(table, NULL, 0, ss_pers_find_cb, &find_data)<0) SS_ERROR(FAILED);
     if (find_data.detect_overflow && find_data.overflowed) SS_ERROR(OVERFLOW);

     /* Search registries until we find something. The tables that describe the file infrastructure do not need to search
      * registries because doing so doesn't really make any sense: Scope, File, and Blob tables. */
     if (0==find_data.nused &&
         SS_MAGIC_OF(key)!=SS_MAGIC(ss_scope_t) &&
         SS_MAGIC_OF(key)!=SS_MAGIC(ss_file_t) &&
         SS_MAGIC_OF(key)!=SS_MAGIC(ss_blob_t) &&
         (NULL==ss_prop_get(props, "noregistries", H5T_NATIVE_INT, &noregistries) || !noregistries)) {
         SS_STATUS_OK; /*clean up from possible failed ss_prop_get()*/
         if (NULL==(gfile = SS_GFILE_LINK(scope))) SS_ERROR(FAILED);
         for (regidx=0; 0==find_data.nused && regidx<gfile->reg_nused; regidx++) {
             reg_scope = gfile->reg + regidx;
             if (NULL==(table = ss_scope_table(reg_scope, tableid, NULL))) SS_ERROR(FAILED);
             find_data.scope = reg_scope;
             if (ss_table_scan(table, reg_scope, 0, ss_pers_find_cb, &find_data)<0) SS_ERROR(FAILED);
             if (find_data.detect_overflow && find_data.overflowed) SS_ERROR(OVERFLOW);
         }
     }

     /* If no matches were found but we were otherwise successful then make sure we return a non-null value */
     if (nfound) *nfound = find_data.nused;
     if (0==find_data.nused && NULL==find_data.buffer) {
         find_data.buffer = calloc(1, sizeof(ss_pers_t));
         find_data.nalloc = 1;
     }

     /* If there is room then set the link after the last one to null */
     if (!buffer) SS_EXTEND(find_data.buffer, find_data.nused+1, find_data.nalloc);
     if (find_data.nused<find_data.nalloc && SS_PERS_TEST!=find_data.buffer)
         memset(find_data.buffer + find_data.nused, 0, sizeof(find_data.buffer[0]));


 SS_CLEANUP:
     if (!buffer) SS_FREE(find_data.buffer);
     if (nfound) *nfound = 0;
     SS_LEAVE(find_data.buffer);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 htri_t
 ss_pers_iswritable(ss_pers_t *pers)
 {
     SS_ENTER(ss_pers_iswritable, htri_t);
     htri_t              retval=FALSE;
     ss_gfile_t          *gfile=NULL;
     ss_scope_t          scope;

     if (NULL==(gfile=SS_GFILE_LINK(pers))) SS_ERROR(FAILED);
     if (0==gfile->cur_open) goto done; /*file is not open*/
     if (NULL==ss_pers_scope(pers, &scope)) SS_ERROR(FAILED);
     if (ss_scope_isopen(&scope)<=0) {
         SS_STATUS_OK;
         goto done; /*scope is not open*/
     }
     if ((retval=ss_scope_iswritable(&scope))<0) SS_ERROR(FAILED);

 done:
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 herr_t
 ss_pers_modified(ss_pers_t *pers,               /* Persistent object to mark as modified */
                  unsigned flags                 /* Bitflags such as SS_ALLSAME */
                  )
 {
     SS_ENTER(ss_pers_modified, herr_t);
     ss_persobj_t *persobj = ss_pers_deref(pers);

     if (!persobj) SS_ERROR(NOTFOUND);
     persobj->dirty = TRUE;
     persobj->synced = ((flags & SS_ALLSAME) && persobj->synced) ? SS_ALLSAME : FALSE;

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	 ss_pers_t *
 ss_pers_new(ss_scope_t *scope,          /* The scope that will own this new object. */
             unsigned tableid,           /* A magic number whose sequence part defines a table */
             const ss_persobj_t *init,   /* Optional initial data of type ss_persobj_t or a type derived therefrom. The type must
                                          * be appropriate for the class of object being created. This argument can be used to
                                          * copy a persistent object. ISSUE: Should this be a link instead? */
             unsigned flags,             /* Creation flags, like SS_ALLSAME */
             ss_pers_t *buf,             /* Optional buffer for return value */
             ss_prop_t UNUSED *props     /* Additional properties (none defined yet) */
             )
 {
     SS_ENTER(ss_pers_new, ss_pers_tP);
     ss_persobj_t *persobj = NULL;
     ss_pers_t *objlink = NULL;
     size_t idxtype;
     ss_table_t *table=NULL;
     ss_pers_class_t *pc=NULL;

     tableid = SS_MAGIC_SEQUENCE(tableid);
     if (NULL==(pc=SS_PERS_CLASS(tableid))) SS_ERROR(NOTFOUND);

     /* Obtain a pointer to the table for this object. */
     if (NULL==(table = ss_scope_table(scope, tableid, NULL))) SS_ERROR(FAILED);

     /* Obtain memory for the object and initialize it.  When declaring a single new object with SS_ALLSAME we can
      * immediately give it a permanent home, evicting any temporary object that might be there, because we know all tasks have
      * the same number of permanent objects. */
     idxtype = flags & SS_ALLSAME ? 0 : SS_TABLE_INDIRECT;
     if (NULL==(persobj=ss_table_newobj(table, idxtype, init, NULL))) SS_ERROR(FAILED);
     persobj->dirty = TRUE;

     /* If an initial value was supplied then we may have to reallocate some of the resources in the new object so that they're
      * not shared between the new object and the initial object. We do this in place (hence the NULL first argument). */
     if (init && ss_val_copy(NULL, persobj, pc->valinfo_nused, pc->valinfo)<0) SS_ERROR(FAILED);

     /* If all tasks are supplying the same data then mark the object as synchronized because it will save us some work when we
      * actually do attempt to synchronize later.  We mark it with SS_ALLSAME (which is true but distinct from the constant
      * `TRUE') to indicate that we never actually synchronized but rather we just "know" that the object is in a synchronized
      * state.  It's not possible to avoid this little complication because the rule is that all synchronized objects have a
      * last-synchronized checksum stored with them but we can't compute the checksum yet because we're just now creating an
      * empty object that the user will fill in shortly.  See also ss_table_synchronize(). */
     if (flags & SS_ALLSAME) {
         persobj->synced = SS_ALLSAME;
     }

     /* Create a link to the object. This will be our return value */
     if (NULL==(objlink=ss_pers_refer(scope, persobj, buf))) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(objlink);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	 ss_pers_t *
 ss_pers_refer(ss_scope_t *scope,              /* The scope to which PERSOBJ belongs. */
               ss_persobj_t *persobj,          /* The object to which the new link will point. */
               ss_pers_t *pers                 /* Optional memory for the link. */
               )
 {
     SS_ENTER(ss_pers_refer, ss_pers_tP);
     unsigned            tableidx;
     ss_pers_t           *pers_in=pers;
     ss_pers_class_t     *pc=NULL;
     ss_table_t          *table=NULL;
     ss_gfile_t          *gfile=NULL;

     SS_ASSERT_MEM(scope, ss_scope_t);
     SS_ASSERT_CLASS(persobj, ss_persobj_t);
     tableidx = SS_MAGIC_SEQUENCE(SS_MAGIC_OF(persobj));
     pc = SS_PERS_CLASS(tableidx);
     SS_ASSERT(pc);
     gfile = SS_GFILE_LINK(scope);
     SS_ASSERT(gfile);

     /* Create and/or initialize the link */
     pers=(ss_pers_t*)ss_obj_new((ss_obj_t*)pers, SS_MAGIC_CONS(SS_MAGIC(ss_pers_t), tableidx), sizeof(ss_pers_t), NULL);
     if (!pers) SS_ERROR(FAILED);

     /* The PERS object must be in the same file as the SCOPE -- in fact, in the specified scope */
     if (NULL==(table = ss_scope_table(scope, SS_MAGIC_OF(pers), NULL))) SS_ERROR(FAILED);
     if (ss_table_owns(table, persobj)<=0) SS_ERROR(NOTFOUND);

     /* Initialize the link */
     ss_pers_link_setobjptr(pers, persobj);
     ss_pers_link_setobjidx(pers, persobj->mapidx);
     ss_pers_link_setopenserial(pers, gfile->open_serial);
     ss_pers_link_setscopeidx(pers, SS_SCOPE(scope)->m.pers.mapidx);
     ss_pers_link_setgfileidx(pers, ss_pers_link_gfileidx(scope));
     ss_pers_link_setstate(pers, SS_PERS_LINK_MEMORY);

  SS_CLEANUP:
     if (pers && !pers_in) {
         SS_OBJ_DEST(pers);
         SS_FREE(pers);
     }
     SS_LEAVE(pers);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 herr_t
 ss_pers_reset(ss_pers_t *pers,          /* The object to be reset */
               unsigned flags            /* Bit flags such as SS_ALLSAME */
               )
 {
     SS_ENTER(ss_pers_reset, herr_t);
     ss_persobj_t        *persobj=NULL;

     SS_ASSERT_CLASS(pers, ss_pers_t);
     if (NULL==(persobj=ss_pers_deref(pers))) SS_ERROR(FAILED);
     if (ss_pers_reset_(persobj, flags)<0) SS_ERROR(FAILED);
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 ss_scope_t *
 ss_pers_scope(ss_pers_t *pers,               /* Persistent object link to query */
               ss_scope_t *buf                /* OUT: Optional buffer for the result scope link */
               )
 {
     SS_ENTER(ss_pers_scope, ss_scope_tP);
     ss_scope_t          *buf_here=NULL;
     ss_scope_t          topscope, *retval=NULL;
     ss_persobj_t        *scopeobj=NULL;
     ss_table_t          *table=NULL;

     SS_ASSERT_CLASS(pers, ss_pers_t);
     if (NULL==ss_pers_topscope(pers, &topscope)) SS_ERROR(FAILED);
     if (NULL==(table = ss_scope_table(&topscope, SS_MAGIC(ss_scope_t), NULL))) SS_ERROR(FAILED);
     if (NULL==(scopeobj=ss_table_lookup(table, ss_pers_link_scopeidx(pers), SS_STRICT))) SS_ERROR(FAILED);
     if (NULL==(retval = (ss_scope_t*)ss_pers_refer(&topscope, scopeobj, (ss_pers_t*)buf))) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_FREE(buf_here);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	 herr_t
 ss_pers_state(ss_pers_t *pers,                  /* The persistent object link whose state is to be changed. */
               ss_pers_link_state_t state        /* Desired state for the link, one of the SS_PERS_LINK constants. */
               )
 {
     SS_ENTER(ss_pers_state, herr_t);

     SS_ASSERT_CLASS(pers, ss_pers_t);

     switch (state) {
     case SS_PERS_LINK_NULL:
         ss_pers_link_setobjptr(pers, NULL);
         ss_pers_link_setobjidx(pers, 0);
         ss_pers_link_setscopeidx(pers, 0);
         ss_pers_link_setgfileidx(pers, 0);
         ss_pers_link_setopenserial(pers, 0);
         break;
     case SS_PERS_LINK_RESERVED:
         /* What does this really mean? */
         break;
     case SS_PERS_LINK_CLOSED:
         if (SS_PERS_LINK_NULL==ss_pers_link_state(pers)) SS_ERROR_FMT(NOTFOUND, ("link is null"));
         if (SS_PERS_LINK_RESERVED==ss_pers_link_state(pers)) SS_ERROR_FMT(CORRUPT, ("mangled link"));

         /* We might be able to be more efficient here, especially if the link is in a closed state already. The problem here
          * is that if the link is in a closed state but the file is open then it will be updated to the memory state and the
          * object will be read from the file. */
         if (ss_pers_update(pers)<0) SS_ERROR(FAILED);
         ss_pers_link_setobjptr(pers, NULL);
         break;
     case SS_PERS_LINK_MEMORY:
         /* If the link is already in a memory state we probably still want to make sure the `objidx' is updated to be a direct
          * index if one exists. */
         if (ss_pers_update(pers)<0) SS_ERROR(FAILED);
         break;
     }
     ss_pers_link_setstate(pers, state);

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 ss_scope_t *
 ss_pers_topscope(ss_pers_t *pers,               /* Persistent object link to query */
                  ss_scope_t *buf                /* OUT: Optional buffer for the result scope link */
                  )
 {
     SS_ENTER(ss_pers_topscope, ss_scope_tP);
     ss_scope_t          *buf_here=NULL;
     ss_gfile_t          *gfile=NULL;

     SS_ASSERT_CLASS(pers, ss_pers_t);
     if (SS_PERS_LINK_NULL==ss_pers_link_state(pers)) SS_ERROR_FMT(NOTFOUND, ("null persistent link"));
     if (SS_PERS_LINK_RESERVED==ss_pers_link_state(pers)) SS_ERROR_FMT(CORRUPT, ("mangled persistent link"));

     if (NULL==(gfile = SS_GFILE_LINK(pers))) SS_ERROR(FAILED);
     if (gfile->cur_open<=0) SS_ERROR_FMT(NOTFOUND, ("file is closed: %s", gfile->name));
     SS_ASSERT(gfile->topscope);

     if (!buf && NULL==(buf=buf_here=malloc(sizeof(*buf)))) SS_ERROR(RESOURCE);
     *buf = *(gfile->topscope);

  SS_CLEANUP:
     SS_FREE(buf_here);
     SS_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 herr_t
 ss_pers_unique(ss_pers_t *pers                  /* Persistent object to make unique */
                )
 {
     SS_ENTER(ss_pers_unique, herr_t);
     ss_persobj_t *persobj = ss_pers_deref(pers);

     if (!persobj) SS_ERROR(NOTFOUND);
     if (0==(persobj->mapidx & SS_TABLE_INDIRECT)) SS_ERROR_FMT(USAGE, ("only new objects can be marked as unique"));
     persobj->saf_each = sslib_g.serial++;
     persobj->dirty = TRUE;
     persobj->synced = FALSE;

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

	 herr_t
 ss_pers_update(ss_pers_t *pers)
 {
     SS_ENTER(ss_pers_update, herr_t);
     ss_gfile_t          *gfile=NULL;                    /* The GFile array entry for the file that owns the object */
     ss_table_t          *table=NULL;                    /* The scope table or the resulting object's table */
     ss_scopeobj_t       *scopeobj=NULL;                 /* The scope object owning the desired object */
     ss_persobj_t        *persobj=NULL;                  /* A pointer to the persistent object to be returned */
     size_t              objidx;                         /* An index into a table for the object in question */
     unsigned            tableidx;                       /* Object magic serial number for table */

     SS_ASSERT(pers);
     SS_ASSERT_CLASS(pers, ss_pers_t);

     if (SS_PERS_LINK_NULL==ss_pers_link_state(pers)) goto done;
     if (SS_PERS_LINK_RESERVED==ss_pers_link_state(pers)) goto done;
     if (NULL==(gfile=SS_GFILE_LINK(pers))) goto done;

     if (gfile->cur_open>0 ||
         (gfile->topscope && SS_MAGIC(ss_scope_t)==SS_MAGIC_OF(pers))) {
         /* The file is currently open (or the file was previously open and we're updating a scope link) but the object in
          * question may not yet be in memory if its table has never been read by this task. If the object is in memory then
          * make sure the link has the current address and object index, otherwise make the link a `closed' link. */

