
SAF User Manual
Release 2.0.3

LLNL

Mar 12, 2021

Contents

1 SAF User Manuals 3
1.1 Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 . 3
1.2 Sets and Fields (SAF) Examples and Use Cases . 185
1.3 SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 215

Index 323

i

ii

SAF User Manual, Release 2.0.3

SAF Software is available on github

Contents 1

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

2 Contents

CHAPTER 1

SAF User Manuals

1.1 Sets and Fields (SAF) API Reference Manual for SAF 2.0.3

Acknowledgements

1.1.1 Table of Contents

Permuted Index

Table 1.1: Permuted Index
Concept Key Reference
Turn off aborts saf_setProps_DontAbort

Specify read-only database access saf_setProps_ReadOnly

Finalize access to the library saf_final

Add members to a collection saf_extend_collection

Declare a new algebraic type saf_declare_algebraic

Describe an algebraic type saf_describe_algebraic

Find one algebraic type saf_find_one_algebraic

Common algebraic types SAF_ALGTYPE

Find algebraic types saf_find_algebraics

Continued on next page

3

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
More meaningful alias for SAF_TOTALITY SAF_WHOLE_FIELD

NULL aliases SAF_VoidPtr

Begin a block of error handling code for all errors SAF_CATCH_ALL

String allocation modes SAF_StrMode

Set string allocation style saf_setProps_StrMode

Set the pool size for string return value allocations saf_setProps_StrPoolSize

Find alternate index specs by matching
criteria

saf_find_alternate_indexspecs

Read an alternate index specs from disk saf_read_alternate_indexspec

Write an alternate index specs to disk saf_write_alternate_indexspec

Get a description of an alternate indexing spec saf_describe_alternate_indexspec

Declare an Alternative Index Specification saf_declare_alternate_indexspec

The quantity Amount SAF_QAMOUNT

Version Annotation SAF_VERSION_ANNOT

Check if any stat errors occured saf_getInfo_staterror

Trace SAF API calls and times SAF_TRACING

Not applicable SAF_NOT_APPLICABLE_INT

Find the not applicable unit saf_find_unit_not_applicable

Apply a logarithmic scale to a unit saf_log_unit

An arbitrary named quantity SAF_QNAME

Make a C-automatic array of cat handles SAF_Cat

Make a C-automatic array of set handles SAF_Set

Array size SAF_NELMTS

Control Assertion Checking SAF_ASSERT_DISABLE

Associates a unit of measure with a
specific quantity

saf_quantify_unit

Continued on next page

4 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Associating a role with a collection
category

SAF_RoleConstants

Attach an attribute to a state group saf_put_state_grp_att

Attach an attribute to a state tem-
plate

saf_put_state_tmpl_att

Attach an attribute to a suite saf_put_suite_att

Get an attribute attached to a state group saf_get_state_grp_att

Get an attribute attached to a state template saf_get_state_tmpl_att

Get an attribute attached to a suite saf_get_suite_att

Create or update a non-sharable attribute saf_put_attribute

Read a non-sharable attribute saf_get_attribute

Get an attribute attached to a state group saf_get_state_grp_att

Get an attribute attached to a state template saf_get_state_tmpl_att

Get an attribute attached to a suite saf_get_suite_att

Get an attribute from a field saf_get_field_att

Get an attribute from a set saf_get_set_att

Reserved attribute name keys SAF_ATT

Put an attribute to a set saf_put_set_att

Attach an attribute to a state group saf_put_state_grp_att

Attach an attribute to a state template saf_put_state_tmpl_att

Attach an attribute to a suite saf_put_suite_att

Get an attribute with a cat saf_get_cat_att

Put an attribute with a cat saf_put_cat_att

Put an attribute with a field saf_put_field_att

Get an attribute with a field template saf_get_field_tmpl_att

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 5

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Put an attribute with a field template saf_put_field_tmpl_att

Make a field handle a C automatic variable SAF_Field

Make a field template handle a C automatic variable SAF_FieldTmpl

Make a relation handle a C automatic variable SAF_Rel

Make a state handle a C automatic variable SAF_StateGrp

Make a state template handle a C automatic variable SAF_StateTmpl

Make a suite handle a C automatic variable SAF_Suite

Database information not available SAF_NOT_SET_DB

Synchronization barrier SAF_BARRIER

Find bases saf_find_bases

Declare a new basis type saf_declare_basis

Describe a basis type saf_describe_basis

Find one basis type saf_find_one_basis

Basis types SAF_BasisConstants

Queries whether data has been written saf_data_has_been_written_to_comp_field

Begin a block of error handling code SAF_CATCH_ERR

Begin a block of error handling code
for all errors

SAF_CATCH_ALL

Begin a the CATCH part of a
TRY/CATCH block

SAF_CATCH

Begin a TRY/CATCH block SAF_TRY_BEGIN

Begin a the CATCH part of a TRY/CATCH block SAF_CATCH

Begin a TRY/CATCH block SAF_TRY_BEGIN

End a TRY/CATCH block SAF_TRY_END

Begin a block of error handling code SAF_CATCH_ERR

Continued on next page

6 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Begin a block of error handling code for all

errors
SAF_CATCH_ALL

Boundary set tri-state SAF_BoundMode

Conveniently specify a boundary subset SAF_BOUNDARY

Conveniently specify an embedded boundary subset SAF_EMBEDBND

Initialize the built-in object registry _saf_gen_stdtypes

Built-in registry name SAF_REGISTRY_SAVE

Make a field handle a C automatic variable SAF_Field

Make a field template handle a C automatic variable SAF_FieldTmpl

Make a relation handle a C automatic variable SAF_Rel

Make a state handle a C automatic variable SAF_StateGrp

Make a state template handle a C automatic variable SAF_StateTmpl

Make a suite handle a C automatic variable SAF_Suite

Make a C-automatic array of cat handles SAF_Cat

Make a C-automatic array of set handles SAF_Set

Specify a callback for error conditions saf_setProps_ErrFunc

The rank of the calling process SAF_RANK

Trace SAF API calls and times SAF_TRACING

Declare a field as a candidate coordinate field saf_declare_coords

Get an attribute with a cat saf_get_cat_att

Put an attribute with a cat saf_put_cat_att

Make a C-automatic array of cat handles SAF_Cat

Begin a the CATCH part of a TRY/CATCH
block

SAF_CATCH

Find collection categories saf_find_categories

Associating a role with a collection category SAF_RoleConstants
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 7

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Declare a collection category saf_declare_category

Get a description of a collection category saf_describe_category

Query quantity characteristics saf_describe_quantity

Query unit characteristics saf_describe_unit

Check if any stat errors occured saf_getInfo_staterror

Check if path is a SAF database saf_getInfo_isSAFdatabase

Check if path is an HDF5 file saf_getInfo_isHDFfile

Control Assertion Checking SAF_ASSERT_DISABLE

Control Postcondition Checking SAF_POSTCOND_DISABLE

Control Precondition Checking SAF_PRECOND_DISABLE

Clobber an existing database on
open

saf_setProps_Clobber

Close a database saf_close_database

Begin a block of error handling code SAF_CATCH_ERR

Begin a block of error handling code for all errors SAF_CATCH_ALL

Return codes SAF_return_t

Error codes returned by the library SAF_error_t

Add members to a collection saf_extend_collection

Declare a collection saf_declare_collection

Describe a collection saf_describe_collection

Find collection categories saf_find_categories

Associating a role with a collection category SAF_RoleConstants

Declare a collection category saf_declare_category

Get a description of a collection category saf_describe_category

Declare a new collection role saf_declare_role
Continued on next page

8 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Find one collection role saf_find_one_role

Compare two collections saf_same_collections

Find collections saf_find_collections

Common algebraic types SAF_ALGTYPE

Specify MPI database communicator saf_setProps_DbComm

The size of the communicator SAF_SIZE

Set the MPI communicator for the library saf_setProps_LibComm

Compare two collections saf_same_collections

Find the parent of a component field _saf_find_parent_field

Field component interleave modes SAF_Interleave

Specify a callback for error conditions saf_setProps_ErrFunc

Conveniently specify a constant field SAF_CONSTANT

Update database contents saf_update_database

Control Assertion Checking SAF_ASSERT_DISABLE

Control Postcondition Checking SAF_POSTCOND_DISABLE

Control Precondition Checking SAF_PRECOND_DISABLE

Control Reporting of Error Mes-
sages

SAF_ERROR_REPORTING

Convenience function for finding a
quantity

saf_find_one_quantity

Convenience function for finding a
unit

saf_find_one_unit

Conveniently specify a boundary
subset

SAF_BOUNDARY

Conveniently specify a constant
field

SAF_CONSTANT

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 9

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Conveniently specify a
decomposition-centered field

SAF_DECOMP

Conveniently specify a node-
centered field

SAF_NODAL

Conveniently specify a typical sub-
set

SAF_COMMON

Conveniently specify a zone-
centered field

SAF_ZONAL

Conveniently specify an embedded
boundary subset

SAF_EMBEDBND

Conveniently specify an general
subset

SAF_GENERAL

Convert a single value _saf_convert

Declare a field as a candidate coordinate field saf_declare_coords

Find coordinate fields saf_find_coords

Find default coordinate fields saf_find_default_coords

Declare default coordinates of a given set saf_declare_default_coords

Copy a string _saf_strdup

Create a new database property list
with default values

saf_createProps_database

Create a new library property list
with default values

saf_createProps_lib

Create an memory-resident database saf_setProps_MemoryResident

Create or update a non-sharable at-
tribute

saf_put_attribute

Find alternate index specs by matching criteria saf_find_alternate_indexspecs

Find set by matching criteria saf_find_matching_sets

The quantity Current SAF_QCURRENT

Does field have data saf_data_has_been_written_to_field

Read topological relation data saf_read_topo_relation
Continued on next page

10 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Write topological relation data saf_write_topo_relation

Read the data for a field saf_read_field

Write the data for a field saf_write_field

Read the data for a subset relation saf_read_subset_relation

Queries whether data has been written saf_data_has_been_written_to_comp_field

Reuse data in a subset relation saf_use_written_subset_relation

Check if path is a SAF database saf_getInfo_isSAFdatabase

Close a database saf_close_database

Create an memory-resident database saf_setProps_MemoryResident

Open a database saf_open_database

Specify location of SAF’s standard types database SAF_REGISTRIES

Specify read-only database access saf_setProps_ReadOnly

Specify MPI database communicator saf_setProps_DbComm

Update database contents saf_update_database

Database information not available SAF_NOT_SET_DB

Clobber an existing database on open saf_setProps_Clobber

Free database property list saf_freeProps_database

Create a new database property list with default
values

saf_createProps_database

Get datatype and size for a field saf_get_count_and_type_for_field

Get datatype and size for a subset rela-
tion

saf_get_count_and_type_for_subset_relation

Get datatype and size for a topological
relation

saf_get_count_and_type_for_topo_relation

Determine if datatype is primitive _saf_is_primitive_type

Predefined scalar datatypes SAF_type_t
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 11

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Declare a collection saf_declare_collection

Declare a collection category saf_declare_category

Declare a field saf_declare_field

Declare a field as a candidate coor-
dinate field

saf_declare_coords

Declare a field template saf_declare_field_tmpl

Declare a new algebraic type saf_declare_algebraic

Declare a new basis type saf_declare_basis

Declare a new collection role saf_declare_role

Declare a new evaluation type saf_declare_evaluation

Declare a new object saf_declare_relrep

Declare a new quantity saf_declare_quantity

Declare a new unit saf_declare_unit

Declare a set saf_declare_set

Declare a state group saf_declare_state_group

Declare a state template saf_declare_state_tmpl

Declare a subset relation saf_declare_subset_relation

Declare a suite saf_declare_suite

Declare a topological relation saf_declare_topo_relation

Declare an Alternative Index Speci-
fication

saf_declare_alternate_indexspec

Declare default coordinates of a
given set

saf_declare_default_coords

The self decomposition of a set SAF_SELF

Decomposition tri-state SAF_DecompMode

Conveniently specify a decomposition-centered field SAF_DECOMP
Continued on next page

12 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Find default coordinate fields saf_find_default_coords

Declare default coordinates of a given set saf_declare_default_coords

Default properties SAF_DEFAULT_DBPROPS

Create a new database property list with default values saf_createProps_database

Create a new library property list with default values saf_createProps_lib

Divide a quantity into a quantity definition saf_divide_quantity

Divide a unit into a unit definition saf_divide_unit

Multiply a quantity into a quantity definition saf_multiply_quantity

Multiply a unit into a unit definition saf_multiply_unit

Describe a basis type saf_describe_basis

Describe a collection saf_describe_collection

Describe a role saf_describe_role

Describe an algebraic type saf_describe_algebraic

Describe an evaluation type saf_describe_evaluation

Describe an object saf_describe_relrep

Obtain a set description saf_describe_set

Get a description of a collection category saf_describe_category

Get a description of a field saf_describe_field

Get a description of a field template saf_describe_field_tmpl

Get a description of a state group saf_describe_state_group

Get a description of a state template saf_describe_state_tmpl

Get a description of a subset relation saf_describe_subset_relation

Get a description of a suite saf_describe_suite

Get a description of an alternate indexing
spec

saf_describe_alternate_indexspec

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 13

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Get description of topological relation saf_describe_topo_relation