         /* Scope tables are never deleted when a scope is closed, therefore there is no need to consult the `open_serial'
          * number of such a link to determine if the cached object pointer is out of date.  In fact, doing so would cause
          * infinite recursion when the ss_scope_table() just below tries to dereference gfile->topscope. */
         if (SS_MAGIC_OF(pers)==SS_MAGIC(ss_scope_t)) ss_pers_link_setopenserial(pers, gfile->open_serial);

         /* If the link is in the memory state and the object to which it points agrees has a `mapidx' that agrees with the
          * object index stored in the link itself, then short circuit in order to prevent infinite recursion between this
          * function and ss_pers_deref(). */
         if (SS_PERS_LINK_MEMORY==ss_pers_link_state(pers) &&
             gfile->open_serial==ss_pers_link_openserial(pers) &&
             NULL!=(persobj=ss_pers_link_objptr(pers)) &&
             persobj->mapidx==ss_pers_link_objidx(pers)) goto done;

         /* Get the object's scope */
         if (NULL==(table=ss_scope_table(gfile->topscope, SS_MAGIC(ss_scope_t), NULL))) SS_ERROR(FAILED);
         if (NULL==(scopeobj=(ss_scopeobj_t*)ss_table_lookup(table, ss_pers_link_scopeidx(pers), SS_STRICT))) SS_ERROR(FAILED);

         /* Get the object's table */
         tableidx = SS_MAGIC_SEQUENCE(SS_MAGIC_OF(pers));
         if (NULL==(table=scopeobj->m.table[tableidx])) SS_ERROR(NOTFOUND);

         /* See if the object is in memory already. This has the side effect of allocating memory for the object although it
          * won't actually read the object from the file. If the object isn't in memory yet then the link must necessarily have
          * a direct object index. */
         if (NULL==(persobj=ss_table_lookup(table, ss_pers_link_objidx(pers), 0))) SS_ERROR(FAILED);
         if (SS_MAGIC_CLASS(SS_MAGIC_OF(persobj))!=SS_MAGIC(ss_persobj_t)) {
             /* Not in memory */
             SS_ASSERT(0==(ss_pers_link_objidx(pers) & SS_TABLE_INDIRECT));
             ss_pers_link_setstate(pers, SS_PERS_LINK_CLOSED);
             ss_pers_link_setobjptr(pers, NULL);
             ss_pers_link_setopenserial(pers, gfile->open_serial);
         } else {
             /* In memory */
             ss_pers_link_setstate(pers, SS_PERS_LINK_MEMORY);
             ss_pers_link_setobjidx(pers, persobj->mapidx);
             ss_pers_link_setobjptr(pers, persobj);
             ss_pers_link_setopenserial(pers, gfile->open_serial);
         }

     } else if (gfile->topscope) {
         /* File was open before but now is closed. It's scopes are still in memory however and we can use that to make sure
          * that the link has a direct object index. */

         /* Get the object's scope */
         if (NULL==(table=ss_scope_table(gfile->topscope, SS_MAGIC(ss_scope_t), NULL))) SS_ERROR(FAILED);
         if (NULL==(scopeobj=(ss_scopeobj_t*)ss_table_lookup(table, ss_pers_link_scopeidx(pers), SS_STRICT))) SS_ERROR(FAILED);

         /* Get the object's table. */
         tableidx = SS_MAGIC_SEQUENCE(SS_MAGIC_OF(pers));
         if (NULL==(table=scopeobj->m.table[tableidx])) SS_ERROR(NOTFOUND);

         /* Make the link a `closed' link and use the direct index */
         ss_pers_link_setstate(pers, SS_PERS_LINK_CLOSED);
         ss_pers_link_setobjptr(pers, NULL);
         if (ss_pers_link_objidx(pers) & SS_TABLE_INDIRECT) {
             if (SS_NOSIZE==(objidx=ss_table_direct(table, ss_pers_link_objidx(pers)))) SS_ERROR(FAILED);
             SS_ASSERT(0==(objidx & SS_TABLE_INDIRECT)); /*if a table was closed it must have been synchronized*/
             ss_pers_link_setobjidx(pers, objidx);
         }

     } else {
         /* The destination file has never been opened. Therefore the link must already be in a closed state with a direct
          * object index. */
         SS_ASSERT(SS_PERS_LINK_CLOSED==ss_pers_link_state(pers));
         SS_ASSERT(0==(ss_pers_link_objidx(pers) & SS_TABLE_INDIRECT));
     }

 done:
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 herr_t
 ss_prop_add(ss_prop_t *prop,            /* property list to which is added a property */
             const char *name,           /* name of property to add */
             hid_t type,                 /* datatype for stored property value */
             const void *value           /* optional initial property value */
             )
 {
     SS_ENTER(ss_prop_add, herr_t);
     size_t      offset;

     SS_ASSERT_TYPE(prop, ss_prop_t);
     if (!prop->appendable) SS_ERROR(PERM);

     if (prop->type<=0) {
         if ((prop->type=H5Tcreate(H5T_COMPOUND, H5Tget_size(type)))<0) SS_ERROR(HDF5);
         offset = 0;
     } else {
         if (0==(offset=H5Tget_size(prop->type))) SS_ERROR(HDF5);
         if (H5Tset_size(prop->type, offset+H5Tget_size(type))<0) SS_ERROR(HDF5);
     }
     if (NULL==(prop->values=realloc(prop->values, H5Tget_size(prop->type)))) SS_ERROR(RESOURCE);

     if (H5Tinsert(prop->type, name, offset, type)<0) SS_ERROR(HDF5);
     if (value) {
         memcpy((char*)(prop->values)+offset, value, H5Tget_size(type));
     } else {
         memset((char*)(prop->values)+offset, 0, H5Tget_size(type));
     }

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 htri_t
 ss_prop_appendable(ss_prop_t *prop, htri_t new_value)
 {
     SS_ENTER(ss_prop_appendable, htri_t);
     htri_t retval = prop->appendable;
     SS_ASSERT_TYPE(prop, ss_prop_t);

     if (new_value>=0) {
         if (!prop->appendable && new_value) SS_ERROR(PERM);
         prop->appendable = new_value;
     }
  SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 void *
 ss_prop_buffer(ss_prop_t *prop,         /* property list to be queried */
                const char *name         /* optional property name */
                )
 {
     SS_ENTER(ss_prop_buffer, voidP);
     size_t      offset=0;

     SS_ASSERT_TYPE(prop, ss_prop_t);

     /* Get the offset. This will fail if the property list has no properties yet or if the
      * specified name cannot be found in the compound datatype. */
     if (name) {
         int idx = H5Tget_member_index(prop->type, name);
         if (idx<0) SS_ERROR(HDF5);
         if (SS_NOSIZE==(offset=H5Tget_member_offset(prop->type, (unsigned)idx))) SS_ERROR(HDF5);
     }

  SS_CLEANUP:
     SS_LEAVE((char*)(prop->values) + offset);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 ss_prop_t *
 ss_prop_cons(hid_t type,                /* Property datatype (copied by this function) */
              void *values,              /* Optional initial values, of type TYPE */
              const char *name           /* Optional property list name */
              )
 {
     SS_ENTER(ss_prop_cons, ss_prop_tP);
     ss_prop_t   *newprop = NULL;

     if (NULL==(newprop=ss_prop_new(name))) SS_ERROR(CONS);
     if ((newprop->type=H5Tcopy(type))<0) SS_ERROR(CONS);
     if (values) {
         newprop->values = values;
         newprop->appendable = FALSE;
         newprop->managed = FALSE;
     } else {
         if (NULL==(newprop->values=calloc(1, H5Tget_size(type)))) SS_ERROR(RESOURCE);
     }

  SS_CLEANUP:
     if (newprop) ss_prop_dest(newprop);
     SS_LEAVE(newprop);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 herr_t
 ss_prop_dest(ss_prop_t *prop)
 {
     SS_ENTER(ss_prop_dest, herr_t);

     if (prop) {
         SS_ASSERT_TYPE(prop, ss_prop_t);
         if (!prop->destroyable) SS_ERROR(PERM);
         if (prop->managed) prop->values = SS_FREE(prop->values);
         prop->name = SS_FREE(prop->name);
         if (ss_obj_dest((ss_obj_t*)prop)<0) SS_ERROR(FAILED);
         prop = SS_FREE(prop);
     }

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 ss_prop_t *
 ss_prop_dup(ss_prop_t *prop,            /* source property list */
             const char *name            /* optional name for debugging */
             )
 {
     SS_ENTER(ss_prop_dup, ss_prop_tP);
     ss_prop_t   *newprop = NULL;

     SS_ASSERT_TYPE(prop, ss_prop_t);
     if (NULL==(newprop=ss_prop_new(name))) SS_ERROR(CONS);
     if (!name && prop->name)
         newprop->name = strdup(prop->name);
     if (prop->type>0) {
         size_t size;
         if (0==(size=H5Tget_size(newprop->type))) SS_ERROR(HDF5);
         if ((newprop->type=H5Tcopy(prop->type))<0) SS_ERROR(HDF5);
         if (NULL==(newprop->values=malloc(size))) SS_ERROR(RESOURCE);
         memcpy(newprop->values, prop->values, size);
     }

  SS_CLEANUP:
     if (newprop) ss_prop_dest(newprop);
     SS_LEAVE(newprop);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	 void *
 ss_prop_get(ss_prop_t *prop,            /* property list to be queried */
             const char *name,           /* name of queried property */
             hid_t type,                 /* optional type of data to return */
             void *buffer                /* optional result buffer */
             )
 {
     SS_ENTER(ss_prop_get, voidP);
     hid_t       stored_type=-1;         /* datatype stored in the property list */
     void        *convbuf=NULL;          /* temporary buffer for data conversion */
     void        *src=NULL;              /* source data from property list */
     void        *retval=NULL;           /* return value */

     if ((stored_type=ss_prop_type(prop, name))<0) SS_ERROR(FAILED);
     if (NULL==(src=ss_prop_buffer(prop, name))) SS_ERROR(FAILED);

     if (buffer) {
         if (type<=0 || H5Tequal(type, stored_type)>0) {
             /* No datatype conversion necessary */
             memcpy(buffer, src, H5Tget_size(stored_type));
         } else if (H5Tget_size(type)>=H5Tget_size(stored_type)) {
             /* User-supplied buffer is large enough to use for conversion */
             memcpy(buffer, src, H5Tget_size(stored_type));
             if (H5Tconvert(stored_type, type, 1, buffer, NULL, H5P_DEFAULT)<0) SS_ERROR(HDF5);
         } else {
             /* User-supplied buffer is too small for conversion */
             if (NULL==(convbuf=malloc(H5Tget_size(stored_type)))) SS_ERROR(RESOURCE);
             memcpy(convbuf, src, H5Tget_size(stored_type));
             if (H5Tconvert(stored_type, type, 1, convbuf, NULL, H5P_DEFAULT)<0) SS_ERROR(HDF5);
             memcpy(buffer, convbuf, H5Tget_size(type));
             convbuf = SS_FREE(convbuf);
         }
         retval = buffer;
     } else if (type<=0 || H5Tequal(type, stored_type)>0) {
         /* Allocate result buffer but no conversion necessary */
         if (NULL==(retval=malloc(H5Tget_size(stored_type)))) SS_ERROR(RESOURCE);
         memcpy(retval, src, H5Tget_size(stored_type));
     } else {
         /* Allocate result buffer and do data conversion */
         size_t buf_size = MAX(H5Tget_size(type), H5Tget_size(stored_type));
         if (NULL==(retval=malloc(buf_size))) SS_ERROR(RESOURCE);
         memcpy(retval, src, H5Tget_size(stored_type));
         if (H5Tconvert(stored_type, type, 1, retval, NULL, H5P_DEFAULT)<0) SS_ERROR(HDF5);
     }

  SS_CLEANUP:
     if (stored_type>0) H5Tclose(stored_type);
     if (!buffer) SS_FREE(retval);
     SS_FREE(convbuf);

     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 double
 ss_prop_get_f(ss_prop_t *prop,          /* property list to be queried */
               const char *name          /* name of queried property */
               )
 {
     SS_ENTER(ss_prop_get_f, double);
     double      value;
     if (!ss_prop_get(prop, name, H5T_NATIVE_DOUBLE, &value)) SS_ERROR(FAILED);
  SS_CLEANUP:
     SS_LEAVE(value);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 int
 ss_prop_get_i(ss_prop_t *prop,          /* property list to be queried */
               const char *name          /* name of queried property */
               )
 {
     SS_ENTER(ss_prop_get_i, int);
     int         value;
     if (!ss_prop_get(prop, name, H5T_NATIVE_INT, &value)) SS_ERROR(FAILED);
  SS_CLEANUP:
     SS_LEAVE(value);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 size_t
 ss_prop_get_u(ss_prop_t *prop,          /* property list to be queried */
               const char *name          /* name of queried property */
               )
 {
     SS_ENTER(ss_prop_get_u, size_t);
     size_t      value;
     if (!ss_prop_get(prop, name, H5T_NATIVE_SIZE, &value)) SS_ERROR(FAILED);
  SS_CLEANUP:
     SS_LEAVE(value);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 htri_t
 ss_prop_has(ss_prop_t *prop,            /* property list being queried */
             const char *name            /* name of property to be tested */
             )
 {
     SS_ENTER(ss_prop_has, htri_t);
     htri_t      retval = FALSE;
     SS_ASSERT_TYPE(prop, ss_prop_t);

     if (prop->type && name && *name && H5Tget_member_index(prop->type, name)>=0)
         retval = TRUE;

 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 herr_t
 ss_prop_immutable(ss_prop_t *prop)
 {
     SS_ENTER(ss_prop_immutable, herr_t);
     SS_ASSERT_TYPE(prop, ss_prop_t);

     prop->modifiable = FALSE;
     prop->appendable = FALSE;
     prop->destroyable = FALSE;
  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 htri_t
 ss_prop_modifiable(ss_prop_t *prop, htri_t new_value)
 {
     SS_ENTER(ss_prop_modifiable, htri_t);
     htri_t retval = prop->modifiable;
     SS_ASSERT_TYPE(prop, ss_prop_t);

     if (new_value>=0) {
         if (!prop->modifiable && new_value) SS_ERROR(PERM);
         prop->modifiable = new_value;
     }
  SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 ss_prop_t *
 ss_prop_new(const char *name            /* optional name for debugging */
             )
 {
     SS_ENTER(ss_prop_new, ss_prop_tP);
     ss_prop_t   *prop = SS_OBJ_NEW(ss_prop_t);

     if (!prop) SS_ERROR(RESOURCE);
     if (name && NULL==(prop->name=strdup(name))) SS_ERROR(RESOURCE);

     prop->appendable = TRUE;
     prop->modifiable = TRUE;
     prop->destroyable = TRUE;
     prop->managed = TRUE;
     prop->type = -1;

  SS_CLEANUP:
     if (prop) ss_prop_dest(prop);
     SS_LEAVE(prop);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	 herr_t
 ss_prop_set(ss_prop_t *prop,            /* property list to be modified */
             const char *name,           /* optional name of property to be modified */
             hid_t type,                 /* optional datatype for supplied value */
             const void *value           /* optional new property value */
             )
 {
     SS_ENTER(ss_prop_set, herr_t);
     hid_t       stored_type=-1;         /* datatype stored in the property list */
     void        *convbuf=NULL;          /* temporary buffer for data conversion */
     void        *dest=NULL;             /* value's destination in the property list */

     if (!prop->modifiable) SS_ERROR(PERM);
     if ((stored_type=ss_prop_type(prop, name))<0) SS_ERROR(FAILED);
     if (NULL==(dest=ss_prop_buffer(prop, name))) SS_ERROR(FAILED);

     /* Store new value. If a conversion is necessary we must allocate a temporary buffer for it because we don't want to
      * modify the caller's memory nor do we want to change the property value until we're sure the conversion worked. */
     if (value) {
         if (type<=0 || H5Tequal(type, stored_type)>0) {
             memcpy(dest, value, H5Tget_size(stored_type));
         } else {
             size_t buf_size = MAX(H5Tget_size(type), H5Tget_size(stored_type));
             if (NULL==(convbuf = malloc(buf_size))) SS_ERROR(RESOURCE);
             memcpy(convbuf, value, H5Tget_size(type));
             if (H5Tconvert(type, stored_type, 1, convbuf, NULL, H5P_DEFAULT)<0) SS_ERROR(HDF5);
             memcpy(dest, convbuf, H5Tget_size(stored_type));
             convbuf = SS_FREE(convbuf);
         }
     } else {
         memset(dest, 0, H5Tget_size(stored_type));
     }
     H5Tclose(stored_type);
     stored_type=-1;

  SS_CLEANUP:
     if (stored_type>0) H5Tclose(stored_type);
     SS_FREE(convbuf);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 herr_t
 ss_prop_set_f(ss_prop_t *prop,          /* property list to be modified */
               const char *name,         /* name of property to be modified */
               double value              /* new floating-point value */
               )
 {
     SS_ENTER(ss_prop_set_f, herr_t);
     if (ss_prop_set(prop, name, H5T_NATIVE_DOUBLE, &value)) SS_ERROR(FAILED);
  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 herr_t
 ss_prop_set_i(ss_prop_t *prop,          /* property list to be modified */
               const char *name,         /* name of property to be modified */
               int value                 /* new integer value */
               )
 {
     SS_ENTER(ss_prop_set_i, herr_t);
     if (ss_prop_set(prop, name, H5T_NATIVE_INT, &value)<0) SS_ERROR(FAILED);
  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 herr_t
 ss_prop_set_u(ss_prop_t *prop,          /* property list to be modified */
               const char *name,         /* name of property to be modified */
               size_t value              /* new unsigned (size_t) value */
               )
 {
     SS_ENTER(ss_prop_set_u, herr_t);
     if (ss_prop_set(prop, name, H5T_NATIVE_SIZE, &value)<0) SS_ERROR(FAILED);
  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 hid_t
 ss_prop_type(ss_prop_t *prop,           /* property list to be queried */
              const char *name           /* optional property name */
              )
 {
     SS_ENTER(ss_prop_type, hid_t);
     hid_t       retval=-1;

     SS_ASSERT_TYPE(prop, ss_prop_t);

     /* Get a copy of the datatype. This will fail if the property list has no properties yet or if the
      * specified name cannot be found in the compound datatype. */
     if (name) {
         int idx = H5Tget_member_index(prop->type, name);
         if (idx<0) SS_ERROR(HDF5);
         if ((retval=H5Tget_member_type(prop->type, (unsigned)idx))<0) SS_ERROR(HDF5);
     } else {
         if ((retval=H5Tcopy(prop->type))<0) SS_ERROR(HDF5);
     }

  SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 herr_t
 ss_scope_close(ss_scope_t *scope)
 {
     SS_ENTER(ss_scope_close, herr_t);
     hid_t               scope_grp;
     unsigned            tableidx;
     ss_table_t          *table=NULL;
     const char          *scopename=NULL;

     SS_ASSERT_MEM(scope, ss_scope_t);
     if (NULL==(scopename=ss_string_ptr(SS_SCOPE_P(scope,name)))) scopename="NONAME";
     if ((scope_grp = ss_scope_isopen(scope))<0) SS_ERROR_FMT(FAILED, ("scope=\"%s\"", scopename));
     if (!scope_grp) SS_ERROR_FMT(NOTFOUND, ("scope is not open: %s", scopename));

     /* Should it be possible to close the top scope? Probably only from ss_file_close() and similar! */

     /* Close down the tables (except scope table if any) */
     for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
         table = SS_SCOPE(scope)->m.table[tableidx];
         if (!table || tableidx==SS_MAGIC_SEQUENCE(SS_MAGIC(ss_scope_t))) continue;
         if (ss_table_dest(table, 0)<0) SS_ERROR_FMT(FAILED, ("scope=\"%s\"", scopename)); /* only partially destroyed */
     }

     /* Reset the communicator */
     if (SS_SCOPE(scope)->m.comm_duped && ss_mpi_comm_free(SS_SCOPE_P(scope,m.comm))<0)
         SS_ERROR_FMT(MPI, ("scope=\"%s\"", scopename));
     SS_SCOPE(scope)->m.comm = SS_COMM_NULL;
     SS_SCOPE(scope)->m.comm_duped = FALSE;
     SS_SCOPE(scope)->m.flags = 0;

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 herr_t
 ss_scope_comm(ss_scope_t *scope,
               MPI_Comm *comm,           /* Optional returned communicator, not duplicated. */
               int *self,                /* Optional returned calling task's rank within communicator */
               int *ntasks               /* Optional returned size of communicator */
               )
 {
     SS_ENTER(ss_scope_comm, herr_t);
     SS_ASSERT_MEM(scope, ss_scope_t);

     if (comm) *comm = SS_SCOPE(scope)->m.comm;
     if (self && (*self=ss_mpi_comm_rank(SS_SCOPE(scope)->m.comm))<0) SS_ERROR(FAILED);
     if (ntasks && (*ntasks=ss_mpi_comm_size(SS_SCOPE(scope)->m.comm))<0) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 herr_t
 ss_scope_flush(ss_scope_t *scope,               /* A link to the open scope to be flushed. */
                unsigned tableidx,               /* Magic number to define which table to flush, or SS_TABLE_ALL */
                ss_prop_t UNUSED *props          /* Scope flushing properties (none defined yet) */
                )
 {
     SS_ENTER(ss_scope_flush, herr_t);
     ss_table_t          *table=NULL;
     ss_scope_t          topscope = SS_SCOPE_NULL;
     const char          *scopename=NULL;

     SS_ASSERT_MEM(scope, ss_scope_t);
     tableidx = SS_MAGIC_SEQUENCE(tableidx);

     if (NULL==(scopename=ss_string_ptr(SS_SCOPE_P(scope,name)))) SS_ERROR(FAILED);
     if (SS_TABLE_ALL==tableidx) {
         /* Flush each of the object tables */
         for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
             if (!SS_PERS_CLASS(tableidx)) continue;
             if (NULL==(table=ss_scope_table(scope, tableidx, NULL))) SS_ERROR(FAILED);
             if (ss_table_write(table, scope)<0) SS_ERROR_FMT(FAILED, ("table %u of scope \"%s\"", tableidx, scopename));
         }
         /* Now write the variable length strings */
         if (NULL==ss_pers_topscope((ss_pers_t*)scope, &topscope)) SS_ERROR(FAILED);
         if (ss_string_flush(SS_SCOPE(scope)->m.strings, SS_SCOPE(scope)->m.comm, SS_SCOPE(&topscope)->m.comm)<0)
             SS_ERROR_FMT(FAILED, ("strings table of scope \"%s\"", scopename));
     } else {
         if (!SS_PERS_CLASS(tableidx)) SS_ERROR(NOTFOUND);
         if (NULL==(table=ss_scope_table(scope, tableidx, NULL))) SS_ERROR(FAILED);
         if (ss_table_write(table, scope)<0) SS_ERROR_FMT(FAILED, ("table %u of scope \"%s\"", tableidx, scopename));
     }

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 hid_t
 ss_scope_isopen(ss_scope_t *scope       /* A link to a scope object. */
                 )
 {
     SS_ENTER(ss_scope_isopen, hid_t);
     hid_t       retval=0;

     SS_ASSERT_MEM(scope, ss_scope_t);
     if (SS_SCOPE(scope)->m.gid<=0) SS_ERROR_FMT(CORRUPT, ("scope does not correspond to an open HDF5 group"));
     if (SS_SCOPE(scope)->m.comm!=SS_COMM_NULL) retval = SS_SCOPE(scope)->m.gid;

  SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 htri_t
 ss_scope_isopentop(ss_scope_t *scope)
 {
     SS_ENTER(ss_scope_isopentop, htri_t);
     ss_gfile_t          *gfile=NULL;
     htri_t              retval=FALSE;

     SS_ASSERT_TYPE(scope, ss_scope_t);

     if (NULL==SS_SCOPE(scope)) goto done;
     if (NULL==(gfile=SS_GFILE_LINK(scope))) goto done;
     if (gfile->cur_open<=0) goto done; /*file is closed*/
     if (!SS_SCOPE(scope)) goto done;
     if ((retval = SS_PERS_EQ(scope, gfile->topscope))<0) SS_ERROR(FAILED);

 done:
     SS_STATUS_OK;
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 htri_t
 ss_scope_istransient(ss_scope_t *scope  /* Any open scope. */
                      )
 {
     SS_ENTER(ss_scope_istransient, htri_t);
     hid_t       scopegrp = ss_scope_isopen(scope);
     htri_t      retval=-1;

     if (scopegrp<0) SS_ERROR(FAILED);
     retval = (1==scopegrp);
  SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 htri_t
 ss_scope_iswritable(ss_scope_t *scope   /* Any open scope. */
                     )
 {
     SS_ENTER(ss_scope_iswritable, htri_t);
     htri_t      retval=FALSE;
     ss_gfile_t  *gfile=NULL;

     /* Check whether the H5F_ACC_RDWR bit is set on the file. If the file is read-only then all scopes in the file are also
      * read-only. This allows the client to create a transient scope (e.g., to serve as a standard registry) and then mark the
      * entire file as read-only in order to prevent modification of it's objects and to make the library more efficient (there
      * are certain time-saving assumptions that can be made if a file is read-only). */
     if (NULL==(gfile=SS_GFILE_LINK(scope))) SS_ERROR(NOTFOUND);
     if (gfile->flags & H5F_ACC_RDWR) {
         /* If the file is writable then check the scope's flags. */
         if (ss_scope_isopen(scope)<=0) SS_ERROR(NOTOPEN);
         if (SS_SCOPE(scope)->m.flags & H5F_ACC_RDWR) retval=TRUE;
     }

 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

	 herr_t
 ss_scope_open(ss_scope_t *scope,        /* A link to a scope object, probably the result of a /find/ operation. */
               unsigned flags,           /* Various bit flags to control common scope open switches. */
               ss_prop_t *props          /* Scope opening properties (see Scope Properties). */
               )
 {
     SS_ENTER(ss_scope_open, herr_t);
     MPI_Comm            comm=SS_COMM_NULL;
     hbool_t             comm_duped=FALSE;
     ss_gfile_t          *gfile=NULL;
     unsigned            tableidx;
     ss_table_t          *table=NULL;
     const char          *scopename=NULL;

     SS_ASSERT_MEM(scope, ss_scope_t);
     if (NULL==(scopename = ss_string_ptr(SS_SCOPE_P(scope,name)))) scopename="NONAME";


     /* Check that the scope is not already open. This will only catch an error if this task had the scope open, but
      * quite often it is possible that the scope was opened only on some other task(s). The usual mistake is that all tasks
      * open the file with MPI_COMM_SELF, in which case synchronizations don't work properly. */
     if (SS_SCOPE(scope)->m.comm != SS_COMM_NULL) SS_ERROR_FMT(PERM, ("already open: %s", scopename));

 #ifndef NDEBUG
     {
         /* These things should have been set when the scope was booted. */
         SS_ASSERT(SS_SCOPE(scope)->m.gid>0);
         SS_ASSERT(SS_SCOPE(scope)->m.strings);
         for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
             if (tableidx!=SS_MAGIC_SEQUENCE(SS_MAGIC(ss_scope_t)) && NULL!=SS_PERS_CLASS(tableidx)) {
                 SS_ASSERT(SS_SCOPE(scope)->m.table[tableidx]);
             }
         }
     }
 #endif

     /* Check FLAGS compatibility with the file */
     if (NULL==(gfile=SS_GFILE_LINK(scope)) || !gfile->topscope) SS_ERROR(NOTFOUND);
     SS_ASSERT(gfile && gfile->topscope);
     flags &= (H5F_ACC_RDWR|H5F_ACC_DEBUG); /*weed out flags except those we support*/
     flags |= (gfile->flags & H5F_ACC_TRANSIENT);
     if ((flags & H5F_ACC_RDWR) && 0==(gfile->flags & H5F_ACC_RDWR))
         SS_ERROR_FMT(PERM, ("scope cannot be writable in a read-only file: %s", scopename));

     /* Obtain the communicator */
     if (!props || NULL==ss_prop_get(props, "comm", H5T_NATIVE_MPI_COMM, &comm)) {
         SS_STATUS_OK;
         comm = SS_SCOPE(gfile->topscope)->m.comm;
         comm_duped = FALSE;
     } else if (NULL==ss_prop_get(props, "duped", H5T_NATIVE_HBOOL, &comm_duped)) {
         SS_STATUS_OK;
         comm_duped = FALSE;
     }

     /* Read all the table data for this scope. We could have delayed this but all tasks will need to have the data anyway when
      * they synchronize, which will almost certainly happen before the file is closed.  We also have the problem that MPI-IO
      * doesn't guarantee that a reader task will see data that was recently written by some other task (some file systems such
      * as POSIX do in fact garantee this, while others such as PVFS don't).  If the file is read only, then we could easily
      * delay the reading of the table until it's actually needed, but even then how often really is it that a scope will be
      * opened on multiple tasks but some table not ever accessed? */
     for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
         if (NULL==SS_PERS_CLASS(tableidx)) continue;
         if (NULL==(table=ss_scope_table(scope, tableidx, NULL))) SS_ERROR_FMT(FAILED, ("scope=\"%s\"", scopename));
         if (ss_table_read(table, scope)<0) SS_ERROR_FMT(FAILED, ("scope=\"%s\"", scopename));
     }

     /* Assign the communicator to the scope to mark it as being opened */
     SS_SCOPE(scope)->m.comm = comm;
     SS_SCOPE(scope)->m.comm_duped = comm_duped;
     SS_SCOPE(scope)->m.flags = flags;

  SS_CLEANUP:
     if (comm_duped && comm!=SS_COMM_NULL) ss_mpi_comm_free(&comm);

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 herr_t
 ss_scope_synchronize(ss_scope_t *scope,         /* A link to an open scope that should be synchronized. */
                      unsigned tableidx,         /* Magic number to define which table to synchronize. If TABLEIDX is
                                                  * SS_TABLE_ALL then all tables of the scope will be synchronized. */
                      ss_prop_t *props           /* See [Synchronization Properties] */
                      )
 {
     SS_ENTER(ss_scope_synchronize, herr_t);
     ss_table_t          *table=NULL;
     const char          *scopename=NULL;

     SS_ASSERT_MEM(scope, ss_scope_t);
     tableidx = SS_MAGIC_SEQUENCE(tableidx);