Set the destination form of a field saf_target_field

Set the destination form of a subset relation saf_target_subset_relation

Set the destination form of a topological re-
lation

saf_target_topo_relation

Determine if a handle is a valid han-
dle

SAF_VALID

Determine if datatype is primitive _saf_is_primitive_type

Determine if two handles refer to the
same object

SAF_EQUIV

Topological dimensions SAF_TopoDim

Read an alternate index specs from disk saf_read_alternate_indexspec

Write an alternate index specs to disk saf_write_alternate_indexspec

Divide a quantity into a quantity
definition

saf_divide_quantity

Divide a unit into a unit definition saf_divide_unit

Does field have data saf_data_has_been_written_to_field

Conveniently specify an embedded boundary subset SAF_EMBEDBND

End a TRY/CATCH block SAF_TRY_END

Error codes returned by the library SAF_error_t

Specify a callback for error conditions saf_setProps_ErrFunc

Begin a block of error handling code SAF_CATCH_ERR

Begin a block of error handling code for all errors SAF_CATCH_ALL

Set the library error handling mode saf_setProps_ErrorMode

Set the error logging mode saf_setProps_ErrorLogging

Get stat error message saf_getInfo_errmsg

Continued on next page

14 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Control Reporting of Error Messages SAF_ERROR_REPORTING

Error return modes SAF_ErrMode

Return a pointer to an error string saf_error_str

Begin a block of error handling code for all errors SAF_CATCH_ALL

Check if any stat errors occured saf_getInfo_staterror

Declare a new evaluation type saf_declare_evaluation

Describe an evaluation type saf_describe_evaluation

Find one evaluation type saf_find_one_evaluation

Evaluation Types SAF_EvalConstants

Find evaluation types saf_find_evaluations

Exchange handles saf_allgather_handles

Exclusive OR operator SAF_XOR

Clobber an existing database on open saf_setProps_Clobber

Extendable set tri-state SAF_ExtendMode

Conveniently specify a constant field SAF_CONSTANT

Conveniently specify a decomposition-centered field SAF_DECOMP

Conveniently specify a node-centered field SAF_NODAL

Conveniently specify a zone-centered field SAF_ZONAL

Declare a field saf_declare_field

Declare a field as a candidate coordinate field saf_declare_coords

Find the parent of a component field _saf_find_parent_field

Get a description of a field saf_describe_field

Get an attribute from a field saf_get_field_att

Get datatype and size for a field saf_get_count_and_type_for_field

Put an attribute with a field saf_put_field_att
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 15

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Read the data for a field saf_read_field

Set the destination form of a field saf_target_field

Write the data for a field saf_write_field

Declare a field as a candidate coordinate field saf_declare_coords

Field component interleave modes SAF_Interleave

The null field handle SAF_NULL_FIELD

Make a field handle a C automatic variable SAF_Field

Does field have data saf_data_has_been_written_to_field

Is field stored on self saf_is_self_stored_field

Declare a field template saf_declare_field_tmpl

Get a description of a field template saf_describe_field_tmpl

Get an attribute with a field template saf_get_field_tmpl_att

Put an attribute with a field template saf_put_field_tmpl_att

The null field template handle SAF_NULL_FTMPL

Make a field template handle a C automatic
variable

SAF_FieldTmpl

Find field templates saf_find_field_tmpls

Find fields saf_find_fields

Find coordinate fields saf_find_coords

Find default coordinate fields saf_find_default_coords

Check if path is an HDF5 file saf_getInfo_isHDFfile

Specify registry file saf_setProps_Registry

Finalize access to the library saf_final

Find a state template saf_find_state_tmpl

Find algebraic types saf_find_algebraics
Continued on next page

16 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Find alternate index specs by match-
ing criteria

saf_find_alternate_indexspecs

Find bases saf_find_bases

Find collection categories saf_find_categories

Find collections saf_find_collections

Find coordinate fields saf_find_coords

Find default coordinate fields saf_find_default_coords

Find evaluation types saf_find_evaluations

Find field templates saf_find_field_tmpls

Find fields saf_find_fields

Set find modes SAF_FindSetMode

Find one algebraic type saf_find_one_algebraic

Find one basis type saf_find_one_basis

Find one collection role saf_find_one_role

Find one evaluation type saf_find_one_evaluation

Find one object saf_find_one_relrep

Find quantities saf_find_quantities

Find relation representation types saf_find_relreps

Find roles saf_find_roles

Find set by matching criteria saf_find_matching_sets

Find sets by traversing the subset in-
clusion lattice

saf_find_sets

Find state groups saf_find_state_groups

Find subset relations saf_find_subset_relations

Find suites saf_find_suites

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 17

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Find the not applicable unit saf_find_unit_not_applicable

Find the parent of a component field _saf_find_parent_field

Find topological relations saf_find_topo_relations

Find units saf_find_units

Convenience function for finding a quantity saf_find_one_quantity

Convenience function for finding a unit saf_find_one_unit

Set the destination form of a field saf_target_field

Set the destination form of a subset relation saf_target_subset_relation

Set the destination form of a topological relation saf_target_topo_relation

Free database property list saf_freeProps_database

Free library property list saf_freeProps_lib

Free SAF_PathInfo saf_freeInfo_path

Convenience function for finding a quantity saf_find_one_quantity

Convenience function for finding a unit saf_find_one_unit

Conveniently specify an general subset SAF_GENERAL

Get a description of a collection cat-
egory

saf_describe_category

Get a description of a field saf_describe_field

Get a description of a field template saf_describe_field_tmpl

Get a description of a state group saf_describe_state_group

Get a description of a state template saf_describe_state_tmpl

Get a description of a subset relation saf_describe_subset_relation

Get a description of a suite saf_describe_suite

Get a description of an alternate in-
dexing spec

saf_describe_alternate_indexspec

Continued on next page

18 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Get an attribute attached to a state
group

saf_get_state_grp_att

Get an attribute attached to a state
template

saf_get_state_tmpl_att

Get an attribute attached to a suite saf_get_suite_att

Get an attribute from a field saf_get_field_att

Get an attribute from a set saf_get_set_att

Get an attribute with a cat saf_get_cat_att

Get an attribute with a field template saf_get_field_tmpl_att

Get datatype and size for a field saf_get_count_and_type_for_field

Get datatype and size for a subset re-
lation

saf_get_count_and_type_for_subset_relation

Get datatype and size for a topolog-
ical relation

saf_get_count_and_type_for_topo_relation

Get description of topological rela-
tion

saf_describe_topo_relation

Get stat error message saf_getInfo_errmsg

Get the HDF5 version saf_getInfo_hdfversion

Get the MPI library version saf_getInfo_mpiversion

Get the SAF library version saf_getInfo_libversion

Declare default coordinates of a given set saf_declare_default_coords

Grab HDF5 I/O library saf_grab_hdf5

Attach an attribute to a state group saf_put_state_grp_att

Declare a state group saf_declare_state_group

Get a description of a state group saf_describe_state_group

Get an attribute attached to a state group saf_get_state_grp_att

The null state group handle SAF_NULL_STATE_GRP

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 19

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Find state groups saf_find_state_groups

Determine if a handle is a valid handle SAF_VALID

The null field handle SAF_NULL_FIELD

The null field template handle SAF_NULL_FTMPL

The null relation handle SAF_NULL_REL

The null set handle SAF_NULL_SET

The null state group handle SAF_NULL_STATE_GRP

The null state template handle SAF_NULL_STMPL

The null suite handle SAF_NULL_SUITE

The universe set handle SAF_UNIVERSE

Make a field handle a C automatic variable SAF_Field

Make a field template handle a C automatic variable SAF_FieldTmpl

Make a relation handle a C automatic variable SAF_Rel

Make a state handle a C automatic variable SAF_StateGrp

Make a state template handle a C automatic variable SAF_StateTmpl

Make a suite handle a C automatic variable SAF_Suite

Determine if a handle is a valid handle SAF_VALID

Exchange handles saf_allgather_handles

Make a C-automatic array of cat handles SAF_Cat

Make a C-automatic array of set handles SAF_Set

Determine if two handles refer to the same object SAF_EQUIV

Begin a block of error handling code SAF_CATCH_ERR

Begin a block of error handling code for all errors SAF_CATCH_ALL

Set the library error handling mode saf_setProps_ErrorMode

Queries whether data has been written saf_data_has_been_written_to_comp_field
Continued on next page

20 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Does field have data saf_data_has_been_written_to_field

Check if path is an HDF5 file saf_getInfo_isHDFfile

Grab HDF5 I/O library saf_grab_hdf5

Ungrab HDF5 I/O library saf_ungrab_hdf5

Get the HDF5 version saf_getInfo_hdfversion

Grab HDF5 I/O library saf_grab_hdf5

Ungrab HDF5 I/O library saf_ungrab_hdf5

Determine if a handle is a valid handle SAF_VALID

Check if any stat errors occured saf_getInfo_staterror

Determine if datatype is primitive _saf_is_primitive_type

Check if path is a SAF database saf_getInfo_isSAFdatabase

Check if path is an HDF5 file saf_getInfo_isHDFfile

Determine if two handles refer to the same ob-
ject

SAF_EQUIV

Not implemented SAF_NOT_IMPL

Find sets by traversing the subset inclusion lattice saf_find_sets

Subset inclusion lattice roles SAF_SilRole

Declare an Alternative Index Specification saf_declare_alternate_indexspec

Find alternate index specs by matching criteria saf_find_alternate_indexspecs

Read an alternate index specs from disk saf_read_alternate_indexspec

Write an alternate index specs to disk saf_write_alternate_indexspec

Indexing scheme SAF_IndexSchema

Indexing scheme SAF_FORDER

Indexing scheme SAF_CORDER

Indexing scheme SAF_1DC
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 21

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Indexing scheme SAF_NA_INDEXSPEC

Indexing scheme SAF_2DC

Indexing scheme SAF_3DC

Indexing scheme SAF_1DF

Indexing scheme SAF_2DF

Indexing scheme SAF_3DF

Get a description of an alternate indexing spec saf_describe_alternate_indexspec

Load information from the specified path saf_readInfo_path

Database information not available SAF_NOT_SET_DB

Initialize the built-in object registry _saf_gen_stdtypes

Initialize the library saf_init

Field component interleave modes SAF_Interleave

Divide a quantity into a quantity definition saf_divide_quantity

Multiply a quantity into a quantity definition saf_multiply_quantity

Divide a unit into a unit definition saf_divide_unit

Multiply a unit into a unit definition saf_multiply_unit

Check if path is a SAF database saf_getInfo_isSAFdatabase

Determine if a handle is a valid handle SAF_VALID

Check if path is an HDF5 file saf_getInfo_isHDFfile

Is field stored on self saf_is_self_stored_field

Determine if datatype is primitive _saf_is_primitive_type

Is topological relation stored on self saf_is_self_stored_topo_relation

Reserved attribute name keys SAF_ATT

Find sets by traversing the subset inclusion lattice saf_find_sets

Continued on next page

22 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Subset inclusion lattice roles SAF_SilRole

The quantity Length SAF_QLENGTH

Error codes returned by the library SAF_error_t

Finalize access to the library saf_final

Grab HDF5 I/O library saf_grab_hdf5

Initialize the library saf_init

Set the MPI communicator for the library saf_setProps_LibComm

Ungrab HDF5 I/O library saf_ungrab_hdf5

Set the library error handling mode saf_setProps_ErrorMode

Library properties SAF_DEFAULT_LIBPROPS

Free library property list saf_freeProps_lib

Create a new library property list with default val-
ues

saf_createProps_lib

Get the MPI library version saf_getInfo_mpiversion

Get the SAF library version saf_getInfo_libversion

The quantity Light SAF_QLIGHT

Free database property list saf_freeProps_database

Free library property list saf_freeProps_lib

Create a new database property list with default values saf_createProps_database

Create a new library property list with default values saf_createProps_lib

Load information from the specified
path

saf_readInfo_path

Specify location of SAF’s standard types
database

SAF_REGISTRIES

Apply a logarithmic scale to a unit saf_log_unit

Set the error logging mode saf_setProps_ErrorLogging

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 23

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Major version number SAF_VERSION_MAJOR

Make a C-automatic array of cat
handles

SAF_Cat

Make a C-automatic array of set
handles

SAF_Set

Make a field handle a C automatic
variable

SAF_Field

Make a field template handle a C au-
tomatic variable

SAF_FieldTmpl

Make a relation handle a C auto-
matic variable

SAF_Rel

Make a state handle a C automatic
variable

SAF_StateGrp

Make a state template handle a C au-
tomatic variable

SAF_StateTmpl

Make a suite handle a C automatic
variable

SAF_Suite

The quantity Mass SAF_QMASS

Find alternate index specs by matching criteria saf_find_alternate_indexspecs

Find set by matching criteria saf_find_matching_sets

More meaningful alias for
SAF_TOTALITY

SAF_WHOLE_FIELD

Associates a unit of measure with a specific quantity saf_quantify_unit

Add members to a collection saf_extend_collection

Create an memory-resident database saf_setProps_MemoryResident

Get stat error message saf_getInfo_errmsg

Control Reporting of Error Messages SAF_ERROR_REPORTING

Minor version number SAF_VERSION_MINOR

Set the error logging mode saf_setProps_ErrorLogging

Set the library error handling mode saf_setProps_ErrorMode
Continued on next page

24 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Top mode tri-state SAF_TopMode