     /* If the scope is open for read-only access then there should be nothing to do. However, if SSlib was compiled with
      * debugging support then we should descend into the table synchronization anyway in order to check that the client didn't
      * accidently modify an object. */
 #ifdef NDEBUG
     if (!ss_scope_iswritable(scope)) goto done;
 #endif

     if (NULL==(scopename = ss_string_ptr(SS_SCOPE_P(scope,name)))) SS_ERROR(FAILED);
     if (SS_TABLE_ALL==tableidx) {
         for (tableidx=0; tableidx<SS_PERS_NCLASSES; tableidx++) {
             if (!SS_PERS_CLASS(tableidx)) continue;
             if (NULL==(table=ss_scope_table(scope, tableidx, NULL))) SS_ERROR(FAILED);
             if (ss_table_synchronize(table, scope, props)<0)
                 SS_ERROR_FMT(FAILED, ("table %u of scope \"%s\"", tableidx, scopename));
         }
     } else {
         if (!SS_PERS_CLASS(tableidx)) SS_ERROR(NOTFOUND);
         if (NULL==(table=ss_scope_table(scope, tableidx, NULL))) SS_ERROR(FAILED);
         if (ss_table_synchronize(table, scope, props)<0)
             SS_ERROR_FMT(FAILED, ("%s table(%u) of scope \"%s\"", SS_PERS_CLASS(tableidx)->name, tableidx, scopename));
     }

 #ifdef NDEBUG
 done:
 #endif
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 htri_t
 ss_scope_synchronized(ss_scope_t *scope,        /* A link to the scope whose synchronization state is to be queried. */
                       unsigned tableidx         /* Magic number to define which table to query. If TABLEIDX is greater than or
                                                  * equal to SS_NPERSL_CLASSES then all tables of the specified scope must be
                                                  * in a synchronized state before this function returns true. */
                       )
 {
     SS_ENTER(ss_scope_synchronized, htri_t);
     ss_prop_t           *props=NULL;
     htri_t              retval=TRUE;

     /* Build a synchronization property that says to only test synchronization */
     if (NULL==(props=ss_prop_new("test synchronization"))) SS_ERROR(FAILED);
     if (ss_prop_add(props, "test", H5T_NATIVE_HBOOL, &true)<0) SS_ERROR(FAILED);

     /* Test synchronization */
     if (ss_scope_synchronize(scope, tableidx, props)<0) {
         const H5E_error2_t *einfo;
         SS_STATUS(0, einfo);
         if (einfo->min_num!=SS_MINOR_SKIPPED) {
             SS_REFAIL;
             SS_ERROR(FAILED);
         } else {
             SS_STATUS_OK;
             retval = FALSE;
             goto done;
         }
     }

  done:
     /* Clean up the properties */
     ss_prop_dest(props);
     props = NULL;

  SS_CLEANUP:
     if (props) ss_prop_dest(props);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 typedef enum ss_silrole_t {             /* NOTE: this used to be called VBT_SilRole_t with names like VBT_SROLE_TIME */
     SAF_SROLE_TIME,                     /* sil is a time-base */
     SAF_SROLE_SPACE,                    /* sil is for space */
     SAF_SROLE_STATE,                    /* for state space */
     SAF_SROLE_PARAM,                    /* sil is generic param space */
     SAF_SROLE_CTYPE,                    /* sil is for a cell */
     SAF_SROLE_ATYPE,                    /* sil is for an algebraic type */
     SAF_SROLE_USERD,                    /* sil has a user defined role */
     SAF_SROLE_SUITE                     /* for a suite */
 } ss_silrole_t









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 herr_t
 ss_string_cat(ss_string_t *str, const char *s)
 {
     SS_ENTER(ss_string_cat, herr_t);

     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
     if (s && str->nbytes>0 && '\0'!=str->p[str->nbytes-1]) {
         if (ss_string_splice(str, s, str->nbytes-1, strlen(s)+1, 1)<0) SS_ERROR(FAILED);
     } else if (s) {
         if (ss_string_splice(str, s, str->nbytes, strlen(s)+1, 0)<0) SS_ERROR(FAILED);
     }

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 int
 ss_string_cmp(const ss_string_t *s1, const ss_string_t *s2)
 {
     SS_ENTER(ss_string_cmp, int);
     int         retval=0;

     if (!s1 || !s2) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
     if (!s1->p && !s2->p) {
         retval = 0;
     } else if (!s1->p) {
         retval = -1;
     } else if (!s2->p) {
         retval = 1;
     } else {
         retval = memcmp(s1->p, s2->p, MIN(s1->nbytes, s2->nbytes));
         if (0==retval) {
             if (s1->nbytes>s2->nbytes) retval = 1;
             if (s1->nbytes<s2->nbytes) retval = -1;
         }
     }

 SS_CLEANUP:
     SS_RETVAL(-2);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 int
 ss_string_cmp_s(const ss_string_t *str, const char *s)
 {
     SS_ENTER(ss_string_cmp_s, int);
     size_t      slen = s ? strlen(s)+1 : 0;
     int         retval = 0;

     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
     if (!str->p && !s) {
         retval = 0;
     } else if (!str->p) {
         retval = -1;
     } else if (!s) {
         retval = 1;
     } else {
         retval = memcmp(str->p, s, MIN(str->nbytes, slen));
         if (0==retval) {
             if (str->nbytes>slen) retval = 1;
             if (str->nbytes<slen) retval = -1;
         }
     }
  SS_CLEANUP:
     SS_RETVAL(-2);
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 char *
 ss_string_get(const ss_string_t *str,
               size_t bufsize,           /* Size of BUF (only referenced if BUF is non-null). */
               char *buf                 /* Optional buffer in which to store the C string. This buffer is assumed to be an
                                          * array of at least BUFSIZE characters. */
               )
 {
     SS_ENTER(ss_string_get, charP);
     char        *tmp=NULL;

     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
     if (buf) {
         if (bufsize<str->nbytes) SS_ERROR_FMT(OVERFLOW, ("supplied buffer is too short"));
     } else {
         tmp = buf = malloc(MAX(1,str->nbytes));
         if (!tmp) SS_ERROR(RESOURCE);
         if (0==str->nbytes) tmp[0] = '\0';
     }
     memcpy(buf, str->p, str->nbytes);

  SS_CLEANUP:
     SS_FREE(tmp);
     SS_LEAVE(buf);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 size_t
 ss_string_len(const ss_string_t *str)
 {
     SS_ENTER(ss_string_len, size_t);
     size_t      i=0;

     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
     for (i=0; i<str->nbytes && str->p[i]; i++) /*void*/;
 SS_CLEANUP:
     SS_LEAVE(i);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 size_t
 ss_string_memlen(const ss_string_t *str)
 {
     SS_ENTER(ss_string_memlen, size_t);
     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
 SS_CLEANUP:
     SS_LEAVE(str->nbytes);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 herr_t
 ss_string_memset(ss_string_t *str,      /* The destination variable length string. */
                  const void *value,     /* The optional value to assign to STR. If NULL then a value of all zero bytes is
                                          * used. */
                  size_t nbytes          /* The number of bytes in VALUE. */
                  )
 {
     SS_ENTER(ss_string_memset, herr_t);
     void *value_here=NULL;

     if (NULL==value && NULL==(value=value_here=calloc(1, nbytes))) SS_ERROR(RESOURCE);
     if (ss_string_splice(str, value, 0, nbytes, str->nbytes)<0) SS_ERROR(FAILED);
     value_here = SS_FREE(value_here);

 SS_CLEANUP:
     SS_FREE(value_here);
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	1
2
3
4
5
6
7
8

	 const char *
 ss_string_ptr(const ss_string_t *str)
 {
     SS_ENTER(ss_string_ptr, const_charP);
     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
  SS_CLEANUP:
     SS_LEAVE(str->p?str->p:"");
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 herr_t
 ss_string_realloc(ss_string_t *str)
 {
     SS_ENTER(ss_string_realloc, herr_t);
     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));

     if (str->p) {
         char *tmp;
         if (NULL==(tmp=malloc(str->nbytes))) SS_ERROR(FAILED);
         memcpy(tmp, str->p, str->nbytes);
         str->p = tmp;
         str->offset = 0;
     }

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 herr_t
 ss_string_reset(ss_string_t *str)
 {
     SS_ENTER(ss_string_reset, herr_t);
     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));

     if (0==str->offset)
        { SS_FREE(str->p);}
     memset(str, 0, sizeof(*str));

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 herr_t
 ss_string_set(ss_string_t *str,         /* The destination persistent string. */
               const char *s             /* The source C string to copy. */
               )
 {
     SS_ENTER(ss_string_set, herr_t);
     if (ss_string_splice(str, s, 0, s?strlen(s)+1:0, str->nbytes)<0) SS_ERROR(FAILED);

  SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	 herr_t
 ss_string_splice(ss_string_t *str,              /* String object to be modified by this operation. */
                  const char *value,             /* Optional new data for part of the string value. If this argument is the
                                                  * null pointer and NBYTES is positive then the new data will be all NUL
                                                  * characters (this allows for an easy way to extend the length of a string). */
                  size_t start,                  /* Byte offset at which to place the new data in the string. */
                  size_t nbytes,                 /* Length of the new data in bytes. */
                  size_t nreplace                /* Number of bytes replaced by the new data. If SS_NOSIZE is passed then all
                                                  * bytes from START to the end of the original value will be replaced by the
                                                  * new value. */
                   )
 {
     SS_ENTER(ss_string_splice, herr_t);
     size_t              newsize;                /* New size of the string after modification */
     char                *tmpbuf=NULL;           /* Temporary buffer for new value */

     if (!str) SS_ERROR_FMT(USAGE, ("no ss_string_t supplied"));
     if (start>str->nbytes) SS_ERROR_FMT(DOMAIN, ("new value starts after end of existing value"));
     if (SS_NOSIZE==nreplace || start+nreplace>str->nbytes) nreplace = str->nbytes - start;
     newsize = str->nbytes - nreplace + nbytes;

     if (nbytes<=nreplace && 0==str->offset) {
         /* String is not growing and str->p points to allocated memory and not into the string table. We can just splice
          * in the new value in place. */
         if (value) {
             memcpy(str->p+start, value, nbytes); /*the inserted value*/
         } else {
             memset(str->p+start, 0, nbytes); /*the inserted NUL characters*/
         }
         memmove(str->p+start+nbytes, str->p+start+nreplace, str->nbytes-(start+nreplace)); /*move the rhs down*/
         str->nbytes = newsize;
     } else {
         /* Value is growing or already assigned to a string table offset */
         if (NULL==(tmpbuf=malloc(newsize))) SS_ERROR(RESOURCE);
         memcpy(tmpbuf, str->p, start); /*the lhs stays put*/
         if (value) {
             memcpy(tmpbuf+start, value, nbytes); /*the inserted value*/
         } else {
             memset(tmpbuf+start, 0, nbytes); /*the inserted NUL characters*/
         }
         memcpy(tmpbuf+start+nbytes, str->p+start+nreplace, str->nbytes-(start+nreplace)); /*move the rhs down*/

         if (nbytes!=nreplace || memcmp(str->p, tmpbuf, str->nbytes)) {
             /* Value changed */
             if (str->offset) {
                 str->offset = 0;
             } else {
                 ss_string_reset(str);
                 /* SS_FREE(str->p); */
             }
             str->p = tmpbuf;
             tmpbuf = NULL;
             str->nbytes = newsize;
         }
     }

     tmpbuf = SS_FREE(tmpbuf);

 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	 size_t
 ss_table_indirect(ss_table_t *table,            /* Table in which IDX exists */
                   size_t idx,                   /* Index for the object for which we are searching for an indirect index. This
                                                  * is usually a direct index but doesn't necessarily have to be such. */
                   size_t beyond                 /* Return an indirect index greater than this value. A value of zero means to
                                                  * return the first indirect index. This argument can be used to scan through
                                                  * a table looking for all matching indirect indices for a particular direct
                                                  * index. If this is a direct index (such as zero) then the first matching
                                                  * indirect index is returned. */
                   )
 {
     SS_ENTER(ss_table_indirect, size_t);
     ss_persobj_t        *persobj=NULL;
     size_t              retval = SS_NOSIZE;
     size_t              first_subtab, subtabidx, nelmts, i;

     SS_ASSERT_TYPE(table, ss_table_t);
     SS_ASSERT(SS_TABLE_STATE_READ==table->state || SS_TABLE_STATE_CLOSED==table->state);
     if (SS_NOSIZE==beyond) SS_ERROR_FMT(USAGE, ("BEYOND is out of range"));

     /* Get the object address and minimum return value */
     if (NULL==(persobj=ss_table_lookup(table, idx, SS_STRICT))) SS_ERROR(FAILED);
     if (beyond & SS_TABLE_INDIRECT) {
         beyond++;
         first_subtab = ss_table_localidx(&beyond);
     } else {
         first_subtab = beyond = 0;
     }

     /* Scan through the indirect pointers to find the first one that points to persobj */
     for (subtabidx=first_subtab; subtabidx<SS_NSUBTABLES; subtabidx++) {
         if (NULL==table->maptab[subtabidx]) continue;
         nelmts = ss_table_subsize(subtabidx);
         for (i=beyond; i<nelmts; i++) {
             if (table->maptab[subtabidx][i]==persobj) {
                 retval = SS_TABLE_INDIRECT | ss_table_globalidx(subtabidx, i);
                 goto done;
             }
         }
         beyond = 0; /*start at zero in the next subtable*/
     }

 done:
 SS_CLEANUP:
     SS_LEAVE(retval);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 typedef unsigned ss_val_cmp_t;
 #define SS_VAL_CMP_DFLT                 0xFF
 #define SS_VAL_CMP_SUBSTR               0xE0                    /* Strings: NUL terminated substring */
 #define SS_VAL_CMP_SUBMEM               0xD0                    /* Strings: binary comparison of substring */
 #define SS_VAL_CMP_RE                   0xC0                    /* Strings: NUL terminated regular expression */
 #define   SS_VAL_CMP_RE_EXTENDED        (SS_VAL_CMP_RE|0x01)
 #define   SS_VAL_CMP_RE_ICASE           (SS_VAL_CMP_RE|0x02)
 #define   SS_VAL_CMP_RE_NEWLINE         (SS_VAL_CMP_RE|0x04)
 #define SS_VAL_CMP_EQ                   SS_VALCMP_DFLT          /* Link: compare with ss_pers_eq() */
 #define SS_VAL_CMP_EQUAL                0xE0                    /* Link: compare with ss_pers_equal() */









          

      

      

    

  

    
      
          
            
  	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

	 herr_t
 ss_val_dump(void *val,                  /* Value to be printed */
             hid_t type,                 /* Datatype of VAL */
             void *_parent,              /* Optional persistent object into which VAL points */
             FILE *out,                  /* Stream to which output should be sent */
             const char *html_tag        /* Optional HTML tag to use in output; NULL means output plain text */
             )
 {
     SS_ENTER(ss_val_dump, herr_t);
     char        tmp[128], name[64];
     hsize_t     nelmts, i;
     hid_t       elmttype;
     size_t      elmtsize;

     assert(H5Tget_size(type)<=sizeof tmp);
     memcpy(tmp, val, H5Tget_size(type));
     if (html_tag) fprintf(out, "<%s>", html_tag);

     if (H5Tequal(type, ss_string_tm)) {
         const char *quote = html_tag ? "" : "\"";
         fprintf(out, "%s%s%s", quote, ss_string_ptr(val), quote);
     } else if (H5Tequal(type, ss_pers_tm)) {
         ss_scope_t      parent_scope=SS_SCOPE_NULL;
         size_t          gfile_idx, file_idx, scope_idx, obj_idx;
         ss_file_t       file=SS_FILE_NULL;
         ss_pers_class_t *pc=NULL;
         hbool_t         is_indirect;

         if (SS_PERS_ISNULL(val)) {
             fprintf(out, "(ss_pers_t*)NULL");
         } else {
             pc = SS_PERS_CLASS(SS_MAGIC_SEQUENCE(SS_MAGIC_OF(val)));
             assert(pc);

             /* Find the index of the file to which VAL belongs by consulting the "file" table in the scope to which the parent
              * object (_parent) belongs. */
             if (NULL==ss_pers_scope(_parent, &parent_scope)) {
                 fprintf(out, "ERROR(scope)");
                 SS_ERROR(FAILED);
             }
             gfile_idx = ss_pers_link_gfileidx(val);
             for (file_idx=0; /*void*/; file_idx++) {
                 if (NULL==ss_pers_refer_c(&parent_scope, SS_MAGIC(ss_file_t), file_idx, (ss_pers_t*)&file)) {
                     fprintf(out, "ERROR(link)");
                     SS_ERROR(FAILED);
                 }
                 if (NULL==SS_FILE(&file)) {
                     /* This can happen if the VAL link points to a file that hasn't yet been entered into the file table of
                      * the _PARENT object. */
                     file_idx = SS_NOSIZE;
                     break;
                 }
                 if (SS_FILE(&file)->m.gfileidx==gfile_idx) {
                     break;
                 }
             }

             /* The scope index within that file */
             scope_idx = ss_pers_link_scopeidx(val);

             /* The object index within that scope */
             obj_idx = ss_pers_link_objidx(val);
             if (obj_idx & SS_TABLE_INDIRECT) {
                 is_indirect = TRUE;
                 obj_idx &= ~SS_TABLE_INDIRECT;
             } else {
                 is_indirect = FALSE;
             }

             /* Now print the info. If the file index is zero then omit it since it's the same file to which VAL belongs. If
              * the scope index is the same as that of the object then omit it also. */
             if (html_tag) fprintf(out, "<a href=\"XXX\">");
             fprintf(out, "(ss_%s_t*)", pc->name);
             if (SS_NOSIZE==file_idx) {
                 ss_gfile_t *gfile = SS_GFILE_IDX(gfile_idx);
                 fprintf(out, "{S%08lx,%lu,%s%lu}", (unsigned long)gfile->serial, (unsigned long)scope_idx,
                         is_indirect?"I":"", (unsigned long)obj_idx);
             } else if (file_idx>0) {
                 fprintf(out, "{%lu,%lu,%s%lu}", (unsigned long)file_idx, (unsigned long)scope_idx,
                         is_indirect?"I":"", (unsigned long)obj_idx);
             } else if (scope_idx!=ss_pers_link_scopeidx(_parent)) {
                 fprintf(out, "{%lu,%s%lu}", (unsigned long)scope_idx, is_indirect?"I":"", (unsigned long)obj_idx);
             } else {
                 fprintf(out, "%s%lu", is_indirect?"I":"", (unsigned long)obj_idx);
             }
             if (html_tag) fprintf(out, "</a>");
         }
     } else if (H5Tequal(type, ss_array_tm)) {
         nelmts = ss_array_nelmts(val);
         elmttype = ss_array_targeted(val);
         if (H5Tequal(elmttype, ss_pers_tf)) {
             H5Tclose(elmttype);
             elmttype = H5Tcopy(ss_pers_tm);
         }
         if (html_tag) fprintf(out, "<table><tr>");
         else fprintf(out, "[");
         for (i=0; i<nelmts; i++) {
             if (!html_tag && i) fprintf(out, ", ");
             ss_array_get(val, elmttype, (size_t)i, (size_t)1, &tmp);
             ss_val_dump(tmp, elmttype, _parent, out, html_tag);
         }
         if (html_tag) fprintf(out, "</tr></table>");
         else fprintf(out, "]");
         H5Tclose(elmttype);
     } else {
         switch (H5Tget_class(type)) {
         case H5T_ARRAY:
             assert(1==H5Tget_array_ndims(type));
             H5Tget_array_dims(type, &nelmts, NULL);
             elmttype = H5Tget_super(type);
             elmtsize = H5Tget_size(elmttype);
             if (html_tag) fprintf(out, "<table><tr>");
             else fprintf(out, "[");
             for (i=0; i<nelmts; i++) {
                 if (i && !html_tag) fprintf(out, ", ");
                 ss_val_dump((char*)val+i*elmtsize, elmttype, _parent, out, html_tag);
             }
             if (html_tag) fprintf(out, "</tr></table>");
             else fprintf(out, "]");
             H5Tclose(elmttype);
             break;
         case H5T_INTEGER:
             H5Tconvert(type, H5T_NATIVE_LLONG, 1, tmp, NULL, H5P_DEFAULT);
             fprintf(out, "%lld", *(long_long*)tmp);
             break;
         case H5T_FLOAT:
             H5Tconvert(type, H5T_NATIVE_DOUBLE, 1, tmp, NULL, H5P_DEFAULT);
             fprintf(out, "%g", *(double*)tmp);
             break;
         case H5T_ENUM:
             H5Tenum_nameof(type, val, name, sizeof name);
             fprintf(out, "%s", name);
             break;
         case H5T_STRING:
             elmtsize = H5Tget_size(type);
             if (H5T_CSET_ASCII!=H5Tget_cset(type) || H5T_STR_NULLTERM!=H5Tget_strpad(type)) {
                 fprintf(out, "%sSTRING%s", html_tag?"&lt;":"<", html_tag?"&gt;":">");
             } else {
                 fprintf(out, "\"%s\"", (char*)val);
             }
             break;
         case H5T_COMPOUND:
             fprintf(out, "%sCOMPOUND%s", html_tag?"&lt;":"<", html_tag?"&gt;":">");
             break;
         default:
             fprintf(out, "%sUNKNOWN%s", html_tag?"&lt;":"<", html_tag?"&gt;":">");
             break;
         }
     }

     if (html_tag) fprintf(out, "</%s>", html_tag);
 SS_CLEANUP:
     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 herr_t
 ss_zap(void)
 {
     SS_ENTER(ss_zap, herr_t);

     if (sslib_g.initialized && !sslib_g.finalized)
         sslib_g.finalized = TRUE;

 #if defined WIN32 || defined JANUS
 #else
     /* This function is only called by _saf_error() when it's about to call MPI_Abort(), and the buggy MPICH calls exit()
      * instead of raising a SIGABRT. Therefore if signal debugging is enabled with the SSLIB_DEBUG environment variable we'll
      * start the debugger here before its too late. */
     if (sslib_g.debug_signal) {
         /* ISSUE: We should really set handlers back to their default values now and unmask them */
         int self = ss_mpi_comm_rank(SS_COMM_WORLD);
         char buf[256];
         sprintf(buf, "SSLIB: MPI task %d, PID %d", self, getpid());
         psignal(SIGABRT, buf);
         ss_debug_start(sslib_g.debugger);
         fprintf(stderr, "SSLIB: MPI task %d, PID %d is paused pending debug\n", self, getpid());
         while (true) pause();
     }
 #endif /*WIN32*/

     SS_LEAVE(0);
 }









          

      

      

    

  

    
      
          
            
  
Scope Properties

comm: The MPI communicator for the scope.  The default is to use the communicator for the file in which the
scope is defined.

duped: If set then SSlib assumes that the communicator in the comm property has been duplicated and will
free that communicator when the scope is closed. Otherwise the specified communicator is used but not
duplicated or freed.

careful: Normally a scope synchronization operation only considers table entries marked as dirty. If a scope
is opened with this property set to a nonzero value then checksums will be recomputed for all entries in the
tables, which allows the client to forego setting the dirty bit when modifying table entries. No warning will
normally be issued for entries which are found to be dirty by comparing checksums but which have the dirty bit
not set.





          

      

      

    

  

    
      
          
            
  
Synchronization Algorithm

Each persistent object belongs to exactly one scope, which is “owned” by some subset of the tasks in
the file’s communicator and these tasks are allowed to append new objects to the tables of the scope and to
modify existing objects in those tables. Since it is of paramount importance that all tasks owning a scope
have the same information to write to the underlying dataset, we must insure that objects are maintained
consistently across the scope’s communicator. There are at least three approaches:


	Ensure that any object update is collective and that all tasks make identical changes.


	Ensure that all updates are collective but use communication to broadcast from one task to the others.


	Allow objects to become out of sync across the tasks and synchronize them before writing to disk.




The problem with the first two approaches is that object updates are collective. The original VBT layer used
this approach, which was made even worse by the fact that VBT updates used the file communicator. The second
approach is worse than the first because not only is it collective, but it also requires communication. SSlib
uses the third approach, which is substantially more complicated but results in an API where each task can
independently create and/or modify objects, or subsets of the scope communicator can cooperate to define a
single object. The process of getting an object to disk becomes a two part problem: (1) synchronize the object
across the scope’s communicator, then (2) flush the object if dirty to the file. It is hoped that a
synchronization approach can perform better because it will result in fewer, larger inter-process messages.

First, some definitions:


	A dirty object is any object whose data has changed subsequent to being stored in a file. This is a
local characteristic–each task may have its own idea of whether an object is dirty. Normally only
one task ever writes a particular object to the file, so only that one task ever sets dirty bits back
to zero (but that’s fine because the dirty bits are not used for any other purpose).


	A clean object is any object that is not dirty.


	Whereas dirty and clean refer to whether an object was changed after being committed to storage,
synchronized and unsynchronized refer to whether an object was changed after some point in time
when all tasks agreed on its value. These characteristics are also local to a task, although the act of
marking an object synchronized (i.e., synchronizing the object) is a collective operation.


	A new object is any object that was created without the collective cooperation of all tasks of the
object’s scope. Such an object is born dirty and unsynchronized and is assigned a temporary slot in the
table that holds the object. The act of synchronizing the object assigns the object to a permanent table
slot. Objects can also be created with the SS_ALLSAME bit, but since those objects are immediately given a
permanent slot assignement and marked as synchronized (but dirty) they are not referred to as new objects.


	An unresolved link is a persistent object link that points to a new object. Since a new object must exist
in memory, an unresolved link must be in the SS_PERS_LINK_MEMORY state and point to an object that uses
only indirect indexing (i.e., the link itself contains an indirect index and the object’s  mapidx field also
contains an indirect index). Any link that points to a non-new object is a resolved link.


	An unresolved object is any persistent object that contains at least one unresolved link.  All other
objects are said to be resolved.


	To synchronize an unsynchronized object means to communicate among the scope’s tasks so that all tasks
have the same information.


	To clean an object means to write its data to the file.


	To resolve a link means to examine the object to which it points and adjust the link contents if the
object is found to be non-new. Otherwise the link remains unresolved.


	To resolve an object means to resolve all links emanating from that object.




The synchronization algorithm operates on one table at a time via ss_table_synchronize and is usually
invoked in a particular order to minimize table dependencies since only resolved objects can be synchronized.





          

      

      

    

  

    
      
          
            
  
Synchronization Properties

test: If true then the synchronization functions only test whether things are synchronized and return
success if so, or fail with SS_MINOR_SKIPPED.





          

      

      

    

  

    
      
          
            
  
Table Properties

chunksize: This is the target chunk size in bytes. The actual chunk size may differ slightly due to the fact
that the specified size might not be a multiple of the datatype size when the dataset is created. The default
chunk size is defined in ss_table_new.


	test: If this boolean is set in a call to ss_table_synchronize then that function will fail with a

	SKIPPED error if the table is not synchronized.



	err_newptrs: If this integer property is defined then the ss_table_synchronize function will set it

	to the number of objects that could not be completely synchronized because they point to
new objects.



	err_incompat: If this integer property is defined then the ss_table_synchronize function will set it

	to the number of objects that could not be synchronized because two or more tasks made
incompatible changes to those objects.









          

      

      

    

  

    
      
          
            
  
Acknowledgements

Developers:


	Robb P. Matzke (LLNL)


	Eric A. Illescas (SNL)


	Jake S. Jones (SNL)




Acknowledgements:


	Mark C. Miller (LLNL) – Design input




Copyright 2003-2005. The Regents of the University of California.

All Rights Reserved. This document has been authored by The Regents of
the University of California under Contract No. W-7405-ENG-48 with the
U.S.  Government.

Copyright 2003-2005. Sandia National Laboratories.

All rights reserved.

Disclaimer:

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California.  The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California
and shall not be used for advertising or product endorsement purposes.





          

      

      

    

  

    
      
          
            
  
Returns current status of a request

ss_aio_error is a function defined in ssaio.c.

Synopsis:


	
int ss_aio_error(ss_aio_t *aio)

	



Description: Returns the current status of a request.

Return Value: Returns the constant EINPRGRESS if a request is in progress, zero if the request has completed successfully,
or some other error value if an error occurred.

Parallel Notes: Independent

See Also:


	Asynchronous I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Terminate the asynchronous I/O subsystem

ss_aio_finalize is a function defined in ssaio.c.

Synopsis:


	
herr_t ss_aio_finalize(void)

	



Description: This function blocks until all pending requests have completed and the handler thread has exited.

Return Value: Non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	Asynchronous I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
HDF5 async callback

ss_aio_hdf5_cb is a function defined in ssaio.c.

Synopsis:


	
herr_t ss_aio_hdf5_cb(int fd, hid_t dxpl, haddr_t addr, size_t size, const void *buf)

	



Description: HDF5 invokes this function when it wants to do asynchronous I/O

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	Asynchronous I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Initialize the asyncronous I/O subsystem

ss_aio_init is a function defined in ssaio.c.

Synopsis:


	
herr_t ss_aio_init(void)

	



Description: Initialize SSlib’s asynchronous I/O layer by spawning an I/O handler thread. This function should not be
called when the asynchronous I/O layer is initialized (it’s okay to call this a second time as long as
ss_aio_finalize was called prior to this second call).

Return Value: Non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	ss_aio_finalize: 21.2:  Terminate the asynchronous I/O subsystem


	Asynchronous I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Block until requests complete

ss_aio_suspend is a function defined in ssaio.c.

Synopsis:


	
herr_t ss_aio_suspend(ss_aio_t UNUSED **aio, size_t UNUSED nreq)

	



Description: Blocks until the specified I/O requests have completed.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	Asynchronous I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Initiate a write operation

ss_aio_write is a function defined in ssaio.c.

Synopsis:


	
herr_t ss_aio_write(ss_aio_t *aio)

	



Description: Adds a write request to the queue of pending writes and immidiately returns.

Return Value: Returns non-negative on success; negative on failure.  The aio argument is modified during the execution of
the I/O operation.

Parallel Notes: Independent

See Also:


	Asynchronous I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Bind a blob to a dataset

ss_blob_bind_f is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_bind_f(ss_blob_t *blob, hid_t dset, hid_t dspace, unsigned flags)

	



Formal Arguments:


	blob: The blob to which a dataset is associated.


	dset: The dataset to associate with the blob. The handle is duplicated by SSlib,
allowing the caller to close its handle at any time.


	dspace: A selection that describes which elements of dset are owned by the blob. If
non-positive then the entire dataset is owned by the blob.


	flags: Various bit flags affecting the operation of this function.