Error return modes SAF_ErrMode

Field component interleave modes SAF_Interleave

Set find modes SAF_FindSetMode

String allocation modes SAF_StrMode

More meaningful alias for
SAF_TOTALITY

SAF_WHOLE_FIELD

Set the MPI communicator for the library saf_setProps_LibComm

Specify MPI database communicator saf_setProps_DbComm

Get the MPI library version saf_getInfo_mpiversion

Multiply a quantity into a quantity
definition

saf_multiply_quantity

Multiply a unit into a unit definition saf_multiply_unit

Built-in registry name SAF_REGISTRY_SAVE

Reserved attribute name keys SAF_ATT

An arbitrary named quantity SAF_QNAME

Declare a new algebraic type saf_declare_algebraic

Declare a new basis type saf_declare_basis

Declare a new collection role saf_declare_role

Create a new database property list with de-
fault values

saf_createProps_database

Declare a new evaluation type saf_declare_evaluation

Create a new library property list with de-
fault values

saf_createProps_lib

Declare a new object saf_declare_relrep

Declare a new quantity saf_declare_quantity

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 25

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Declare a new unit saf_declare_unit

Conveniently specify a node-centered field SAF_NODAL

Create or update a non-sharable attribute saf_put_attribute

Read a non-sharable attribute saf_get_attribute

Not applicable SAF_NOT_APPLICABLE_INT

Find the not applicable unit saf_find_unit_not_applicable

Database information not available SAF_NOT_SET_DB

Not implemented SAF_NOT_IMPL

NULL aliases SAF_VoidPtr

The null field handle SAF_NULL_FIELD

The null field template handle SAF_NULL_FTMPL

The null relation handle SAF_NULL_REL

The null set handle SAF_NULL_SET

The null state group handle SAF_NULL_STATE_GRP

The null state template handle SAF_NULL_STMPL

The null suite handle SAF_NULL_SUITE

Major version number SAF_VERSION_MAJOR

Minor version number SAF_VERSION_MINOR

Release number SAF_VERSION_RELEASE

Returns string representation of version number saf_version_string

Declare a new object saf_declare_relrep

Describe an object saf_describe_relrep

Determine if two handles refer to the same object SAF_EQUIV

Find one object saf_find_one_relrep

Initialize the built-in object registry _saf_gen_stdtypes
Continued on next page

26 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Obtain a set description saf_describe_set

Obtain permissions of path saf_getInfo_permissions

Check if any stat errors occured saf_getInfo_staterror

Turn off aborts saf_setProps_DontAbort

Translate unit by an offset saf_offset_unit

Clobber an existing database on open saf_setProps_Clobber

Is field stored on self saf_is_self_stored_field

Is topological relation stored on self saf_is_self_stored_topo_relation

Find one algebraic type saf_find_one_algebraic

Find one basis type saf_find_one_basis

Find one collection role saf_find_one_role

Find one evaluation type saf_find_one_evaluation

Find one object saf_find_one_relrep

Clobber an existing database on open saf_setProps_Clobber

Open a database saf_open_database

Exclusive OR operator SAF_XOR

Write out a state saf_write_state

Find the parent of a component field _saf_find_parent_field

Begin a the CATCH part of a TRY/CATCH block SAF_CATCH

Load information from the specified path saf_readInfo_path

Obtain permissions of path saf_getInfo_permissions

Check if path is a SAF database saf_getInfo_isSAFdatabase

Check if path is an HDF5 file saf_getInfo_isHDFfile

Obtain permissions of path saf_getInfo_permissions

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 27

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Return a pointer to an error string saf_error_str

Set the pool size for string return value al-
locations

saf_setProps_StrPoolSize

Control Postcondition Checking SAF_POSTCOND_DISABLE

Control Precondition Checking SAF_PRECOND_DISABLE

Predefined scalar datatypes SAF_type_t

Determine if datatype is primitive _saf_is_primitive_type

The rank of the calling process SAF_RANK

Default properties SAF_DEFAULT_DBPROPS

Library properties SAF_DEFAULT_LIBPROPS

Free database property list saf_freeProps_database

Free library property list saf_freeProps_lib

Create a new database property list with default values saf_createProps_database

Create a new library property list with default values saf_createProps_lib

Put an attribute to a set saf_put_set_att

Put an attribute with a cat saf_put_cat_att

Put an attribute with a field saf_put_field_att

Put an attribute with a field template saf_put_field_tmpl_att

Find quantities saf_find_quantities

An arbitrary named quantity SAF_QNAME

Associates a unit of measure with a specific quantity saf_quantify_unit

Convenience function for finding a quantity saf_find_one_quantity

Declare a new quantity saf_declare_quantity

The quantity Amount SAF_QAMOUNT

Query quantity characteristics saf_describe_quantity

Continued on next page

28 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
The quantity Current SAF_QCURRENT

Divide a quantity into a quantity definition saf_divide_quantity

Multiply a quantity into a quantity definition saf_multiply_quantity

Divide a quantity into a quantity definition saf_divide_quantity

Multiply a quantity into a quantity definition saf_multiply_quantity

The quantity Length SAF_QLENGTH

The quantity Light SAF_QLIGHT

The quantity Mass SAF_QMASS

The quantity Temperature SAF_QTEMP

The quantity Time SAF_QTIME

Queries whether data has been writ-
ten

saf_data_has_been_written_to_comp_field

Query quantity characteristics saf_describe_quantity

Query unit characteristics saf_describe_unit

The rank of the calling process SAF_RANK

Read a non-sharable attribute saf_get_attribute

Read an alternate index specs from
disk

saf_read_alternate_indexspec

Read the data for a field saf_read_field

Read the data for a subset relation saf_read_subset_relation

Read topological relation data saf_read_topo_relation

Specify read-only database access saf_setProps_ReadOnly

Determine if two handles refer to the same object SAF_EQUIV

Initialize the built-in object registry _saf_gen_stdtypes

Specify registry file saf_setProps_Registry

Built-in registry name SAF_REGISTRY_SAVE
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 29

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Declare a subset relation saf_declare_subset_relation

Declare a topological relation saf_declare_topo_relation

Get a description of a subset relation saf_describe_subset_relation

Get datatype and size for a subset relation saf_get_count_and_type_for_subset_relation

Get datatype and size for a topological relation saf_get_count_and_type_for_topo_relation

Get description of topological relation saf_describe_topo_relation

Read the data for a subset relation saf_read_subset_relation

Reuse data in a subset relation saf_use_written_subset_relation

Set the destination form of a subset relation saf_target_subset_relation

Set the destination form of a topological relation saf_target_topo_relation

Write a subset relation saf_write_subset_relation

Read topological relation data saf_read_topo_relation

Write topological relation data saf_write_topo_relation

The null relation handle SAF_NULL_REL

Make a relation handle a C automatic vari-
able

SAF_Rel

Relation representation types SAF_TopoRelRep

Find relation representation types saf_find_relreps

Subset relation representation types SAF_SubsetRelRep

Is topological relation stored on self saf_is_self_stored_topo_relation

Find subset relations saf_find_subset_relations

Find topological relations saf_find_topo_relations

Release number SAF_VERSION_RELEASE

Control Reporting of Error Messages SAF_ERROR_REPORTING

Returns string representation of version number saf_version_string
Continued on next page

30 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Find relation representation types saf_find_relreps

Relation representation types SAF_TopoRelRep

Subset relation representation types SAF_SubsetRelRep

Reserved attribute name keys SAF_ATT

Retrieve a state saf_read_state

Return a pointer to an error string saf_error_str

Return codes SAF_return_t

Error return modes SAF_ErrMode

Set the pool size for string return value allocations saf_setProps_StrPoolSize

Error codes returned by the library SAF_error_t

Returns string representation of ver-
sion number

saf_version_string

Reuse data in a subset relation saf_use_written_subset_relation

Declare a new collection role saf_declare_role

Describe a role saf_describe_role

Find one collection role saf_find_one_role

Associating a role with a collection category SAF_RoleConstants

Find roles saf_find_roles

Subset inclusion lattice roles SAF_SilRole

Trace SAF API calls and times SAF_TRACING

Check if path is a SAF database saf_getInfo_isSAFdatabase

Get the SAF library version saf_getInfo_libversion

Specify location of SAF’s standard types database SAF_REGISTRIES

Free SAF_PathInfo saf_freeInfo_path

More meaningful alias for SAF_TOTALITY SAF_WHOLE_FIELD
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 31

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Determine if two handles refer to the same object SAF_EQUIV

Predefined scalar datatypes SAF_type_t

Apply a logarithmic scale to a unit saf_log_unit

Indexing scheme SAF_IndexSchema

Indexing scheme SAF_FORDER

Indexing scheme SAF_CORDER

Indexing scheme SAF_1DC

Indexing scheme SAF_NA_INDEXSPEC

Indexing scheme SAF_2DC

Indexing scheme SAF_3DC

Indexing scheme SAF_1DF

Indexing scheme SAF_2DF

Indexing scheme SAF_3DF

Wildcards for searching SAF

Is field stored on self saf_is_self_stored_field

Is topological relation stored on self saf_is_self_stored_topo_relation

The self decomposition of a set SAF_SELF

Serial/Parallel-dependent variable SAF_PARALLEL_VAR

Declare a set saf_declare_set

Declare default coordinates of a given set saf_declare_default_coords

Get an attribute from a set saf_get_set_att

Put an attribute to a set saf_put_set_att

The self decomposition of a set SAF_SELF

Find set by matching criteria saf_find_matching_sets

Continued on next page

32 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Obtain a set description saf_describe_set

Set find modes SAF_FindSetMode

The null set handle SAF_NULL_SET

The universe set handle SAF_UNIVERSE

Make a C-automatic array of set handles SAF_Set

Set string allocation style saf_setProps_StrMode

Set the destination form of a field saf_target_field

Set the destination form of a subset
relation

saf_target_subset_relation

Set the destination form of a topo-
logical relation

saf_target_topo_relation

Set the error logging mode saf_setProps_ErrorLogging

Set the library error handling mode saf_setProps_ErrorMode

Set the MPI communicator for the
library

saf_setProps_LibComm

Set the pool size for string return
value allocations

saf_setProps_StrPoolSize

Boundary set tri-state SAF_BoundMode

Extendable set tri-state SAF_ExtendMode

Find sets by traversing the subset inclu-
sion lattice

saf_find_sets

Convert a single value _saf_convert

Array size SAF_NELMTS

Get datatype and size for a field saf_get_count_and_type_for_field

Get datatype and size for a subset relation saf_get_count_and_type_for_subset_relation

Get datatype and size for a topological relation saf_get_count_and_type_for_topo_relation

Set the pool size for string return value alloca-
tions

saf_setProps_StrPoolSize

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 33

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

The size of the communicator SAF_SIZE

Get a description of an alternate indexing spec saf_describe_alternate_indexspec

Associates a unit of measure with a specific quantity saf_quantify_unit

Declare an Alternative Index Specification saf_declare_alternate_indexspec

Load information from the specified path saf_readInfo_path

Conveniently specify a boundary subset SAF_BOUNDARY

Specify a callback for error condi-
tions

saf_setProps_ErrFunc

Conveniently specify a constant field SAF_CONSTANT

Conveniently specify a decomposition-centered
field

SAF_DECOMP

Conveniently specify a node-centered field SAF_NODAL

Conveniently specify a typical subset SAF_COMMON

Conveniently specify a zone-centered field SAF_ZONAL

Conveniently specify an embedded boundary sub-
set

SAF_EMBEDBND

Conveniently specify an general subset SAF_GENERAL

Specify location of SAF’s standard
types database

SAF_REGISTRIES

Specify MPI database communica-
tor

saf_setProps_DbComm

Specify read-only database access saf_setProps_ReadOnly

Specify registry file saf_setProps_Registry

Find alternate index specs by matching criteria saf_find_alternate_indexspecs

Read an alternate index specs from disk saf_read_alternate_indexspec

Write an alternate index specs to disk saf_write_alternate_indexspec

Standard tri-state values SAF_TriState
Continued on next page

34 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Specify location of SAF’s standard types database SAF_REGISTRIES

Get stat error message saf_getInfo_errmsg

Check if any stat errors occured saf_getInfo_staterror

Retrieve a state saf_read_state

Write out a state saf_write_state

Attach an attribute to a state group saf_put_state_grp_att

Declare a state group saf_declare_state_group

Get a description of a state group saf_describe_state_group

Get an attribute attached to a state group saf_get_state_grp_att

The null state group handle SAF_NULL_STATE_GRP

Find state groups saf_find_state_groups

Make a state handle a C automatic variable SAF_StateGrp

Attach an attribute to a state template saf_put_state_tmpl_att

Declare a state template saf_declare_state_tmpl

Find a state template saf_find_state_tmpl

Get a description of a state template saf_describe_state_tmpl

Get an attribute attached to a state template saf_get_state_tmpl_att

The null state template handle SAF_NULL_STMPL

Make a state template handle a C automatic
variable

SAF_StateTmpl

Is field stored on self saf_is_self_stored_field

Is topological relation stored on self saf_is_self_stored_topo_relation

Copy a string _saf_strdup

Return a pointer to an error string saf_error_str

String allocation modes SAF_StrMode
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 35

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Set string allocation style saf_setProps_StrMode

Returns string representation of version
number

saf_version_string

Set the pool size for string return value allocations saf_setProps_StrPoolSize

Set string allocation style saf_setProps_StrMode

Conveniently specify a boundary subset SAF_BOUNDARY

Conveniently specify a typical subset SAF_COMMON

Conveniently specify an embedded boundary subset SAF_EMBEDBND

Conveniently specify an general subset SAF_GENERAL

Find sets by traversing the subset inclusion lattice saf_find_sets

Subset inclusion lattice roles SAF_SilRole

Declare a subset relation saf_declare_subset_relation

Get a description of a subset relation saf_describe_subset_relation

Get datatype and size for a subset relation saf_get_count_and_type_for_subset_relation