Description: If a dataset already exists and a new blob is being created then an existing dataset can be bound to the blob.
In effect, this causes the blob to own part of the dataset. Multiple blobs can point into a common dataset and
those blobs can own overlapping regions of the dataset. This function duplicates the dataset handle so the
caller can close its handle without affecting SSlib.

This function is only applicable when initializing or modifying a blob since all blobs that are read from a
file are automatically bound to the same dataset and region as previously specified. That is, information
about the dataset and region are stored as part of the blob object in the file.

A blob can be disassociated from a dataset by providing a non-positive handle for the dset argument, in which
case the remaining arguments are ignored.

The multi-dimensional size of the blob is deteremined from the selection defined on dspace. The dimensionality
of the blob is determined by removing all the dimensions that have unit size in the blob. Thus a blob’s
dimensionality may be less than the dimensionality of the dataset on which it is defined.  This allows, for
instance, one dimensional blobs to be stored as rows of a two dimensional dataset. See ss_blob_space for
additional information.

A blob’s size can be changed simply by rebinding it to a dataset using a new data space. If the the
SS_BLOB_EXTEND bit is turned on in the flags argument then the underlying dataset is extended if necessary in
order for the blob to fit within the dataset. All calling tasks (even those that don’t have a blob) must pass
the same value for the SS_BLOB_EXTEND bit.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Conceptually collective across the blob’s scope communicator, however in practice the file communicator must
be used. This is due to the fact that SSlib might need to make file-collective calls to HDF5. The restriction
isn’t so bad though because the caller would have had to file-collectively create the dataset anyway.

All tasks should pass the same blob and dataset, but any “extra” task that’s part of the blob’s file
communicator but not the blob’s scope communicator should pass the top scope for the blob’s file instead of
the blob.  The dspace argument is ignored on the “extra” tasks but should be consistent across the blob’s tasks.

Issues: Currently only very simple selections are allowed: a contiguous multi-dimensional rectangular region of an
extent specified by arrays of offsets and lengths, one per dimension.

See Also:


	ss_blob_space: 15.10:  Query blob extent


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Bind a blob to a dataset

ss_blob_bind_f1 is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_bind_f1(ss_blob_t *blob, hid_t dset, hsize_t offset, hsize_t size, unsigned flags)

	



Formal Arguments:


	blob: The blob to which a dataset is associated.


	dset: The dataset to associate with the blob. The handle is duplicated by SSlib,
allowing the caller to close its handle at any time.


	offset: Offset into the array for the region of the dataset owned by this blob.


	size: Number of elements owned by this blob.


	flags: Bit flags to pass down to ss_blob_bind_f




Description: This is a convenience function for ss_blob_bind_f that can be used when the dataset is one dimensional and
the region of the dataset owned by the blob is contiguous.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: See ss_blob_bind_f.

See Also:


	ss_blob_bind_f: 15.4:  Bind a blob to a dataset


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Bind a blob to memory

ss_blob_bind_m is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_bind_m(ss_blob_t *blob, void *mem, hid_t mtype, hid_t mspace)

	



Formal Arguments:


	blob: The blob to which memory is associated


	mem: The memory to which the blob will now point


	mtype: The datatype of each element of the memory. This datatype will be copied
into the blob so the caller is free to close the handle at any time.


	mspace: The extent of memory and a selection of elements in that memory. This data
space will be copied into the blob, so the caller should  close its handle.




Description: This function binds a blob to a memory buffer that will be used for I/O.  This is used when data is output
from memory to the file and mtype and mspace describe the elements of memory to be written to the file. The
memory is not copied by this function and so must not be freed by the caller until it is unbound from the
blob.

A blob can be disassociated from memory by supplying a null pointer for the mem argument, in which case the
following arguments are ignored.  It is the caller’s responsibility to deallocate any memory if appropriate.
The memory can also be disassociated automatically after an ss_blob_read, ss_blob_read1, ss_blob_write,
or ss_blob_write1 call if the SS_BLOB_UNBIND bit is passed in the  flags argument to those functions.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	ss_blob_read: 15.14:  Read data from a file


	ss_blob_read1: 15.15:  Read data from a file


	ss_blob_write: 15.16:  Write data to a blob


	ss_blob_write1: 15.17:  Write data to a blob


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Bind a blob to memory

ss_blob_bind_m1 is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_bind_m1(ss_blob_t *blob, void *mem, hid_t mtype, hsize_t nelmts)

	



Formal Arguments:


	blob: The blob to which memory is associated.


	mem: The memory to be associated with the blob.


	mtype: The datatype of each element of the memory. This datatype will be copied
into the blob so the caller is free to close the handle at any time.


	nelmts: Number of elements pointed to by mem.




Description: This is a special case of ss_blob_bind_m that binds one-dimensional memory to a blob. It’s slightly easier
to use because the caller isn’t required to build an HDF5 data space to describe the memory layout.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:


	ss_blob_bind_m: 15.2:  Bind a blob to memory


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Query dataset bound to a blob

ss_blob_bound_f is a function defined in ssblob.c.

Synopsis:


	
int ss_blob_bound_f(ss_blob_t *blob, hid_t *dset, hsize_t *offsets, hsize_t *sizes, hid_t *fspace, hid_t *ftype)

	



Formal Arguments:


	blob: Blob to query.


	dset [OUT]: Optional returned dataset handle. The handle is not duplicated and the


	offsets [OUT]: Optional offset per dataset dimension for the starting position of the


	sizes [OUT]: Optional size per dataset dimension for the portion of data owned by this


	fspace [OUT]: Optional data space to be returned. This is the data space of the


	ftype [OUT]: Optional file datatype to be returned. The caller should close this




Description: A blob can be bound to (part of) a dataset and a call to this function will return the dataset and description
of elements to which it is bound.

Return Value: On success, returns the dimensionality of the blob’s dataset. The returned value indicates the number of
elements of the optional offsets and sizes arrays that were initialized. A return value of zero indicates a
scalar dataset. On failure, a negative value is returned.

Parallel Notes: Independent

See Also:


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Query dataset bound to a blob

ss_blob_bound_f1 is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_bound_f1(ss_blob_t *blob, hid_t *dset, hsize_t *offset, hsize_t *size, hid_t *ftype)

	



Formal Arguments:


	blob: Blob to query.


	dset [OUT]: Optional returned dataset handle. The handle is not duplicated and the


	offset [OUT]: Optional starting offset for the data owned by blob.


	size [OUT]: Optional number of elements owned by blob.


	ftype [OUT]: Optional datatype of the underlying dataset. The caller should close this




Description: This is a convenience function for ss_blob_bound_f when the blob data is scalar or one dimensional and
contiguous in the dataset. Unlike ss_blob_bound_f, a scalar blob will be treated as a one-dimensional blob
of size one in order that offset and size are always returned.

Return Value: Returns non-negative on success; negative on failure.  It is considered a failure to make this query when no
dataset is bound to the blob or the blob’s region of the dataset doesn’t satisfy the constraints set out
above.

Parallel Notes: Independent

See Also:


	ss_blob_bound_f: 15.8:  Query dataset bound to a blob


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Query memory bound to a blob

ss_blob_bound_m is a function defined in ssblob.c.

Synopsis:


	
void * ss_blob_bound_m(ss_blob_t *blob, hid_t *mtype, hid_t *mspace)

	



Formal Arguments:


	blob: Blob to query.


	mtype [OUT]: Optional pointer for memory datatype, duplicated from that stored in


	mspace [OUT]: Optional pointer for memory dataspace (extent and selection),




Description: This function queries information about the memory that is bound to the blob through the ss_blob_bind_m
function.

Return Value: Returns a pointer to memory (the same pointer as passed to ss_blob_bind_m) bound to the blob, and also
returns copies of the memory datatype and data space through the optional mtype and mspace pointer arguments.
Returns the null pointer on failure.  It is considered a failure to ask for memory information for a blob that
is not bound to memory.

Parallel Notes: Independent

See Also:


	ss_blob_bind_m: 15.2:  Bind a blob to memory


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Query memory bound to a blob

ss_blob_bound_m1 is a function defined in ssblob.c.

Synopsis:


	
void * ss_blob_bound_m1(ss_blob_t *blob, hid_t *mtype, hsize_t *size)

	



Formal Arguments:


	blob: Blob to query.


	mtype [OUT]: Optional pointer for memory datatype, duplicated from that stored in


	size [OUT]: Optional pointer to receive the number of elements pointed to by the




Description: This is a convenience function for ss_blob_bound_m when the memory bound to the blob is one dimensional, has
a zero starting offset, and is contiguous. It returns an offset instead of an HDF5 data space.

Return Value: Returns a pointer to memory (the same pointer as passed to ss_blob_bind_m) bound to the blob, and also
returns a copy of the memory datatype and the number of consecutive elements contained in that memory. A null
pointer is returned on failure. It is considered a failure to ask for memory information for a blob that is
not bound to memory, or to use this function to query bound memory that cannot be described with simply a size.

Parallel Notes: Independent

See Also:


	ss_blob_bind_m: 15.2:  Bind a blob to memory


	ss_blob_bound_m: 15.6:  Query memory bound to a blob


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Extend a blob

ss_blob_extend is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_extend(ss_blob_t *blob, const hsize_t *size, unsigned flags, ss_prop_t UNUSED *props)

	



Formal Arguments:


	blob: Blob which is possibly to be extended.


	size: New size of the blob on each calling task per dataset dimension


	flags: Bit flags such as SS_ALLSAME.


	props: Optional property list (none defined yet).




Description: Certain blobs are considered to be extendible (see ss_blob_bind_f) and this function can be used to make
such a blob larger. The new size of the blob is the maximum size from across all collectively calling tasks
but a blob is never made smaller than its current size.  Each dimension of the blob is resized independently
of the others. If the SS_ALLSAME bit is set in the flags argument then the MPI reduction to find the maximum
is skipped and we assume that all tasks passed the same value for size.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file communicator to which the blob belongs. Tasks that are not part of the blob’s scope
should pass the top-scope of the blob’s file in place of the blob argument. This restriction is due to HDF5’s
requirement that an H5Dextend call is file collective.

See Also:


	ss_blob_bind_f: 15.4:  Bind a blob to a dataset


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Extend a blob

ss_blob_extend1 is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_extend1(ss_blob_t *blob, hsize_t size, unsigned flags, ss_prop_t *props)

	



Formal Arguments:


	blob: Blob which is possibly to be extended.


	size: The new size of the blob in elements.


	flags: Bit flags such as SS_ALLSAME.


	props: Optional property list (see ss_blob_extend).




Description: This is a convenience function for ss_blob_extend which only extends the first dimension of a blob.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: See ss_blob_extend

See Also:


	ss_blob_extend: 15.12:  Extend a blob


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Flush pending data to HDF5

ss_blob_flush is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_flush(ss_scope_t *topscope, ss_blob_t *blob, unsigned flags, ss_prop_t *props)

	



Formal Arguments:


	topscope: Determines the file being flushed, and thus the collectivity of the function.


	blob: Optional argument to restrict the flushing to a single dataset: the dataset to
which blob refers, which might also be used by other blobs.  If blob is not
specified then all blob datasets for the file are flushed.  When blob is defined on
a subset of the FILE communicator, the tasks that don’t own the blob should pass
a non-null object (passing the FILE argument a second time is recommended) in order
to distinguish between this single-dataset case and the all-datasets case without
the need for collective communication.


	flags: Bit flags that describe how to flush the selected datasets. See
ss_blob_async_flush for details. If none of the  ``FLUSH`` or  ``REAP`` bits are set then
async two-phase I/O is started but nothing is reaped.


	props: Flushing properties (none defined at this time).




Description: Because SSlib can perform asynchronous I/O, data transferred between memory and the HDF5 file can sit in SSlib
queues after the call to ss_blob_read or ss_blob_write returns. This function causes those buffers to be
flushed to HDF5 (but does not subsequently demand that HDF5 flush its buffers to the Unix file). The topscope and
blob arguments indicates what should be flushed, and the flags and props arguments say how to flush it. In any
case, all blob metadata for the file is synchronized.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: File-collective.  If the flush is occuring because a task (or tasks) wish to read data which was written
asynchronously then the caller will be wise to also invoke MPI_Barrier to insure that this task’s read does
not occur before the aggregator has a chance to write the previous data.  The barrier call is not part of this
routine because most uses of this routine are just to ensure that data has been (or very shortly will have
been) written to the HDF5 file.

See Also:


	ss_blob_read: 15.14:  Read data from a file


	ss_blob_write: 15.16:  Write data to a blob


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Get two-phase I/O properties

ss_blob_get_2pio is a function defined in ssblob.c.

Synopsis:


	
ss_prop_t * ss_blob_get_2pio(ss_blob_t *blob, ss_prop_t *props)

	



Formal Arguments:


	blob: Optional blob whose file settings are to be retreived. If no blob is specified then
the library-wide defaults are returned.


	props: Optional property list to hold the results. Only the properties defined in the list
will be returned. If no property list is specified then a new one is created and
all two-phase I/O properties are returned. See *Aggregation Properties*.




Description: This is the inverse of ss_blob_set_2pio.  The only purpose of the blob argument is to obtain the file
information where the two-phase I/O properties are kept, and therefore a scope can be passed instead.

Return Value: Returns a property list on success (either props or a new one); null on failure.

Parallel Notes: Independent

See Also:


	ss_blob_set_2pio: 15.20:  Set two-phase I/O properties


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Create storage for a blob

ss_blob_mkstorage is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_mkstorage(ss_blob_t *blob, hsize_t *size, unsigned flags, ss_prop_t *props)

	



Formal Arguments:


	blob: The blob for which a dataset should be created. As a temporary work around
for HDF5 limitations, tasks that are part of the blob’s file communicator
but not the blob’s scope communicator should pass the top-level scope for
the file that contains the blob. See the parallel notes for details.


	size [OUT]: Optional pointer which, upon successful return, will point to the


	flags: Certain bit flags that affect the operation of this function. See the
description for details.


	props: Optional properties (see *Blob Properties*). If a dataset creation property
list and/or dataset name is supplied then they must be the same across all
calling tasks.




Description: If a blob is bound only to memory then a call to this function will create a dataset to hold that data and
will bind the dataset to the blob.  The created dataset is large enough to hold the memory data to which the
blob is currently bound.

Bit Flags

The following bit flags are supported in the flags argument:


	SS_ALLSAME: All tasks must be bound to identical memory buffer sizes and only one of those tasks will be

	used to compute the total size of the new dataset.  In this case the returned size will be zero
for all tasks.



	SS_BLOB_RANK: All tasks pass the same blob, which is bound to an identical amount of memory across all

	tasks, making it unecessary to do any communication to calculate total dataset size or the
return values for the size argument.  This is useful when T tasks are about to each write N
elements in task rank order, creating a dataset whose total size is T``*``N.



	SS_BLOB_EACH: Each task is passing its own unique blob and all those blobs will point to the same HDF5

	dataset with the blobs layed out onto that dataset in task rank order. All of the blobs must
belong to the same scope because that scope determines the communicator that is used for
collective message passing operations.



	SS_BLOB_EXTEND: The blob and its new dataset will be extendible in one or more dimensions. If the caller

	supplies a dataset creation property list with the “dcpl” property of props (see *Blob Properties*) then that list should contain chunk size information. If no “dcpl” property is
supplied then SSlib will create a dataset with some default chunk size near 64kB.





All tasks should pass the same blob (except when SS_BLOB_EACH is specified) and the total size of the
resulting dataset is the sum of sizes of the bound memory across all tasks (unless SS_ALLSAME is specified).