Read the data for a subset relation saf_read_subset_relation

Reuse data in a subset relation saf_use_written_subset_relation

Set the destination form of a subset relation saf_target_subset_relation

Write a subset relation saf_write_subset_relation

Subset relation representation types SAF_SubsetRelRep

Find subset relations saf_find_subset_relations

Attach an attribute to a suite saf_put_suite_att

Declare a suite saf_declare_suite

Get a description of a suite saf_describe_suite

Get an attribute attached to a suite saf_get_suite_att

The null suite handle SAF_NULL_SUITE
Continued on next page

36 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Make a suite handle a C automatic variable SAF_Suite

Find suites saf_find_suites

Synchronization barrier SAF_BARRIER

The quantity Temperature SAF_QTEMP

Attach an attribute to a state template saf_put_state_tmpl_att

Declare a field template saf_declare_field_tmpl

Declare a state template saf_declare_state_tmpl

Find a state template saf_find_state_tmpl

Get a description of a field template saf_describe_field_tmpl

Get a description of a state template saf_describe_state_tmpl

Get an attribute attached to a state template saf_get_state_tmpl_att

Get an attribute with a field template saf_get_field_tmpl_att

Put an attribute with a field template saf_put_field_tmpl_att

The null field template handle SAF_NULL_FTMPL

The null state template handle SAF_NULL_STMPL

Make a field template handle a C automatic vari-
able

SAF_FieldTmpl

Make a state template handle a C automatic vari-
able

SAF_StateTmpl

Find field templates saf_find_field_tmpls

The quantity Time SAF_QTIME

Trace SAF API calls and times SAF_TRACING

Top mode tri-state SAF_TopMode

Topological dimensions SAF_TopoDim

Declare a topological relation saf_declare_topo_relation

Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 37

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Get datatype and size for a topological relation saf_get_count_and_type_for_topo_relation

Get description of topological relation saf_describe_topo_relation

Set the destination form of a topological relation saf_target_topo_relation

Read topological relation data saf_read_topo_relation

Write topological relation data saf_write_topo_relation

Is topological relation stored on self saf_is_self_stored_topo_relation

Find topological relations saf_find_topo_relations

Trace SAF API calls and times SAF_TRACING

Translate unit by an offset saf_offset_unit

Find sets by traversing the subset inclusion lat-
tice

saf_find_sets

Boundary set tri-state SAF_BoundMode

Decomposition tri-state SAF_DecompMode

Extendable set tri-state SAF_ExtendMode

Top mode tri-state SAF_TopMode

Standard tri-state values SAF_TriState

Begin a TRY/CATCH block SAF_TRY_BEGIN

Begin a the CATCH part of a TRY/CATCH block SAF_CATCH

End a TRY/CATCH block SAF_TRY_END

Turn off aborts saf_setProps_DontAbort

Compare two collections saf_same_collections

Determine if two handles refer to the same object SAF_EQUIV

Declare a new algebraic type saf_declare_algebraic

Declare a new basis type saf_declare_basis

Declare a new evaluation type saf_declare_evaluation

Continued on next page

38 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference
Describe a basis type saf_describe_basis

Describe an algebraic type saf_describe_algebraic

Describe an evaluation type saf_describe_evaluation

Find one algebraic type saf_find_one_algebraic

Find one basis type saf_find_one_basis

Find one evaluation type saf_find_one_evaluation

Basis types SAF_BasisConstants

Common algebraic types SAF_ALGTYPE

Evaluation Types SAF_EvalConstants

Find algebraic types saf_find_algebraics

Find evaluation types saf_find_evaluations

Find relation representation types saf_find_relreps

Relation representation types SAF_TopoRelRep

Subset relation representation types SAF_SubsetRelRep

Specify location of SAF’s standard types database SAF_REGISTRIES

Conveniently specify a typical subset SAF_COMMON

Ungrab HDF5 I/O library saf_ungrab_hdf5

Apply a logarithmic scale to a unit saf_log_unit

Convenience function for finding a unit saf_find_one_unit

Declare a new unit saf_declare_unit

Find the not applicable unit saf_find_unit_not_applicable

Translate unit by an offset saf_offset_unit

Query unit characteristics saf_describe_unit

Divide a unit into a unit definition saf_divide_unit

Multiply a unit into a unit definition saf_multiply_unit
Continued on next page

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 39

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Divide a unit into a unit definition saf_divide_unit

Multiply a unit into a unit definition saf_multiply_unit

Associates a unit of measure with a specific
quantity

saf_quantify_unit

Find units saf_find_units

The universe set handle SAF_UNIVERSE

Create or update a non-sharable attribute saf_put_attribute

Update database contents saf_update_database

Determine if a handle is a valid handle SAF_VALID

Convert a single value _saf_convert

Set the pool size for string return value allocations saf_setProps_StrPoolSize

Create a new database property list with default values saf_createProps_database

Create a new library property list with default values saf_createProps_lib

Standard tri-state values SAF_TriState

Make a field handle a C automatic variable SAF_Field

Make a field template handle a C automatic variable SAF_FieldTmpl

Make a relation handle a C automatic variable SAF_Rel

Make a state handle a C automatic variable SAF_StateGrp

Make a state template handle a C automatic variable SAF_StateTmpl

Make a suite handle a C automatic variable SAF_Suite

Serial/Parallel-dependent variable SAF_PARALLEL_VAR

Version-dependent variable SAF_VERSION_VAR

Get the HDF5 version saf_getInfo_hdfversion

Get the MPI library version saf_getInfo_mpiversion

Get the SAF library version saf_getInfo_libversion
Continued on next page

40 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.1 – continued from previous page
Concept Key Reference

Version Annotation SAF_VERSION_ANNOT

Major version number SAF_VERSION_MAJOR

Minor version number SAF_VERSION_MINOR

Returns string representation of version number saf_version_string

Version-dependent variable SAF_VERSION_VAR

Queries whether data has been written saf_data_has_been_written_to_comp_field

Wildcards for searching SAF

Write a subset relation saf_write_subset_relation

Write an alternate index specs to
disk

saf_write_alternate_indexspec

Write out a state saf_write_state

Write the data for a field saf_write_field

Write topological relation data saf_write_topo_relation

Queries whether data has been written saf_data_has_been_written_to_comp_field

Conveniently specify a zone-centered field SAF_ZONAL

Concept Index

Introduction

This is the Sets and Fields (SAF pronounced “safe”) Application Programming Interface (API) programmer’s reference
manual. This manual is organized into Chapters where each chapter covers a different, top-level, set of functions (e.g.
object and its supporting methods) SAF supports.

There is a decent introduction to the SAF data model in this paper, github.com/markcmiller86/SAF/blob/master/src/safapi/docs/miller001.pdf

Various API design ideas were taken from this paper, github.com/markcmiller86/SAF/blob/master/src/safapi/docs/necdc_2004_paper_30Nov04.pdf

SAF is designed first and foremost to support scalable I/O of shareable, scientific data.

The key words in this statement are scalable and shareable.

Scalable means that SAF is designed to operate with high performance from single processor, workstation class ma-
chines, to large scale, parallel computing platforms such as are in use in the ASCI program. In turn, this also demands
that SAF be portable across a variety of computing platforms. Currently, SAF operates in serial and parallel on Dec,
Sun, Linux, IBM-SP2, Intel TeraFlops, SGI-O2k (single box). SAF is also supported in serial on Windows. A
good measure of SAF’s performance and portability is derived from its use of industry standard software components
such as HDF5 (support.hdfgroup.org/HDF5/doc/index.html) and MPI (www.mpi-forum.org). However, scalable
I/O is just one of SAF’s primary goals. Making data shareable is another.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 41

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
http://github.com/markcmiller86/SAF/blob/master/src/safapi/docs/miller001.pdf
https://github.com/markcmiller86/SAF/blob/master/src/safapi/docs/necdc_2004_paper_30Nov04.pdf
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://support.hdfgroup.org/HDF5/doc/index.html
http://www.mpi-forum.org
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Shareable means that if one application uses SAF to write its data, other wholly independent applications can easily
read and interpret that data. Of course, it is not all that impressive if one application can simply read a bunch of
bytes that another has written. Thus, the key to understanding what shareable means is the and interpret part. SAF
is designed to make it easy for one scientific computing application to interpret another’s data. Even more so, SAF
is designed to enable this interpretation across a diverse and continually expanding gamut of scientific computing
applications. In a nutshell, SAF lays the foundation for very large scale integration of scientific software.

The organizations involved in the development of SAF have plenty of experience with integration on smaller scales
with products like netCDF, HDF, PATRAN, SEACAS, Silo and Exodus II. These technologies offer applications a
menu of objects; some data structures (e.g. array, list, tree) and/or some mesh objects (e.g. structured-mesh, ucd-
mesh, side-sets, etc.). For application developers who use these products, the act of sharing their data is one of
browsing the menu. If they are lucky, they will find an object that matches their data and use it. If they are unlucky,
they will have to modify their data to put it into a form that matches one of the objects on the menu.

Thus, former approaches to making shareable data suffer from either requiring all clients to use the same data structures
and/or objects to represent their data or by resulting in an ever expanding set of incrementally different data structures
and/or objects to support each client’s slightly different needs. The result is that these products can and have been
highly successful within a small group of applications who either. . .

a) buy into the small menu of objects they do support, or

b) don’t require support for very many new objects (e.g. changes to the supporting library), or

c) don’t expect very many other applications to understand their data

In other words, previous approaches have succeeded in integration on the small scale but hold little promise for
integration on the large scale.

The key to integration and sharing of data on the large scale is to find a small set of primitive, yet mathematically
meaningful, building blocks out of which descriptions for many different kinds of scientific data can be constructed.
In this approach, each new and slightly different kind of data requires the application of the same building blocks to
form a slightly different assembly. Since every assembly is just a different application of the same building blocks,
each is fully supported by existing software. In fact, every assembly of building blocks is simply a model for an
instance of some scientific data. This is precisely how SAF is designed to operate. For application developers using
SAF, the act of sharing their data is one of literally modeling their data; not browsing a menu. This modeling is
analogous to the user of a CAD/CAM tool when applying constructive solid geometry (CSG) primitives to build an
engineering model for some physical part. In a nutshell, the act of sharing data with SAF is one of scientific data
modeling.

This requires a revolution in the way scientific computing application developers think about their data. The details
of bits and bytes, arrays and lists are pushed to the background. These concepts are still essential but less so than the
modeling primitives used to characterize scientific data. These modeling primitives are firmly rooted in the mathemat-
ics underlying most, if not all, scientific computing applications. By and large, this means the model primitives will
embody the mathematical and physical notions of fields defined on base - spaces or sets.

The term field is used to describe any phenomenon that can be mathematically represented, at least locally, as a function
over some, often continuous, base-space or domain. The term base - space is used to describe an infinite point set,
often continuous, with a topological dimension over which fields are defined. Thus, SAF provides three key modeling
primitives; fields, sets, and relations between these entities. Fields may represent real physical phenomena such as
pressure, stress and velocity. Fields may be related to other fields by integral, derivative or algebraic equations. Fields
are defined on sets. Sets may represent real physical objects such parts in an assembly, materials and slide interfaces.
And, sets may be related to other sets by set-algebraic equations involving union, intersection and difference.

A full description of modeling principles upon which SAF is based is outside this scope of this programmer’s reference
manual. User quality tutorials of this material will be forthcoming as SAF evolves. However, the reader should pause
for a moment and confirm in his own mind just how general the notions of field and set are in describing scientific
data. The columns of an Excel spreadsheet are fields. A time history is a field. The coordinates of a mesh is a field. A
plot dump is a whole bunch of related fields. An image is a field. A video is a field. A load curve is a field. Likewise

42 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

for sets. An individual node or zone is a set. A processor domain is a set. An element block is a set. A slide line or
surface is a set. A part in an assembly is a set. And so on.

Understanding and applying set, field and relation primitives to model scientific data represents a revolutionary de-
parture from previous, menu based approaches. SAF represents a first cut at a portable, parallel, high performance
application programming interface for modeling scientific data. Over the course of development of SAF, the organi-
zations involved have seen the value in applying this technology in several directions. . .

a) A publish/subscribe scenario for exchanging data between scientific computing clients, in-situ.

b) End-user tools for performing set operations and restricting fields to subsets of the base space to take a closer
look at portions of tera-scale data.

c) Operators which transform data during exchange between clients such as changing the processor decomposition,
evaluation method, node-order over elements, units, precision, etc. on a field.

d) Data consistency checkers which confirm a given bunch of scientific data does indeed conform to the mathe-
matical and physical description that has been ascribed to it by its model. For example, that a volume or mass
fraction field is indeed between 0.0 and 1.0, everywhere in its base-space.

e) MPI-like parallel communication routines pitched in terms of sets and fields rather than data structures.

And many others.

While each of these areas shows promise, our first goal has been to demonstrate that we can apply this technology to
do the same job we previously achieved with mesh-object I/O libraries like Silo and Exodus II. In other words, our first
and foremost goal is to demonstrate that we can read and write shareable scientific data files with good performance.
Such a capability is fundamental to the success of any organization involved in scientific computing. If we cannot
demonstrate that, there is little point in trying to address these other areas of interest.