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Conceptually, this function is collective across the communicator of the scope to which the blob belongs.
However, since HDF5 metadata operations are file-collective this function must also be collective across the
blob’s file communicator.  But since the blob doesn’t exist on the “extra” tasks those tasks should pass the
blob’s top-level scope instead in order to describe the file in which the dataset is being created.

Issues: It might be nice if this function also took a datatype to use when creating the dataset. But it’s no big deal
because the caller can create the dataset outside SSlib if need be, and then bind it to the blob with
ss_blob_bind_f.

This function currently only creates one-dimensional datasets even when the memory spaces are
multi-dimensional. This should eventually be fixed. [2003-09-11]

See Also:


	ss_blob_bind_f: 15.4:  Bind a blob to a dataset


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Create a new blob

ss_blob_new is a function defined in ssblob.c.

Synopsis:


	
ss_blob_t * ss_blob_new(ss_scope_t *scope, unsigned flags, ss_blob_t *buf)

	



Formal Arguments:


	scope: Scope where the new blob will be created


	flags: Flags such as SS_ALLSAME


	buf [OUT]: Optional buffer to receive blob link




Description: This is mostly a convenience function for ss_pers_new that creates a new blob object in the specified scope.

Return Value: Returns a non-null pointer on success, either buf if supplied or a newly allocated blob link; returns null on
failure.

Parallel Notes: Same semantics as ss_pers_new.

See Also:


	ss_pers_new: 7.1:  Create a new persistent object


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Read data from a file

ss_blob_read is a function defined in ssblob.c.

Synopsis:


	
void * ss_blob_read(ss_blob_t *blob, hid_t iospace, unsigned flags, ss_prop_t UNUSED *props)

	



Formal Arguments:


	blob: The blob from which data should be read. This is the blob’s top scope for
tasks that are participating for collectivity and are members of the blob’s
file communicator but not the blob’s scope communicator.


	iospace: This is an optional hyperslab describing the part of the blob that is to
be read. The extent and selection are relative to the portion of the
dataset owned by the blob and described in some previous call to
ss_blob_bind_f (perhaps in an earlier execution). If not specified then
all of the blob’s data is read. Such a selection is generally constructed
by calling ss_blob_space and applying the selection.


	flags: Various bit flags commonly passed to this function.


	props: See *Blob Properties*. (Unused at this time.)




Description: Given a blob which is bound to a dataset, read the desired portion of the blob as described by the iospace
argument and return a pointer to the buffer into which the data has been placed (which is either the buffer
bound to the dataset with ss_blob_bind_m or a buffer allocated by this function).

The flags argument determines specifics about the read operation and the following bits are defined:


	SS_BLOB_COLLECTIVE: The operation is to be considered collective across the blob’s file communicator.

	SSlib can use two-phase I/O for this situation. If this bit is not set then the
operation is considered independent of any other task.



	SS_BLOB_ASYNC: The I/O for this call can be performed asynchronously, allowing SSlib to use two-phase

	I/O even when the call is independent. Asynchronous reads are guaranteed to be completed
after a call to ss_blob_flush on the affected dataset.



	SS_BLOB_UNBIND: The memory and blob are disassociated from each other when this function returns,

	whether the return status indicates success or failure. However, if the failure
occurs early enough (e.g., the blob is invalid) then no disassociation will occur.





If the blob is not bound to memory then a buffer is allocated by this function but is not bound to the blob.
The returned datatype is a native type based on the dataset type and computed with H5Dget_native_type.
Otherwise the memory and dataset datatypes must be conversion compatible.

The data spaces of the memory, the blob, the dataset, and the iospace must all be compatible. SSlib allows the
dataset dimensionality to be larger than the blob dimensionality, but the memory, blob, and iospace data spaces
must all be the same dimensionality.

Return Value: Returns a pointer to memory containing the result data. If the blob was bound to memory then this is the same
pointer that would be returned with a call to ss_blob_bound_m, otherwise this is memory that was allocated
by SSlib and should be freed by the caller. Returns the null pointer on failure.

For asynchronous operations there is currently no good way to determine whether this particular read was
successful, only whether the entire flush operation was successful.

Parallel Notes: Independent unless the SS_BLOB_COLLECTIVE bit is turned on in the flags argument, in which case the function
should be called collectively across all tasks in the file communicator to which the blob belongs. The tasks
that are part of the file communicator but not part of the blob’s scope communicator should pass the top scope
of the blob’s file as the blob argument.

The order of reads and writes is indeterminate when SSlib is doing asynchronous I/O and it is up to the caller
to issue the appropriate ss_blob_flush calls to ensure an ordering.

Example: These examples are all one-dimensional for simplicity, and therefore a real application would probably use the
one-dimensional versions of most of these functions. Their names are the same except a 1’ is appended; their
arguments are obviously different. See :ref:`ss_blob_read1 <ss_blob_read1> for examples.

Example 1: A single task reads all of the blob’s data into a static buffer. We assume that the dataset
contains 100 elements of an integer datatype. SSlib will convert the data from the file datatype to an  int
type in memory.

	1
2
3
4
5
6

	 ss_blob_t b = SS_RELATION(rel)->d_blob;
 int data[100];
 hsize_t size = 100;
 hid_t mspace = H5Screate_simple(1, &size, NULL); // 100 contiguous elements in memory
 ss_blob_bind_m(&b, data, H5T_NATIVE_INT, mspace); // bind buffer to the blob
 ss_blob_read(&b, H5S_ALL, SS_BLOB_UNBIND, NULL); // read data into the buffer







Example 2: All tasks read all data collectively (they could also do it independently as when the above example
is executed by every task, but that could be very inefficient since SSlib and lower layers cannot recognize
that collective optimizations are possible).

	1
2
3
4
5
6

	 ss_blob_t b = SS_RELATION(rel)->d_blob;
 int data[100];
 hsize_t size = 100;
 hid_t mspace = H5Screate_simple(1, &size, NULL); // 100 contiguous elements in memory
 ss_blob_bind_m(&b, data, H5T_NATIVE_INT, mspace); // bind buffer to the blob
 ss_blob_read(&b, H5S_ALL, SS_BLOB_COLLECTIVE|SS_BLOB_UNBIND, NULL); // read data into the buffer







Example 3: Each task reads 50 non-overlapping task-rank-order elements from a blob that was associated with a
relation.  Each task provides a buffer for the result. We assume that the blob’s
data is one dimensional, a floating-point datatype, and of sufficient size to satisfy the read request.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 int self = ...;                  // task rank in blob's file communicator
 float buffer[50];                // the result buffer
 hsize_t start = 50 * self;       // starting offset relative to blob's data
 hsize_t size = 50;               // number of consecutive elements to read
 hid_t bspace;                    // blob's data space
 hid_t mspace = H5Screate_simple(1, &size, NULL); // describe memory to HDF5
 ss_blob_t *blob = SS_RELATION_P(rel, d_blob); // beware: blob pointer is temporary
 ss_blob_bind_m(blob, buffer, H5T_NATIVE_FLOAT, mspace); // bind buffer to the dataset
 ss_blob_bound_f(blob, NULL, NULL, NULL, &bspace); // get the blob's data space
 H5Sselect_hyperslab(bspace, H5S_SELECT_SET, &start, NULL, &size, NULL); // describe partial read
 ss_blob_read(blob, bspace, SS_BLOB_COLLECTIVE, NULL);
 ss_blob_bind_m(blob, NULL, 0, 0); // unbind memory from blob (could have used SS_BLOB_UNBIND)
 H5Sclose(bspace);
 H5Sclose(mspace);







Issues: For a collective call where all tasks read the same selection of the dataset and all desire the same datatype
and all destinations are contiguous in memory, SSlib may perform an independent H5Dread and then broadcast
the data to the other tasks.  This optimization should eventually be moved into HDF5.

The two-phase I/O optimization for reads is not implemented.

See Also:


	ss_blob_bind_f: 15.4:  Bind a blob to a dataset


	ss_blob_bind_m: 15.2:  Bind a blob to memory


	ss_blob_bound_m: 15.6:  Query memory bound to a blob


	ss_blob_flush: 15.19:  Flush pending data to HDF5


	ss_blob_read1: 15.15:  Read data from a file


	ss_blob_space: 15.10:  Query blob extent


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Read data from a file

ss_blob_read1 is a function defined in ssblob.c.

Synopsis:


	
void * ss_blob_read1(ss_blob_t *blob, hsize_t offset, hsize_t nelmts, unsigned flags, ss_prop_t *props)

	



Formal Arguments:


	blob: The blob from which data should be read.


	offset: Offset w.r.t. the blob’s data for the first element to be read.


	nelmts: Number of elements to be read from the blob’s data.


	flags: See the flags argument of ss_blob_read.


	props: See *Blob Properties*.




Description: This is a convenience function for ss_blob_read when the blob’s data is scalar or one dimensional and
contiguous in the dataset.  The offset and SIZE describe the part of the blob’s data to be read and are in
terms of elements with respect to the blob’s data (not necessarily the whole dataset).

Return Value: Same as ss_blob_read.

Parallel Notes: Same as ss_blob_read.

Example: The examples here are similar to those given for ss_blob_read and show that it’s much easier to use the
special case functions for single dimension blobs.

Example 1: A single task reads all of the blob’s data into a static buffer. We assume that the dataset
contains 100 elements of an integer datatype. SSlib will convert the data from the file datatype to an  int
type in memory.

	1
2
3
4

	 ss_blob_t b = SS_RELATION(rel)->d_blob;
 int data[100];
 ss_blob_bind_m1(&b, data, H5T_NATIVE_INT, 100);       // bind memory to the blob
 ss_blob_read1(&b, 0, 100, SS_BLOB_UNBIND, NULL);      // read data into the buffer







Example 2: All tasks read all data collectively (they could also do it independently as when the above example
is executed by every task, but that could be very inefficient since SSlib and lower layers cannot recognize
that collective optimizations are possible).

	1
2
3
4
5

	 ss_blob_t b = SS_RELATION(rel)->d_blob;
 int data[100];
 ss_blob_bind_m1(&b, data, H5T_NATIVE_INT, 100);       // bind memory to the blob
 ss_blob_read1(&b, 0, 100, SS_BLOB_COLLECTIVE, NULL);  // read data into the buffer
 ss_blob_bind_m1(&b, NULL, 0, 0);                      // unbind the buffer just to be safe







Example 3: Each task reads 50 non-overlapping task-rank-order elements from a blob that was associated with a
relation.  Each task provides a buffer for the result. We assume that the blob’s
data is one dimensional, a floating-point datatype, and of sufficient size to satisfy the read request.

	1
2
3

	 int self = ...;                  // task rank in blob's file communicator
 float *buffer=NULL;              // the result buffer to be allocated by ss_blob_read1()
 buffer = ss_blob_read1(blob, 50*self, 50, SS_BLOB_COLLECTIVE, NULL); // read part of the blob data







See Also:


	ss_blob_read: 15.14:  Read data from a file


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Set two-phase I/O properties

ss_blob_set_2pio is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_set_2pio(ss_blob_t *blob, ss_prop_t *props)

	



Formal Arguments:


	blob: Optional blob to which whose file these settings apply. If no blob is
specified then the settings apply to SSlib in general and can be overridden
by individual blobs.


	props: See *Aggregation Properties*.




Description: Sets properties for two-phase I/O for the HDF5 file associated with the specified blob. If no blob is supplied then
the library-wide defaults are adjusted.  Only the parameters present in the property list are adjusted. If
called with null pointers for both blob and props then the library-wide defaults are initialized from the
SSLIB_2PIO environment variable.

The SSLIB_2PIO environment variable should be the word yes’ (or `on’) which causes SSlib to use default
values for two-phase I/O, the word `off’ (or `no’) in order to turn off two-phase I/O, or a
semicolon-separated list of terms of the form ``KEY``=``VALUE`. The KEY names are as follows and are the same as the
names that could appear in the property list.


	minbufsize: The value should be an integer that specifies the minimum size in bytes to use for

	each aggregation buffer.  The actual aggregation buffer size is approximated by dividing
the dataset size by the number of aggregators, subject to the alignment specified below.
The default is 512kB, which is the GPFS page size on LLNL’s AIX systems.



	alignment: The aggregation tasks will each be responsible for a dataset part which is some multiple

	of the alignment size.  However, SSlib will ignore the alignment under certain conditions
when the alignment isn’t a multiple of the dataset element size. The default is 512kB,
which causes aggregation buffers to align on GPFS page boundaries on LLNL systems.



	maxaggtasks: The maximum number of aggregation tasks to use for each dataset. The actual number is

	approximated by dividing the dataset size by the  minbufsize, and limiting that by
the  maxaggtasks value.  The default is to use 1/32 of the total MPI tasks, rouned up.



	sendqueue: This is the maximum number of buffers that can be held by any task during the data

	shipping phase of two-phase I/O. The default is four.  If more than four buffers are
requested then SSlib will block pending completion of one of the previous asynchronous
MPI_Isend operations.



	aggbuflimit: This is the maximum number of bytes that can be used for all aggregation buffers

	across all files on a particular MPI task. An operation that would result in more than this
amount being allocated by SSlib will cause SSlib to block until some asynchronous
MPI_Irecv and H5Dwrite calls complete.  The default is 10MB.



	``asynchdf5``: The value is a Boolean that specifies whether SSlib should attempt to use POSIX.1b

	asynchronous I/O (AIO) in HDF5’s mpiposix virtual file driver. Doing so currently
requires a small patch to HDF5. The default is to attempt AIO.



	aggbase: SSlib chooses aggregators by taking a base MPI task and adding multiples of some

	aggregator increment modulo the number of tasks. The  aggbase term specifies how to
choose the base aggregator. It can be the rank of a particular MPI task or the value -1,
which indicates that the base aggregator is chosen by hashing the dataset’s HDF5 object
header address.  This is normally used only for debugging.



	tpn: Tasks per node, used to determine what MPI tasks serve as aggregators for a particular

	dataset. If unspecified (or non-positive) then SSlib uses an algorithm that attempts to
distribute aggregators for a particular MPP architecture assuming 4 or 16 tasks per node.





The keys that take a size argument can consist of an integer value followed by an optional multiplier suffix
which may be any one of kB (or k, kb), MB (or M, m, mb), or GB (or G, g, gb) to indicate 2^10, 2^20, or 2^30.
Suffixes can only be used with the environment variable; property lists always specify values in terms of
bytes.

Keys which take a Boolean value can be set to “yes”, “on”, “true”, “no”, “off”, or “false” for the environment
variable; Boolean properties always have an integer value.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: When setting values for a particular file the call must be collective across the blob’s file communicator,
with the non-blob-owning tasks passing the blob’s top-level scope instead. When setting library-wide defaults
(blob is the null pointer) then the call must be collective across the library communicator. In any case all
tasks must pass identical properties.

See Also:


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Query blob extent

ss_blob_space is a function defined in ssblob.c.

Synopsis:


	
int ss_blob_space(ss_blob_t *blob, hsize_t *size, hid_t *space)

	



Formal Arguments:


	blob: The blob to query


	size [OUT]: Optional returned size per blob dimension


	space [OUT]: Optional returned data space for the blob




Description: Since storage for multiple blobs can be aggregated into a single HDF5 dataset, the dimensionality and size of
a blob might not match that of the whole dataset. This function returns information about the blob’s extent.
The blob dimensionality is implied by the dataset-dimensional offset/count values for the blob: any dimension
that has a count==1 is considered to be excluded from the blob’s dimensionality.