Environment

A number of environment variables affect the operation of SAF such as error detections and reporting as well as where
predefined types are obtained.

Members

Control Assertion Checking

SAF_ASSERT_DISABLE is a symbol defined in init.c.

Synopsis:

SAF_ASSERT_DISABLE

Description: There are three environment variables that control, independently, the level or pre-, post- and assert-
condition checking done by SAF. They are. . .

1 SAF_ASSERT_DISABLE

1 SAF_PRECOND_DISABLE

1 SAF_POSTCOND_DISABLE

These three environment variables control the level of assertion, pre-condition and post-condition checking, re-
spectively, that SAF does during execution. Each is a string valued environment variable with possible values
“none”, “high”, “medium”, and “all”. For example, a value of “none” for SAF__ASSERT_DISABLE means that

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 43

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

none of the assertion checking is disabled. A value of “high” means that all high cost assertions are disabled but
medium and low cost assertions are still enabled. A value “medium” means that all high and medium cost asser-
tions are disabled but low cost assertions are still enabled. A value of “all” means that all assertions are disabled.
Likewise, SAF__PRECOND_DISABLE controls pre-condition checking and SAF__POSTCOND_DISABLE controls
post-condition checking.

The cost of an assertion, pre-condition or post-condition is specified in terms relative to the SAF function in which
the condition is checked. This means that a simple test for a null pointer in a very simple SAF function, such as
saf_setProps_LibComm, is considered high cost while in a saf_declare_field it is considered low cost. This is so
because the test for a null pointer in saf_setProps_LibComm relative to the other work saf_setProps_LibComm does is
high cost while that same test in saf_declare_field is relatively low cost.

In addition to controlling SAF’s assertion, pre-condition and post-condition checking, these environment variables
also control similar checks that go on in the lower layers of SAF. These lower layers do not have high, medium and
low check costs. Instead, they can either be turned on or off. The checks are performed if SAF__ASSERT_DISABLE
is “none”, and not performed otherwise.

Assertion, pre-condition and post-condition checking has a marked effect on performance. To obtain maximum per-
formance, all checks should be turned off using

1 setenv SAF_ASSERT_DISABLE all
2 setenv SAF_PRECOND_DISABLE all
3 setenv SAF_POSTCOND_DISABLE all

or

1 env SAF_ASSERT_DISABLE=all \
2 SAF_PRECOND_DISABLE=all \
3 SAF_POSTCOND_DISABLE=all a.out ...

For each of these environment variables, if it does not exist, SAF will set the default values depending on whether
the library was compiled for production or development. For a production compile, the default values for all three
environment settings are “all” meaning that the error checking for assertion, pre-condition and post-condition checking
is set for maximal performance. For a development compile, the default setting for all three is “none” meaning it is set
for maximal error checking.

See Also:

• saf_declare_field: 16.12: Declare a field

• saf_setProps_LibComm: 5.7: Set the MPI communicator for the library

• Environment: Introduction for current chapter

Control Reporting of Error Messages

SAF_ERROR_REPORTING is a symbol defined in init.c.

Synopsis:

SAF_ERROR_REPORTING

Description: This is a string valued environment variable that may be set to one of the following values. . .

1 none

Means no error reporting. SAF does not print error messages. This is the default for a production compile but may be
overridden at anytime by use of this environment variable.

44 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

1 stderr

Means SAF sends its error messages to the stderr stream. This is the default for a serial, development compile. See
below for the default for a parallel, development compile. If this mode is selected in parallel, SAF will prepend each
message with the rank of the MPI task in the communicator used to initialize SAF (see saf_init) to each line of output
in this file.

1 file: /name/ // no white space

Where name is a file name, this means SAF will open a stream by this name and send its error messages to this stream.
In parallel, SAF will prepend the rank of the task in the communicator used to initialize SAF (see saf_init) to each line
of output to this file. However, the order of task’s output to this file is indeterminate.

1 procfile: /prefix/,/fmt/,/suffix/ // no white space

where prefix and suffix are parts of a name and fmt is a printf style integer format designation for including the task
number in the name. For example, in ‘procfile:saf_,%03d,.log”, the prefix is ‘saf_’, task number format designation
is ‘%03d’ and the suffix is ‘.log’. If this mode is selected in a serial run, the task number format designation will be
ignored. A minor issue with this form of error logging is that it generates one file for each task. If you have a 1,000
task run, you get 1000 files. However, it does keep each task’s outputs separate, unlike the preceding mode. However,
the following mode gets around this problem by generating only a single log file and forcing each proc to write to only
a given segment of the file.

See Also:

• saf_init: 4.3: Initialize the library

• Environment: Introduction for current chapter

Control Postcondition Checking

SAF_POSTCOND_DISABLE is a symbol defined in init.c.

Synopsis:

SAF_POSTCOND_DISABLE

Description: See SAF__ASSERT_DISABLE

See Also:

• Environment: Introduction for current chapter

Control Precondition Checking

SAF_PRECOND_DISABLE is a symbol defined in init.c.

Synopsis:

SAF_PRECOND_DISABLE

Description: See SAF__ASSERT_DISABLE

See Also:

• Environment: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 45

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Specify location of SAF’s standard types database

SAF_REGISTRIES is a symbol defined in init.c.

Synopsis:

SAF_REGISTRIES

Description: This is a string valued environment variable that holds colon (‘:’) separated list of pathnames files from
where SAF will obtain predefined type definitions. If this variable is not set, SAF will build an use a transient database
containing a minimal set of pre-defined types. In typical usage, this variable need not be set.

By default, SAF will generate a minimal, memory resident registry that is destroyed when saf is finalized. This
permits SAF to operate in such a way that it does not need to access some registry file on disk somewhere to properly
initialize. However, other, disk resident registry files can be opened if either the env. variable, SAF__REGISTRIES,
is set and/or the client has specified a specific registry with the initialization properties.

Files specified by the SAF__REGISTRIES env. variable are first in the list followed by those specified by the initial-
ization properties. In this way, if SAF__REGISTRIES is specified, the definitions of symbols there take precedence
over those that may also exist in the file(s) specified by the initialization properties.

If SAF__REGISTRIES is set to the string “implicit”, it will look for a file named Registry.saf in the usual places,
namely in the current working directory, then in the user’s home directory and finally in the SAF installation directory.

Errors will be reported for registries specified explicitly by environment variables and/or calls to
saf_SetProps_Registry, but not for the implicit locations. A warning will be issued if no registry can
be found at all.

Finally, if SAF__REGISTRIES is set to the string “none”, then no registries will be opened, not even the minimal,
memory resident one. If SAF__REGISTRIES is set to the string “default” then only the minimal registry will be
opened. That is, you can force SAF to ignore all registries specified by a client through the initialization properties by
setting SAF__REGISTRIES to “default”.

Note that the order in which filenames are specified is important. When SAF needs to look up a pre-defined datatype,
it searches its known registries in the order in which they were specified in SAF__REGISTRIES, then those specified
with saf_setProps_Registry. SAF returns the first matching referenced type.

See Also:

• Environment: Introduction for current chapter

Built-in registry name

SAF_REGISTRY_SAVE is a symbol defined in init.c.

Synopsis:

SAF_REGISTRY_SAVE

Description: Normally SAF will create a minimal object registry that exists only in memory. However, if this envi-
ronment variable is set to the name of a file, then SAF will save the built-in object registry in that file. This is intended
only to be used for debugging to make sure that the object registry file’s contents are what is expected.

See Also:

• Environment: Introduction for current chapter

46 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Trace SAF API calls and times

SAF_TRACING is a symbol defined in init.c.

Synopsis:

SAF_TRACING

Description: This is a string valued environment variable used to control API call tracing in SAF. It may be
set to any one of the values described below. Note that API call tracing is logged to the same file specified by
SAF__ERROR_REPORTING. However, if SAF__ERROR_REPORTING is set to “none” and SAF__TRACING is
not also “none”, SAF will log its API tracing to stderr. Currently, SAF only logs entrances to SAF API calls, not exits.

Note: Since the bulk of SAF’s API is collective, only processor 0 actually prints any trace information.

1 none

This is the default. It means that no API tracing will be generated.

1 times

This setting will record the cumulative amount of time spent in saf_read_xxx calls and saf_write_xxx calls
as compared to the total time between calls to saf_init and saf_final. The times recorded are wall clock seconds.
Entrances to functions WILL NOT be reported. However, during saf_final, the cumulative timers for time spent in
reads and writes will be reported.

1 public

Public API calls will be logged to whatever file SAF is also reporting errors to.

1 public,times

Same as “public” but SAF will also output wall clock times since the last API call was entered. SAF will report the
delta since the last call and the absolute time, starting from 0. The times reported are WALL CLOCK seconds, not CPU
seconds. Thus, if there are other activities causing SAF to run more slowly then it will be reflected in the times SAF
reports.

1 public,private

Both public and private API calls are logged.

1 public,private,times

Both public and private API calls are logged along with timing information.

Finally, if SAF__TRACING is set to a valid value other than “none”, SAF will also invoke HDF5’s tracing facilities.
However, HDF5’s tracing facilities WILL NOT take effect unless the environment var H5_DEBUG is also defined
in the environment. Thus, HDF5’s tracing can be turned on/off separately by setting or unsetting the H5_DEBUG
environment variable.

See Also:

• saf_final: 4.2: Finalize access to the library

• saf_init: 4.3: Initialize the library

• Environment: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 47

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Error Handling

SAF can be used either in an exception-catching programming paradigm or test the return code program-
ming paradigm. SAF will either throw exceptions or return error codes depending on a library property (see
saf_setProps_ErrorMode).

See *Environment* section where environment variables affecting error checking, etc. are discussed.

In addition, the client can control if and how error messages are reported and whether certain kinds of errors are
detected. In every function, SAF does work to detect problematic conditions. However, the cost of this detection work
is weighted relative to the real work of the function using a low, medium and high weighting scheme.

There are several macros available to use in an exception handling programming style rather than a test the return
value style. The basic structure of an exception handling style is. . .

1 SAF_TRY_BEGIN { // begin an exception/catch block
2 ... // put your saf calls here
3 } SAF_CATCH { // begin the catch block
4 // catch a particular error
5 SAF_CATCH_ERR(SAF_WRITE_ERROR) {
6 ... // specific error handling here
7 }
8 SAF_CATCH_ALL { // catch any error here
9 ... // generic error handling here

10 }
11 } SAF_TRY_END; // end the exception/catch block

Members

Begin a the CATCH part of a TRY/CATCH block

SAF_CATCH is a symbol defined in saf.h.

Synopsis:

SAF_CATCH

Description: Use this macro to demarcate the beginning of the error catching portion of a TRY/CATCH block

See Also:

• Error Handling: Introduction for current chapter

Begin a block of error handling code for all errors

SAF_CATCH_ALL is a symbol defined in saf.h.

Synopsis:

SAF_CATCH_ALL

Description: Use this macro to demarcate the beginning of a block of code that catches all errors in the error catching
portion of a TRY/CATCH block

See Also:

• Error Handling: Introduction for current chapter

48 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Begin a block of error handling code

SAF_CATCH_ERR is a macro defined in saf.h.

Synopsis:

SAF_CATCH_ERR(err)

Description: Use this macro to demarcate the beginning of a block of code that catches a specific error, err, in the
error catching portion of a TRY/CATCH block

Issues: I am not sure I have confirmed that the catching does, in fact, fall through from a specific catch to a next
specific catch or to the ALL case?

If we changed the SAF__CATCH_ERR macro to test the bit(s) of the argument, rather than equality we’d be able to
catch several specific errors in that block.

See Also:

• Error Handling: Introduction for current chapter

Begin a TRY/CATCH block

SAF_TRY_BEGIN is a symbol defined in saf.h.

Synopsis:

SAF_TRY_BEGIN

Description: Use this macro to demarcate the beginning of a block of code in which exceptions shall be caught.

Issues: We should be clear about what happens in this block if the library properties are set to
SAF__ERRMODE_RETURN rather than SAF__ERRMODE_THROW.

Should we add code here to check to make sure saf_init is called first. I think that would make some sense.

See Also:

• saf_init: 4.3: Initialize the library

• Error Handling: Introduction for current chapter

End a TRY/CATCH block

SAF_TRY_END is a symbol defined in saf.h.

Synopsis:

SAF_TRY_END

Description: Use this macro to end a TRY/CATCH block

See Also:

• Error Handling: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 49

SAF User Manual, Release 2.0.3

Error codes returned by the library

SAF_error_t is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_FATAL_ERROR: Any fatal error.

SAF_MEMORY_ERROR: A memory-related error.

SAF_FILE_ERROR: File-related errors.

SAF_CONTEXT_ERROR: Context errors.

SAF_LOOKUP_ERROR: Name lookup errors.

SAF_MAPPING_ERROR: Mapping errors.

SAF_WRITE_ERROR: File write errors.

SAF_DEBUG_ERROR: Debugging messages.

SAF_CONSTRAINT_ERROR: Failed constraints.

SAF_PARAMETER_ERROR: Function parameter errors.

SAF_COMMUNICATION_ERROR: MPI-related errors.

SAF_READ_ERROR: File read errors.

SAF_NOTIMPL_ERROR: Functionality has not been implemented.

SAF_BADHNDL_ERROR: Object handle errors.

SAF_MISC_ERROR: Miscellaneous errors.

SAF_SIZE_ERROR: Size-related errors.

SAF_PMODE_ERROR: Errors in the parallel mode argument to a function.

SAF_ASSERTION_ERROR: Failed assertions.

SAF_PRECONDITION_ERROR: Failed preconditions.

SAF_POSTCONDITION_ERROR: Failed postconditions.

SAF_GENERIC_ERROR: Generic errors.

SAF_SSLIB_ERROR: SSlib related errors

Description: These C preprocessor symbols define an integer bitmask where each bit represents an error condition.

See Also:

• Error Handling: Introduction for current chapter

Return a pointer to an error string

saf_error_str is a function defined in error.c.

Synopsis:

char * saf_error_str(void)

Description: saf_error_str returns a pointer to a string containing the most recent error message.

See Also:

50 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• Error Handling: Introduction for current chapter

Library Initialization

To interact with SAF, the client must call saf_init. To end interaction with SAF, the client must call saf_final.

In parallel, SAF will not call MPI_Init or MPI_Finalize on behalf of the client. It is the client’s responsibility
to initialize and finalize MPI. MPI should be initialized before calling saf_init and finalized after calling saf_final.

The only SAF functions that can be called outside of an enclosing saf_init/saf_final pair are functions to create and set
library properties (see *Library Properties*).

SAF provides a link-time library and include file consistency check that will generate an undefined reference link-time
error for a symbol whose name is of the form “SAF__version_X_Y_Z”, if the library and include files are not
consistent.

Members

Initialize the built-in object registry

_saf_gen_stdtypes is a function defined in init.c.

Synopsis:

static herr_t _saf_gen_stdtypes(ss_file_t *stdtypes)

Description: The built-in object registry is a SAF file that contains definitions for objects that are frequently used.
This function also caches some of those objects in global variables.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library communicator.

Issues: Since other files probably point into the built-in registry and they do so by specifying a table row number, we
have to be sure that we always create the built-in registry the same way. It is important that we don’t move objects
around in the tables over the life of the file–only add new objects to the end of the table.

See Also:

• Library Initialization: Introduction for current chapter

Finalize access to the library

saf_final is a function defined in init.c.

Synopsis:

void saf_final(void)

Description: A call to saf_final terminates the client’s interaction with the SAF library. Any open databases and
supplemental files are closed and all memory allocated by the library is freed. Calling this function when the library
is already in a finalized state has no effect. This function should not be called before the library has been initialized.

This call is mainly just a wrapper for a call to _saf_final so that we can distinguish between a situation in which
saf_final is called by exit and one in which the client made the call explicitly.

Parallel Notes: This function must be called collectively across all processes in the library’s communicator, which
was set in the saf_init call. Furthermore, the client should not call MPI_Finalize prior to calling saf_final.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 51

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

SAF does try to detect this condition and report its occurrence before aborting. However, on some platforms, this is
simply not possible and the client might silently hang with no indication as to the cause.

See Also:

• saf_init: 4.3: Initialize the library

• Library Initialization: Introduction for current chapter

Initialize the library

saf_init is a macro defined in SAFinit.h.

Synopsis:

saf_init(PROPERTIES)

Description: The saf_init function must be called by the client to initialize the client’s interaction with the library
and should be called before any other SAF-API function except functions that set the properties to be passed in the
saf_init call.

Calling saf_initwhen the library is initialized has absolutely no effect, even when a new, different list of properties
is specified.

The counterpart of saf_init is saf_final, which releases all resources held by the library. The saf_init function
must be called after saf_final if the client desires to interact with the library again.

Since all SAF clients are required to call saf_init, we’ve chosen to wrap that function in a macro which also
makes a reference to a global variable whose name is derived from the SAF version number. This variable is declared
in the SAF library so that if an application is compiled with SAF header files which have a different version than the
SAF library a link-time error will result. A version mismatch will result in an error similar to undefined reference to
‘‘SAF__version_1_4_0‘’ from the linker.

Return Value: The constant SAF__SUCCESS is returned for success; errors are returned as other values or by
exception, depending on the setting of the error handling property in PROPERTIES (the default is to return an error
number).

Parallel Notes: In parallel, saf_init is collective and must be called by all processes in the library’s communicator,
which is MPI_COMM_WORLD by default. All processes must initialize the library with the same property values,
although each may pass its own PROPERTIES argument.

If a new communicator is specified in the PROPERTIES argument then it will become the communicator for any
database which doesn’t override this communicator. It is the maximal communicator in the sense that no database can
be opened on a set of processors which is not a subset of those in the communicator declared in the properties passed
here.

Issues: Verify that the set of processors which must participate in this call is either MPI_COMM_WORLD or the com-
municator passed in the PROPERTIES.

We might want to communicate to confirm that all procs pass the same properties.

See the private function, _saf_init, for the real implementation of this function

Calling saf_init after saf_final is currently not supported.

See Also:

• saf_final: 4.2: Finalize access to the library

• Library Initialization: Introduction for current chapter

52 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Library Properties

There are a number of properties that affect the behavior of the library. For a general description of how properties are
used (See *Properties*).

The functions to set library properties are the only functions that may be called prior to calling saf_init.

Members

Create a new library property list with default values

saf_createProps_lib is a function defined in libprops.c.

Synopsis:

SAF_LibProps * saf_createProps_lib(void)

Description: This function creates a library property list which can be passed to the saf_init function. All properties
in this list are set to their default values. . .

1 ErrFunc = NULL;

1 ErrMsgMode = <ignored>;

1 ErrLoggingMode = none;

1 ErrorMode = SAF_ERRMODE_RETURN;

1 LibComm = MPI_COMM_WORLD;

1 StrMode = SAF_STRMODE_LIB;

1 StrPoolSize = 4096;

Return Value: A handle to a new library properties list initialized to default values. NULL on failure or an exception
is thrown depending on the error handling library property currently in effect (See *Properties*).

Parallel Notes: This function must be called collectively by all processors in MPI_COMM_WORLD.

Issues: Since this function is called before saf_init, the only communicator we can use to work correctly is
MPI_COMM_WORLD. However, it we allowed the client to pass a communicator here, then we could avoid that.

See Also:

• saf_init: 4.3: Initialize the library

• Library Properties: Introduction for current chapter

Free library property list

saf_freeProps_lib is a function defined in libprops.c.

Synopsis:

SAF_LibProps * saf_freeProps_lib(SAF_LibProps *properties)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 53

SAF User Manual, Release 2.0.3

Description: Releases resources inside the library property list and frees the property list that was allocated in
saf_createProps_lib.

Return Value: Always returns null.

Parallel Notes: Independent

Issues: Releasing the resources used by the property list was never implemented and so is not implemented here yet
either.

See Also:

• saf_createProps_lib: 5.1: Create a new library property list with default values

• Library Properties: Introduction for current chapter

Turn off aborts

saf_setProps_DontAbort is a function defined in libprops.c.

Synopsis:

int saf_setProps_DontAbort(SAF_LibProps *properties)

Formal Arguments:

• properties: The library property list which will be modified by this function

Description: In certain cases, the library will abort when it encounters an error condition. This function turns that
behavior off.

Preconditions:

• properties must be a valid library properties handle. (low-cost)

Parallel Notes: This function can be called independently. Nonetheless, properties passed to saf_init must be consis-
tent on all processors.

See Also:

• Library Properties: Introduction for current chapter

Specify a callback for error conditions

saf_setProps_ErrFunc is a function defined in libprops.c.

Synopsis:

int saf_setProps_ErrFunc(SAF_LibProps *properties, SAF_ErrFunc func)

Formal Arguments:

• properties: The library property list which will be modified by this function (See *Properties*).

• func: The callback to invoke when an error occurs.

Description: The specified function (or no function if func is the null pointer) will be called when the library is
recovering from an error condition. The default is that no callback is invoked.

Preconditions:

• properties must be a valid library properties handle. (low-cost)

54 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Not implemented yet (always returns SAF__NOTIMPL_ERROR).

See Also:

• Library Properties: Introduction for current chapter

Set the error logging mode

saf_setProps_ErrorLogging is a function defined in libprops.c.

Synopsis:

int saf_setProps_ErrorLogging(SAF_LibProps *properties, const char *mode)

Formal Arguments:

• properties: The library property list which will be modified by this function (See *Properties*).

• mode: The error logging mode.

Description: This library property controls how the library reports errors. See section on environment variables where
the environment variable SAF__ERROR_REPORTING is described.

Preconditions:

• properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Library Properties: Introduction for current chapter

Set the library error handling mode

saf_setProps_ErrorMode is a function defined in libprops.c.

Synopsis:

int saf_setProps_ErrorMode(SAF_LibProps *properties, SAF_ErrMode mode)

Formal Arguments:

• properties: The library property list which will be modified by this function (See *Properties*).

• mode: The new error handling mode. Valid values are SAF__ERRMODE_RETURN (the default) and
SAF__ERRMODE_THROW.

Description: The library normally handles error conditions by causing the erring function to return a non-zero error
number. However, the error mode can be set to SAF__ERRMODE_THROW which causes the erring function to throw
an exception instead.

Preconditions:

• properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 55

SAF User Manual, Release 2.0.3

Known Bugs: This function sometimes returns an error instead of throwing an exception when the library error mode
is SAF__ERRMODE_THROW.

See Also:

• Library Properties: Introduction for current chapter

Set the MPI communicator for the library

saf_setProps_LibComm is a function defined in libprops.c.

Synopsis:

int saf_setProps_LibComm(SAF_LibProps *properties, MPI_Comm communicator)

Formal Arguments:

• properties: The library property list which will be modified by this function (See *Properties*).

• communicator: The new MPI communicator.

Description: This function sets the MPI communicator in the specified library property list to communicator
(the default is MPI_COMM_WORLD). After this property list is used to initialize the library by calling saf_init, it
will become the communicator for all collective calls. However, a database can override this communicator in the
saf_open_database call.

Preconditions:

• properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently. It is not defined in a non-parallel version of the library.

Issues: Should this function even be defined if the library is not compiled for parallel. My reasoning is that it would
only be called if the client is compiled for parallel and therefore it only makes sense to link the application if the
SAF-API is also compiled for parallel. Getting a link error is probably better than a runtime error for two reasons: the
error comes earlier (what if the application did a day of number crunching before trying I/O), and we can guarantee
that it’s an error (what if the client failed to check return values).

Known Bugs: This function sometimes returns an error instead of throwing an exception when the library error mode
is SAF__ERRMODE_THROW.

See Also:

• saf_init: 4.3: Initialize the library

• saf_open_database: 7.3: Open a database

• Library Properties: Introduction for current chapter

Specify registry file

saf_setProps_Registry is a function defined in libprops.c.

Synopsis:

int saf_setProps_Registry(SAF_LibProps *properties, const char *name)

Formal Arguments:

• properties: Library properties (See *Properties*)

56 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• name: Name of object registry file

Description: The registry consists of one or more SAF databases which will be consulted when an object query cannot
be satisfied from the primary database. For instance, if the client performed a saf_find_one_unit to obtain a handle for
something called “millimeter” and the find operation could not find any matching definition in the specified database,
then each SAF registry database will be queried until a definition can be found or all registered registry files have been
exhausted.

The library consults registries in the following order: First all files specified with the SAF__REGISTRIES environ-
ment variable (if the variable is set to the word none’ then no registries are consulted). The environment variable
can specify multiple registries by separating them from one another with colons. Second, all files registered with
‘‘saf_setProps_Registry‘ are searched in the order they were specified. Third, a file by the name of Registry.saf
in the current working directory, then the home directory (as specified by the environment variable `HOME’). Last, SAF
will check for a file named Registry.saf in the data installation directory specified during the saf configuration
with the –datadir’ switch (defaults to ‘/usr/local/share‘‘).

Preconditions:

• properties must be a valid library properties handle. (low-cost)

• name is required to be non-empty. (low-cost)

Return Value: A non-negative value on success. Otherwise this function either returns a negative error number or
throws an exception, depending on the value of the library’s error handling property.

Issues: The library does not attempt to open the registry file until a database is opened. Therefore, specifying an
invalid file name here will not result in an error until the call to saf_open_database is made.

See Also:

• saf_find_one_unit: 21.4: Convenience function for finding a unit

• saf_open_database: 7.3: Open a database

• Library Properties: Introduction for current chapter

Set string allocation style

saf_setProps_StrMode is a function defined in libprops.c.

Synopsis:

int saf_setProps_StrMode(SAF_LibProps *properties, SAF_StrMode mode)

Formal Arguments:

• properties: The library property list which will be modified by this function (See *Properties*).

• mode: The string allocation mode, one of SAF__STRMODE_LIB, SAF__STRMODE_CLIENT, or
SAF__STRMODE_POOL.

Description: By default, the library allocates memory for returned strings and the client is expected to free that
memory when it is no longer needed. However, by calling saf_setProps_StrMode the client can set li-
brary properties which change this mode of operation. Possible values are SAF__STRMODE_LIB, the default;
SAF__STRMODE_CLIENT, which means that the client will always allocate space for the string return value (and
free it also); and SAF__STRMODE_POOL, which means that the library will allocate space for the string return values
from a recirculating pool, freeing the memory which has been least recently allocated. The saf_setProps_StrPoolSize
function can be used to change the default size of the pool. (See *Returned Strings*).

Preconditions:

• properties must be a valid library properties handle. (low-cost)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 57

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

See Also:

• saf_setProps_StrPoolSize: 5.10: Set the pool size for string return value allocations

• Library Properties: Introduction for current chapter

Set the pool size for string return value allocations

saf_setProps_StrPoolSize is a function defined in libprops.c.