Return Value: On success, returns the blob’s dimensionality (zero implies scalar) and the extent through the optional size
and space arguments. Returns negative on failure.  A null blob (a blob that has no elements) will be returned
as a one dimensional space whose size is zero.

Parallel Notes: Independent

Example:
.. _SC_ss_blob_space:

	1
2

	 A blob of size [100,1,100] at offset [0,0,0] in a dataset whose size is [100,200,400] will be considered to
 be a two dimensional blob of size [100,100].







See Also:


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Initiate 2-phase I/O

ss_blob_synchronize is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_synchronize(ss_scope_t UNUSED_SERIAL *topscope, ss_prop_t UNUSED_SERIAL *props)

	



Formal Arguments:


	props: See *Blob Properties*.




Description: When a task has a buffer of data to be written to the file it can do so either synchronously or
asynchronously. The benefits of asynchronous writes are: (1) separate write requests from a task destined for
a single dataset can be combined into a single H5Dwrite call, (2) data from many tasks can be aggregated
into larger amounts before the H5Dwrite calls occur, and (3) at least part of the process of getting the
data to disk can be overlapped with other computation.

Any task can make independent requests for asynchronous writes, and a collective call to this function causes
tasks to agree on how the data transfer will occur and to initiate the asynchronous transfers of data to
chosen aggregation tasks.  After this function has been called all data will either be on disk or in the
process of moving to disk. Therefore it is not safe yet for the client to free its buffers and will not be
safe until a call to ss_blob_flush.

All blobs for the file of the specified top scope are synchronized unless the “dset” property of props is
specified, in which case it should be a dataset handle to indicate the one and only dataset to synchronize.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: File collective across the communicator for topscope.  File collectivity is necessary in order to meet HDF5
API requirements for H5Dextend and because multiple blobs from different scopes using different
communicators can share a single dataset (the one thing they all have in common is the file).

Serial behavior is a no-op.

Issues: In order to assure correct order of I/O operations it is imperative that all I/O for a particular HDF5 dataset
be either synchronous or asynchronous.  SSlib doesn’t check for mixed mode requests but it probably should.

This function makes no attempt to combine separate write requests from a single task into a single request.

The data shipping code uses MPI async p2p functions even when the source and destination are the same task.

This function does not attempt to optimize the case when ss_blob_write was called with the SS_ALLSAME bit
flag. When this bit is set all blob tasks will have called ss_blob_write with identical data and offsets and
it may therefore be the case that an aggregation task has the data already available locally.

Lots of error-related stuff needs to go here!

See Also:


	ss_blob_flush: 15.19:  Flush pending data to HDF5


	ss_blob_write: 15.16:  Write data to a blob


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Write data to a blob

ss_blob_write is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_write(ss_blob_t *blob, hid_t iospace, unsigned flags, ss_prop_t UNUSED *props)

	



Formal Arguments:


	blob: The blob for which data is written, which must be bound to both memory
and a dataset. Any task that is part of the file communicator but not the
scope communicator is participating soley for the sake of collectivity and
should pass the blob’s top scope here instead.


	iospace: This is an optional hyperslab describing the part of the blob that is to
be written. The extent and selection are relative to the portion of the
dataset owned by the blob and described in some previous call to
ss_blob_bind_f (perhaps in an earlier execution). If not specified then
all of the blob’s data is written.


	flags: Various bit flags commonly passed to this function.


	props: See *Blob Properties*. (Unused at this time.)




Description: Given a blob that has been bound to both memory and a dataset, transfer data from memory to the file. The
portion of the blob to write is described by the iospace argument.

The flags argument determines specifics about the write operation and the following bits are defined:


	SS_BLOB_COLLECTIVE: The operation is to be considered collective across the blob’s file communicator.

	SSlib can use two-phase I/O for this situation. If this bit is not set then the
operation is considered independent of any other task.



	SS_BLOB_ASYNC: The I/O for this call can be performed asynchronously, allowing SSlib to use two-phase

	I/O even when the call is independent. Asynchronous writes are guaranteed to be completed
after a call to ss_blob_flush on the affected dataset.



	SS_BLOB_COPY: In the case of asynchronous I/O it is important that the caller doesn’t modify the

	memory being written until the data has been shipped to the aggregator. However, if this
bit is turned on then SSlib will make a copy of the data before this call returns. Only
the data actually being written is copied, which could be substantially smaller than the
entire memory array that was supplied in the case of partial I/O.



	SS_BLOB_UNBIND: The memory and blob are disassociated from each other when this function returns,

	whether the return status indicates success or failure. However, if the failure
occurs early enough (e.g., the blob is invalid) then no disassociation will occur.



	SS_BLOB_FREE: The memory bound to this blob should be freed as soon as it is no longer needed. For

	synchronous writes it will be freed before this function returns, but asynchronous
writes may retain the memory longer.  The SS_BLOB_UNBIND flag must also be set when
SS_BLOB_FREE is set.



	SS_ALLSAME: This bit flag indicates that all blob tasks are calling this function collectively and

	they are all providing the same data values to be written all at the same offset. Thus
only one task needs to actually do any writing. There are three main reasons to use this
flag: (1) for convenience so the caller doesn’t need to choose a particular task, (2) so
that if the caller doesn’t choose a particular task that tasks aren’t duplicating effort,
and (3) so that the aggregation tasks know that they might be able to get data without
doing any communication.





The data spaces of the memory, the blob, the dataset, and the iospace must all be compatible. SSlib allows the
dataset dimensionality to be larger than the blob dimensionality, but the memory, blob, and iospace data spaces
must all be the same dimensionality.

Return Value: Returns non-negative on success; negative on failure.

For asynchronous operations there is currently no good way to determine whether this particular write was
successful, only whether the entire flush was successful.

Parallel Notes: Independent unless the SS_BLOB_COLLECTIVE or SS_ALLSAME bits are turned on in the flags argument, in which
case the function should be called collectively across all tasks in the file communicator to which the blob
belongs.  The tasks that are part of the file communicator but not part of the blob’s scope communicator
should pass the top scope of the blob’s file as the blob argument.

The order of reads and writes is indeterminate when SSlib is doing asynchronous I/O and it is up to the caller
to issue the appropriate ss_blob_flush calls to ensure an ordering.

Example:
.. _SC_ss_blob_write:

	1

	 See ss_blob_read() for examples since this function is almost identical in nature.







Issues: I don’t think an MPI_Barrier is sufficient to make the aggregators’ independent H5Dwrite
data to become available to the other tasks for reading. We may need either an MPI_File_sync
or we may need to have the tasks write collectively. [rpm 2004-07-26]

I don’t think an MPI_Barrier is sufficient here. We may need either an MPI_File_sync or we may need
to have the tasks write collectively but only one supplying data. [rpm 2004-07-26]

See Also:


	ss_blob_bind_f: 15.4:  Bind a blob to a dataset


	ss_blob_flush: 15.19:  Flush pending data to HDF5


	I/O: Introduction for current chapter








          

      

      

    

  

    
      
          
            
  
Write data to a blob

ss_blob_write1 is a function defined in ssblob.c.

Synopsis:


	
herr_t ss_blob_write1(ss_blob_t *blob, hsize_t offset, hsize_t nelmts, unsigned flags, ss_prop_t *props)

	



Formal Arguments:


	blob: The blob for which data is written. This blob must be bound to both memory
and a dataset


	offset: Offset into the blob data for the first element to be written.


	nelmts: Number of consecutive elements to be written.


	flags: See ss_blob_write.


	props: See *Blob Properties*.




Description: This is a convenience function for ss_blob_write when the blob’s data is scalar or one dimensional and
contiguous in the dataset. The offset and SIZE describe the part of the blob’s data to be written and are in
terms of elements with respect to the blob’s data (not necessarily the whole dataset).

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: See ss_blob_write.

See Also:


	ss_blob_write: 15.16:  Write data to a blob


	I/O: Introduction for current chapter








          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          SAF Software
        


        		
          Sets and Fields (SAF) API
          
            		
              Table of Contents
              
                		
                  Permuted_Index [chapter]
                


                		
                  Concept_Index [chapter]
                


                		
                  Introduction [chapter]
                


                		
                  Environment [chapter]
                


                		
                  Error_Handling [chapter]
                


                		
                  Library_Initialization [chapter]
                


                		
                  Library_Properties [chapter]
                


                		
                  Path_Info [chapter]
                


                		
                  Databases [chapter]
                


                		
                  Database_Properties [chapter]
                


                		
                  Sets [chapter]
                


                		
                  Collection_Categories [chapter]
                


                		
                  Collections [chapter]
                


                		
                  Subset_Relations [chapter]
                


                		
                  Topology_Relations [chapter]
                


                		
                  Relations [chapter]
                


                		
                  Field_Templates [chapter]
                


                		
                  Fields [chapter]
                


                		
                  State_Templates [chapter]
                


                		
                  States [chapter]
                


                		
                  Suites [chapter]
                


                		
                  Quantities [chapter]
                


                		
                  Units [chapter]
                


                		
                  Attributes [chapter]
                


                		
                  Miscellaneous_Utilities [chapter]
                


                		
                  Version_Numbers [chapter]
                


                		
                  Datatypes [chapter]
                


                		
                  Notes [chapter]
                


                		
                  Algebraic_Types [chapter]
                


                		
                  Alternative_Index_Specification [chapter]
                


                		
                  Basis_Types [chapter]
                


                		
                  Collection_Roles [chapter]
                


                		
                  Data_Types [chapter]
                


                		
                  Evaluation_Types [chapter]
                


                		
                  Relation_Representation_Types [chapter]
                


              


            


          


        


        		
          SAF Examples
          
            		
              Table of Contents
              
                		
                  Birth_and_Death_Use_Case [chapter]
                


                		
                  Storagew [chapter]
                


                		
                  Triangle_Mesh [chapter]
                


                		
                  Dynamic_Load_Balance_Use_Case [chapter]
                


                		
                  Example_Utilities [chapter]
                


                		
                  Hadaptive_Use_Case [chapter]
                


                		
                  Larry_Use_Case [chapter]
                


                		
                  N_to_1_Remapping_Use_Case [chapter]
                


                		
                  Overloaded_Definitions [chapter]
                


                		
                  Tests [chapter]
                


                		
                  Permuted_Index [chapter]
                


              


            


          


        


        		
          SAF Support Library
          
            		
              Table of Contents
              
                		
                  Introduction [chapter]
                


                		
                  Library [chapter]
                


                		
                  Environment_Variables [chapter]
                


                		
                  Error_Handling [chapter]
                


                		
                  Magic_Numbers [chapter]
                


                		
                  Properties [chapter]
                


                		
                  Persistent_Objects [chapter]
                


                		
                  Persistent_Object_Tables [chapter]
                


                		
                  Strings [chapter]
                


                		
                  Variable_Length_Arrays [chapter]
                


                		
                  Files [chapter]
                


                		
                  Global_File_Information [chapter]
                


                		
                  Scopes [chapter]
                


                		
                  Object_Attributes [chapter]
                


                		
                  Values [chapter]
                


                		
                  HDF5 [chapter]
                


                		
                  Datatypes [chapter]
                


                		
                  Miscellaneous [chapter]
                


                		
                  Notes [chapter]
                


                		
                  Debugging [chapter]
                


                		
                  Overloaded_Definitions [chapter]
                


                		
                  Permuted_Index [chapter]
                


              


            


          


        


      


    
  

_images/plot06.jpg
Elapsed Time for Restart Dump

0

as

0

2s

20

15

10

fle3d Optinized Results

Spartan
uith steributes
and node sets
e faes 2
i parvioies

s B
Bestark: Hump:

10





_images/use_case_4-1.gif
node and element collection member indices inred (upper diagrams)

5 n it
4 1 4 6| i s

4 g
2 7 ol |z | o |1 |2
0 3

clementD=1s highlighted o provide
seference originin the diagrems
node and elementuser Ds i black (lower diagrams)

5 F e a
4 4 1 4 1 1

" 3 g
2 2 o E3 NN P 5

15 T T 1
0| o1 fe |7

3
Mode D fields (1:1 withnodes collection)
0123856780011 0212,13345141567 86,19, 345IAIBETBIGTI 0L 45I4ITEI61,011500

1013835

ElementIDs fidds (1:1with elems collecton)
012385 016723893,01 238985011 Freeeen






_images/plot04.jpg
Overall Aggregate Banduidth (MB/s)

1000

100

10

Optinized versions

DsL-ssuns

AF-ssunc
DsL-zune
SAF-zune
HIF-sne

10

ludbar of Taske

100





_images/plot05.jpg
Elapsed Time for Restart Dump

180

160

140

120

100

0

20

fledd Results

SAF Pre-optinized ——

SAF Optinized
Silo single-file —e—
Yt —

i

s B
Reskart T

10





_images/use_case_5-3.gif
1)






_images/use_case_5-4.gif
q 0 B B
0 f 5 ¢
o H i H
o 3 k! 9
i3 7 T o
i 19 = 15
H N § 4
b 1o o s
B zn 24 E






_images/use_case_5-1.gif
el

Py Py R P0 Pl
0 staz 3 i
stare! Which proc decided to subdivide this cell?
PO P1 ) Bl
P stazd P2
st
M P R
® Tm Tm
sum2 st 5(same =)





_images/use_case_5-2.gif
A 2 s 5 5
T T
@ o @ @ o as
o H 2 H 4 .
o 1 o i A H
i 3 o " : e
U u
P P 2 5 P 15
B 7 P ; P P
2 H % H H B
5 i
-

Legend:red are globalids, bue arelocal ds. Numbers neay an clement center are clementids. Numbers near anade are nodeids.
‘The black numbers represent the mammable (levelcow, ool indexcing.

‘When densty of values i too high, orly arepresentative s

setofthe vlnes s actally shawn,





_images/use_case_5-5.gif
s P
T 7
s
H i
" ol
i +
5 B
: 7
?
3 €






_images/use_case_5-6.gif
] 5 w4
. T T 3
bw 5
= 1 2
7 s 3 1
- fi T
El P
i (]
s l s 1
E2 E:






_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/up-pressed.png





_static/up.png





_images/plot01.jpg
Rau Aggregate Bandwidth CMB/s)

100

10

Pre-optinized versions

Fasix
WPr-10
HoFs
oL
sar

10
Himbrt Zablen:

100





_images/plot02.jpg
Overall Aggregate Banduidth (MB/s)

100

10

Pre-optinized versions

Fasix
WPr-10
HoFs
oL
sar

10
Himbrt Zablen:

100





_images/loadbalance_diagrams-1.gif
Element Numbers inred (lovrer mumbers)
Processor Assignmentin black (upper numbers)

" The elements to shiff nitally
assigned toprocessor 0





_images/loadbalance_diagrams-2.gif
\
AN
“Instances” collection Y,

‘with 4 members

03,6
90,9192,

Subset
Field Ser Relation Field-Indirection
”
Legend P O 7 -
Relation Data

{12,3.)





_images/plot03.jpg
Rau Aggregate Bandwidth CMB/s)

1000

100

10

Optinized versions

DsL-ssuns

AF-ssunc
DsL-zune
SAF-zune
HIF-sne

10

ludbar of Taske

100





_images/indirect_field-2.gif





_images/indirect_field-3.gif
Prowssar0 Proessar1 Prowssar2





_images/indirect_field-1.gif