Synopsis:

int saf_setProps_StrPoolSize(SAF_LibProps *properties, int size)

Formal Arguments:

• properties: The library property list which will be modified by this function (See *Properties*).

• size: The new pool size.

Description: If the library string mode property is SAF__STRMODE_POOL then string return values are allocated
by the library from a pool with some number of entries (4096 by default). When all entries of the pool have been
allocated for return values then the library begins freeing the least recently allocated entry.

Preconditions:

• properties must be a valid library properties handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

Known Bugs: This function sometimes returns an error instead of throwing an exception when the library error mode
is SAF__ERRMODE_THROW.

The pool and its entries are not freed by saf_final.

See Also:

• saf_final: 4.2: Finalize access to the library

• Library Properties: Introduction for current chapter

Path Info

These functions are designed to permit a SAF client to obtain information about a named file without actually requiring
the client to succesfully open the file with a call to saf_open_database. This is particularly useful for clients that need
to be responsive to different versions of SAF databases.

All the functions in this part of the interface return information about the file identified in the saf_readInfo_path call
and how that file was generated. The typical usage of these functions is to first obtain information about the given file
with a call to saf_readInfo_path. Then, use the various query functions here to obtain specific information about the
file name (path) passed into saf_readInfo_path and finally to free up any resources with a call to saf_freeInfo_path.

58 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Members

Free SAF_PathInfo

saf_freeInfo_path is a function defined in info.c.

Synopsis:

void saf_freeInfo_path(SAF_PathInfo info)

Formal Arguments:

• info: a SAF__PathInfo object obtained from a saf_readInfo_path call.

Description: This function is used to free a SAF__PathInfo object.

Preconditions:

• info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Get stat error message

saf_getInfo_errmsg is a function defined in info.c.

Synopsis:

const char * saf_getInfo_errmsg(const SAF_PathInfo info)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns error message associated with any stat errors on the path specified in
saf_getInfo_path. Caller should not free the returned string.

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Get the HDF5 version

saf_getInfo_hdfversion is a function defined in info.c.

Synopsis:

void saf_getInfo_hdfversion(const SAF_PathInfo info, int *major, int *minor, int *patch, char *an-
not)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 59

SAF User Manual, Release 2.0.3

• major: [OUT] major version number. Ignored if NULL.

• minor: [OUT] minor version number. Ignored if NULL.

• patch: [OUT] patch (aka “release”) version number. Ignored if NULL.

• annot: [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL.

Description: This function is used to obtain HDF5 library version information from a given path queried with
saf_getInfo_path.

Preconditions:

• info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Check if path is an HDF5 file

saf_getInfo_isHDFfile is a function defined in info.c.

Synopsis:

int saf_getInfo_isHDFfile(const SAF_PathInfo info)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns true if the path queried with saf_getInfo_path is an HDF5 file. That is, if
H5Fopen can succeed on it.

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Check if path is a SAF database

saf_getInfo_isSAFdatabase is a function defined in info.c.

Synopsis:

int saf_getInfo_isSAFdatabase(const SAF_PathInfo info)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns true if the path queried with saf_getInfo_path is a SAF database (of any
version).

Parallel Notes: Independent semantics only

See Also:

60 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Get the SAF library version

saf_getInfo_libversion is a function defined in info.c.

Synopsis:

void saf_getInfo_libversion(const SAF_PathInfo info, int *major, int *minor, int *patch, char *an-
not)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

• major: [OUT] major version number. Ignored if NULL.

• minor: [OUT] minor version number. Ignored if NULL.

• patch: [OUT] patch (aka “release”) version number. Ignored if NULL.

• annot: [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL.

Description: This function is used to obtain SAF library version information from a given path queried with
saf_getInfo_path.

Preconditions:

• info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Get the MPI library version

saf_getInfo_mpiversion is a function defined in info.c.

Synopsis:

void saf_getInfo_mpiversion(const SAF_PathInfo info, int *major, int *minor, int *patch, char *an-
not)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

• major: [OUT] major version number. Ignored if NULL.

• minor: [OUT] minor version number. Ignored if NULL.

• patch: [OUT] patch (aka “release”) version number. Ignored if NULL.

• annot: [OUT] annotation string of at most 8 chars including null. Caller allocates. Ignored if NULL.

Description: This function is used to obtain MPI library version information from a given path queried with
saf_getInfo_path.

Preconditions:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 61

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• info must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Obtain permissions of path

saf_getInfo_permissions is a function defined in info.c.

Synopsis:

int saf_getInfo_permissions(const SAF_PathInfo info)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns the permissions of the path queried with saf_getInfo_path.

Parallel Notes: Independent semantics only

See Also:

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Check if any stat errors occured

saf_getInfo_staterror is a function defined in info.c.

Synopsis:

int saf_getInfo_staterror(const SAF_PathInfo info)

Formal Arguments:

• info: [IN] database info object obtained from a saf_readInfo_path call.

Description: This function returns true if any errors occured stating the path specified in saf_readInfo_path.

Parallel Notes: Independent semantics only

See Also:

• saf_getInfo_errmsg: 6.2: Get stat error message

• saf_readInfo_path: 6.10: Load information from the specified path

• Path Info: Introduction for current chapter

Load information from the specified path

saf_readInfo_path is a function defined in info.c.

Synopsis:

SAF_PathInfo saf_readInfo_path(const char *path, int independent)

62 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Formal Arguments:

• path: [IN] path of a file to get the info for

• independent: [IN] A flag for independent operation. If non-zero, perform the work and return the results
only on the calling processor. Otherwise, this function must be called collectively by all processors in the
communicator used to init the SAF library. In other words, call this function from one processor with a non-zero
value for this argument or call it an all processors with a zero argument on all processors. Note also that if this
call is made independently, then all succeeding calls involving the returned SAF__PathInfo object must be
made independently and by the same processor.

Description: This function is used to query a file in the filesystem to obtain information about it. The information is
returned in the SAF__PathInfo object. Once this object is obtained, one can query a number of things about the
database using various query functions. Once you are done, remember to free the resources with saf_freeInfo_path.

Note that any path, except NULL, is acceptable to pass here. This function will obtain as much information about the
specified path as possible. If the path either does not exist or the user does not have permission to read it, that fact
can be obtained from saf_getInfo_permissions. Likewise, if the path does exist, is readable and is a SAF database,
the particular version information, etc. can be obtained from functions like saf_getInfo_libversion, etc. A variety of
failure modes are detectable by calling various functions in this part of the interface to learn about the kind of file to
which path refers.

Preconditions:

• Path must be non-NULL. (low-cost)

Parallel Notes: Independent semantics only

See Also:

• saf_freeInfo_path: 6.1: Free SAF_PathInfo

• saf_getInfo_libversion: 6.6: Get the SAF library version

• saf_getInfo_permissions: 6.8: Obtain permissions of path

• Path Info: Introduction for current chapter

Databases

A database is an abstraction used to represent the container in which all data that is part of a common, aggregate
collection is stored. For a typical simulation code, the database abstraction represents a single container in which all
fields from all time steps for a given run of the simulation are stored. If, in fact, there are many simulation runs that
are part of some larger ensemble of runs, then the database abstraction ought to represent a single container in which
all fields from all time steps from all simulations are stored.

In our current software, there are two serious limitations with respect to how we implement the database abstraction.

First, no matter what container abstraction we introduce for our clients to read/write SAF field data, they ultimately
interact with the resulting data via a number of other tools outside the current scope of the SAF effort. Many of these
tools interact with the data as files in the filesystem. Examples are rm, cp, ls, f_stat, ftp, diff, etc. Granted, as files get
larger and larger, these tools become unwieldy. These tools provide a view of the data in terms of files. Because of this,
our customers have an expectation and a serious requirement to have control over how a database gets implemented in
terms of files.

We have no saf_del_xxx_handle functions for databases because the client always must call saf_open_database
to obtain a database handle and saf_close_database to free a database handle

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 63

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Members

Database information not available

SAF_NOT_SET_DB is a symbol defined in SAFdb.h.

Synopsis:

SAF_NOT_SET_DB

Description: This constant can be used to indicate that the database is not available or is unknown.

See Also:

• Databases: Introduction for current chapter

Close a database

saf_close_database is a function defined in db.c.

Synopsis:

int saf_close_database(SAF_Db *database)

Formal Arguments:

• database: The open database to be closed.

Description: This function closes an open database, database, freeing all resources associated with that database.

Preconditions:

• database must be a database handle. (low-cost)

• database must currently be open. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This is a collective, SAF__ALL mode function which should be called across all processes in the
database’s communicator.

See Also:

• Databases: Introduction for current chapter

Open a database

saf_open_database is a function defined in db.c.

Synopsis:

SAF_Db * saf_open_database(const char *path, SAF_DbProps *properties)

Formal Arguments:

• path: The name of the database.

• properties: This argument, if not null, provides database properties that will override the default properties
provided by saf_createProps_database.

64 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: Opens or creates a database for read and/or write access (depending on properties) using the com-
municator specified in properties. The name of the database, path, is a file name. The properties argu-
ment, if not SAF__DEFAULT_DBPROPS, provides database properties that will override the default properties set by
saf_createProps_database.

Preconditions:

• path must be non-null. (low-cost)

• properties must be a valid handle if supplied. (high-cost)

Return Value: Returns a new handle to the opened database on success; NULL on failure (or an exception is raised).

Parallel Notes: This is a collective, SAF__ALL mode, call in the communicator specified by the properties
passed in the call.

Issues: It would be nice to identify the current processor decomposition, if possible. At the moment, we can’t. But
the idea would be that if we’re opening an already existing database, we should search for a PROCESSOR collection
on the top set(s) such that the size of that collection is equal to the value returnd by MPI_Comm_size above. In this
way, the database could “know” which sets are associated with which processors. At present we don’t do this.

See Also:

• saf_createProps_database: 8.2: Create a new database property list with default values

• Databases: Introduction for current chapter

Update database contents

saf_update_database is a function defined in db.c.

Synopsis:

int saf_update_database(SAF_Db *database)

Formal Arguments:

• database: The database to update

Description: This function is used to force the library to update the contents of the database to the most recent
operation issued by the client. In the case of file I/O, all pending writes will be flushed so that files are consistent with
the most recent operation.

Preconditions:

• database must be a database handle. (low-cost)

• database must not be open for read-only access. (no-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This call is collective across all processes in the MPI communicator used to open the database.

See Also:

• Databases: Introduction for current chapter

Database Properties

There are a number of properties that affect the behavior of a database. Each member function of this portion of the
API sets a property to be associated with a database to a given value. See the individual member functions for a more

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 65

SAF User Manual, Release 2.0.3

detailed description of the database properties and their meaning. For a general description of how properties are used
(See *Properties*).

Members

Default properties

SAF_DEFAULT_DBPROPS is a symbol defined in SAFdbprops.h.

Synopsis:

SAF_DEFAULT_DBPROPS

Description: Identifiers for default properties for databases.

See Also:

• Database Properties: Introduction for current chapter

Create a new database property list with default values

saf_createProps_database is a function defined in dbprops.c.

Synopsis:

SAF_DbProps * saf_createProps_database(void)

Description: This function creates a database property list which can be passed to the saf_open_database function.
All properties in this list are set to their default values:

1 Clobber = false;
2 DbComm = LibComm;
3 ImportFile = $SAF_STD_TYPES_PATH //or
4 std_types.saf //or
5 FILE:~/.std_types.saf //or
6 FILE:$SAF_INSTALL/share/std_types.saf;
7 ReadOnly = false;

Return Value: A handle to a new database properties list initialized to default values. Otherwise either an error
value is returned or an exception is thrown depending on the error handling library property currently in effect (See
Properties).

Known Bugs: This function sometimes return an error instead of throwing an exception when the library error mode
is SAF__ERRMODE_THROW.

See Also:

• saf_open_database: 7.3: Open a database

• Database Properties: Introduction for current chapter

Free database property list

saf_freeProps_database is a function defined in dbprops.c.

Synopsis:

SAF_DbProps * saf_freeProps_database(SAF_DbProps *properties)

66 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: Releases resources inside the database property list and frees the property list that was allocated in
saf_createProps_database.

Return Value: Always returns null.

Parallel Notes: Independent

Issues: Releasing the resources used by the property list was never implemented and so is not implemented here yet
either.

See Also:

• saf_createProps_database: 8.2: Create a new database property list with default values

• Database Properties: Introduction for current chapter

Clobber an existing database on open

saf_setProps_Clobber is a function defined in dbprops.c.

Synopsis:

int saf_setProps_Clobber(SAF_DbProps *properties)

Formal Arguments:

• properties: The database property list which will be modified by this function (See *Properties*).

Description: When saf_open_database is called with the name of an existing database the default action is to open
that database. New data will be appended to it. However, if this property is set, then the existing database will be
unlinked before it is opened.

Preconditions:

• properties must not be null. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

Known Bugs: This function sometimes return an error instead of throwing an exception when the library error mode
is SAF__ERRMODE_THROW.

See Also:

• saf_open_database: 7.3: Open a database

• Database Properties: Introduction for current chapter

Specify MPI database communicator

saf_setProps_DbComm is a function defined in dbprops.c.

Synopsis:

int saf_setProps_DbComm(SAF_DbProps *properties, MPI_Comm communicator)

Formal Arguments:

• properties: The database property list which will be modified by this function (See *Properties*).

• communicator: The MPI communicator.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 67

SAF User Manual, Release 2.0.3

Description: When a database is opened it uses the library communicator by default. However, this function can be
called to set up a different MPI communicator to open a database. However, that communicator must be a subset of
the communicator used to initialize the library.

Preconditions:

• properties must not be null. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently. It is not defined in serial installations of the library. This
function does not duplicate the communicator. It simply copies it to the properties. When these properties are used
in a saf_open_database call, the communicator will at that time be duplicated. So, don’t free the MPI communicator
between the time this property is set in a given SAF__DbProps structure and the time that SAF__DbProps structure
is used in a saf_open_database call.

Issues: If the client is going to override the MPI communicator that would ordinarily be associated with the database
handle, we have a minor problem with calls to set other properties whose behavior might require special action for
parallel: which communicator should they use?

See Also:

• saf_open_database: 7.3: Open a database

• Database Properties: Introduction for current chapter

Create an memory-resident database

saf_setProps_MemoryResident is a function defined in dbprops.c.

Synopsis:

int saf_setProps_MemoryResident(SAF_DbProps *properties)

Description: Setting this property permits the creation of a memory-resident database. A memory-resident database is
convenient for creating objects that you would like to be transient. All objects created in a memory-resident database
will be lost when the database is closed.

Preconditions:

• properties must not be null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently, however all tasks must agree whether promise mode is to
be used for a particular database when that database is opened.

See Also:

• Database Properties: Introduction for current chapter

Specify read-only database access

saf_setProps_ReadOnly is a function defined in dbprops.c.

Synopsis:

int saf_setProps_ReadOnly(SAF_DbProps *properties)

Formal Arguments:

68 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• properties: The database property list which will be modified by this function (See *Properties*).

Description: By default a database is opened for read/write access. This function changes the access property so the
database is opened for read-only access.

Opening for read-only when the client is, in fact, only reading the database can potentially have a dramatic impact on
parallel performance. The reason is that the lower level data modeling kernel, VBT, can duplicate the metadata tables
on all processors and wholly eliminate all MPI communication involved in interacting with the database. At present,
VBT does not actually do this but will, in the future, be modified to do so.

Preconditions:

• properties must not be null. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function can be called independently.

See Also:

• Database Properties: Introduction for current chapter

Sets

Sets in SAF represent infinite point sets. As discussed in the chapter on collections (see *Collections*), in theory all
nodes, edges, faces, volumes, etc. are sets.

However, in SAF, set objects (e.g. something created with a call to saf_declare_set) are instantiated only to represent
infinite point sets that are decomposed into other, more primitive entities. Examples are materials, processor pieces,
domains, parts in an assembly, blocks, nodesets, etc.

Members

The null set handle

SAF_NULL_SET is a macro defined in saf.h.

Synopsis:

SAF_NULL_SET(Db)

Description: This macro evaluates to the set handle for the null set of the database. The null set handle is most often
only used in a SAF__ONE parallel call where many processors are participating solely for the sake of collectivity (See
Constants).

See Also:

• Sets: Introduction for current chapter

The universe set handle

SAF_UNIVERSE is a macro defined in saf.h.

Synopsis:

SAF_UNIVERSE(Db)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 69

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Description: This macro evaluates to the set handle for the universe set of the database (See *Constants*).

See Also:

• Sets: Introduction for current chapter

Declare a set

saf_declare_set is a function defined in set.c.

Synopsis:

SAF_Set * saf_declare_set(SAF_ParMode pmode, SAF_Db *db, const char *name, int max_topo_dim,
SAF_SilRole role, SAF_ExtendMode extmode, SAF_Set *set)

Formal Arguments:

• pmode: The parallel mode.

• db: The database handle in which to create the set.

• name: The name of the set being declared.

• max_topo_dim: The topological dimension of the set. If the set will contain sets of different topological
dimensions then this must be the maximum topological dimension of any set in the subset inclusion lattice
rooted below set.

• role: The role of the set. Possible values are SAF__SPACE for a spatial set, SAF__TIME for a time-base set,
SAF__PARAM for a parameter space set, or SAF__USERD for a user-defined role.

• extmode: Indicates whether or not the base-space represented by the set is extendible. Possible values are
SAF__EXTENDIBLE_TRUE or SAF__EXTENDIBLE_FALSE

• set: [OUT] Optional memory for link to the newly declared set.

Description: Every set has a maximum topological dimension indicating how the infinity of points that are the set are
organized. Are they organized along some curve (1D), surface (2D), volume (3D), etc.? More formally, the maximum
topological dimension of a set indicates the maximum rank of local coordinate systems over all neighborhoods of the
infinite point set.

Note that a maximum topological dimension of 0 does not mean that the set contains a single point or no points. It
means that the set contains only a finite number of points. That is the set is not an infinite point set but a finite one.

Preconditions:

• pmode must be valid. (low-cost)

• DATABASE must be a valid handle. (low-cost)

• name cannot be NULL. (low-cost)

• name must not begin with a leading ‘@’. (low-cost)

• max_topo_dim must be positive. (low-cost)

• role must be SAF__TIME, SAF__SPACE, or SAF__PARAM. (low-cost)

• If role is SAF__TIME then max_topo_dim must be 1. (low-cost)

• extmode must be either SAF__EXTENDIBLE_TRUE or SAF__EXTENDIBLE_FALSE. (low-cost)

Return Value: Returns a pointer to a set link on success; null on failure. The set argument is the successful return
value, or if set is null, a new set link is allocated for the return.

Issues: Eventually roles specific to the creation of algebraic types and cell types will be added.

70 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

I think we can eliminate the role argument here and instead deduce it from the SAF__Quantity associated with
the default coordinates for the set. For example, if the default coordinates represent a length quantity, then the role
must be SAF__SPACE. If they represent a time quantity, then the role must be SAF__TIME.

See Also:

• Sets: Introduction for current chapter

Obtain a set description

saf_describe_set is a function defined in set.c.

Synopsis:

int saf_describe_set(SAF_ParMode pmode, SAF_Set *set, char **name, int *max_topo_dim,
SAF_SilRole *role, SAF_ExtendMode *extmode, SAF_TopMode *topmode,
int *num_colls, SAF_Cat **cats)

Formal Arguments:

• pmode: The parallel mode.

• set: The set to be described.

• name: [OUT] The returned name of the set. Pass NULL if you do not want this information returned (see
Returned Strings).

• max_topo_dim: [OUT] The topological dimension of the set. A NULL pointer can be passed if the caller is
not interested in obtaining this information.

• role: [OUT] The subset inclusion lattice role of the set. A NULL pointer can be passed if the caller is not
interested in obtaining this information.

• extmode: [OUT] Whether the set is extendible or not. A NULL pointer can be passed if the caller is not
interested in obtaining this information.

• topmode: [OUT] Whether the set is a top-level set in the SIL or not

• num_colls: [OUT] The number of collections currently defined on the set. A NULL pointer can be passed if
the caller is not interested in obtaining this information.

• cats: [OUT] The list of collection categories of the collections defined on the set. A NULL pointer can be
passed if the caller is not interested in obtaining this information. cats should point to the NULL pointer if the
client wants the library to allocate space, otherwise cats should point to something allocated by the caller. In
the latter case, the input value of num_colls indicates the number of handles the cats argument can hold.

Description: This function returns information about a set.

Preconditions:

• pmode must be valid. (low-cost)

• set must be a valid set handle. (low-cost)

• num_colls must be returned if cats is requested. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Sets: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 71

SAF User Manual, Release 2.0.3

Find set by matching criteria

saf_find_matching_sets is a function defined in set.c.

Synopsis:

int saf_find_matching_sets(SAF_ParMode pmode, SAF_Db *db, const char *name_grep,
SAF_SilRole srole, int tdim, SAF_ExtendMode extmode,
SAF_TopMode topmode, int *num, SAF_Set **found)

Formal Arguments:

• pmode: The parallel mode.

• db: The database in which to search

• name_grep: The name of the desired set(s) or a limited regular expression that the set names must match.
If this argument begins with a leading “at sign”, ‘@’, character, the remaining characters will be treated as a
limited form of a regular expression akin to that supported by ‘ed.’ The constant SAF__ANY_NAME can be
passed if the client does not want to limit the search by name.

• srole: The subset inclusion lattice role of the desired set(s). The SAF__ANY_SILROLE constant can be
passed if the client is not interested in restricting the search on this criteria.

• tdim: The topological dimension of the desired set(s). The SAF__ANY_TOPODIM constant can be passed if
the client is not interested in restricting the search on this criteria.

• extmode: User to specify if the set is extendible or not (whether it can grow or not). Pass
SAF__EXTENDIBLE_TRUE, SAF__EXTENDIBLE_FALSE, or SAF__EXTENDIBLE_TORF

• topmode: whether the matching sets should be top sets. Pass SAF__TOP_TRUE, SAF__TOP_FALSE, or
SAF__TOP_TORF

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function will find sets by searching the entire database and matching certain criteria. Because it
finds sets by matching criteria, this function does not exploit the subset inclusion lattice to improve performance.

If the name_grep argument begins with a leading “at sign” character, ‘@’, the remaining characters will be treated
as a limited form of a regular expression akin to that supported in ‘ed’. Otherwise, it will be treated as a specific name
for a set. If the name does not matter, pass SAF__ANY_NAME.

If the library was not compiled with -lgen support library, then if regular expressions are used, the library will behave
as though SAF__ANY_NAME was specified.

Preconditions:

• pmode must be valid. (low-cost)

• DATABASE must be a database handle. (low-cost)

• The srole must be one of SAF__TIME, SAF__SPACE, SAF__PARAM, or SAF__ANY_SILROLE. (low-
cost)

• If srole is TIME then tdim must be 1. (low-cost)

• tdim must be SAF__ANY_TOPODIM or positive. (low-cost)

• extmode cannot be arbitrarily non-zero for truth. (low-cost)

• topmode cannot be arbitrarily non-zero for truth. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

72 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Sets: Introduction for current chapter

Find sets by traversing the subset inclusion lattice

saf_find_sets is a function defined in set.c.

Synopsis:

int saf_find_sets(SAF_ParMode pmode, SAF_FindSetMode fmode, SAF_Set *set, SAF_Cat *cat,
int *num, SAF_Set **found)

Formal Arguments:

• pmode: The parallel mode.

• fmode: The find mode. Possible values are SAF__FSETS_TOP to find the top-level set in the subset in-
clusion lattice in which set is a member; SAF__FSETS_BOUNDARY to find the boundary of set set;
SAF__FSETS_SUBS to find all sets which are immediate subsets of set by the specified collection cate-
gory; SAF__FSETS_SUPS to find all sets which are immediate supersets of set by the specified collection
category; and SAF__FSETS_LEAVES to find all leaf sets in the subset inclusion lattice rooted at set (a leaf
set is a set that is a descendent of set by the specified collection category and which has no sets below it).

• set: The set in the subset inclusion lattice at which to begin searching.

• cat: The collection category upon which to search for subsets, supersets, or leaf sets.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: There are two ways to search for sets. One is to simply search the whole database looking for sets that
match a particular search criteria such as a name, base dimension, etc. which is handled by saf_find_matching_sets.
The other is to search for sets by traversing the subset inclusion lattice which is handled by this function. This latter
approach is typically faster as it involves only a portion of all sets in the database.

The possible modes to the find call are described below.

1 FMODE==SAF_FSETS_TOP

This mode of the find will find the top-most ancestor of a given set.

1 FMODE==SAF_FSETS_BOUNDARY

This mode of the find will find the boundary set of a given set. Note, currently this mode will return a boundary only
if one exists in the file. It will not attempt to compute a boundary.

1 FMODE==SAF_FSETS_SUBS

This mode will find all sets that are immediate subsets of the given set by the specified collection category, if any
is specified. If the specified collection category is SAF__ANY_CAT, then all immediate subsets will be returned,
regardless of category.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 73

SAF User Manual, Release 2.0.3

1 FMODE=SAF_FSETS_SUPS

This mode will find all sets that are immediate supersets of the given set by the specified collection category, if any
is specified. If the specified collection category is SAF__ANY_CAT, then all immediate supersets will be returned,
regardless of category. Note, in typical cases, there is often only one superset of a given set by a given collection
category.

1 FMODE=SAF_FSETS_LEAVES

This mode finds all leaf sets in the subset inclusion lattice rooted at set (a leaf set is a set that is a descendent of set
by the specified collection category and which has no sets below it. SAF__ANY_CAT is allowed to be the specified
collection category.

Preconditions:

• pmode must be valid. (low-cost)

• set must be a valid set handle. (low-cost)

• fmode must be SAF__FSETS. . . _TOP, _SUBS, _SUPS, _LEAVES or _BOUNDARY. (low-cost)

• cat arg applicable only for SAF__FSETS_SUPS, SAF__FSETS_SUBS and SAF__FSETS_LEAVES
modes. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

• num is required in a top-level SAF__FSETS_LEAVES mode call. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: If fmode is SAF__FSETS_TOP, the memory allocation rules for SAF become irrelevant. If we confine
ourselves to topological information (e.g. statements about base-space sets without respect to fields, particularly
coordinate fields), then there is only ever one top (maximal ancestor) for any set. Of course, if we have two totally
independent objects, say a hammer and a wall, such that the hammer has interpenetrated the wall, then the set that
represents the intersection between the hammer and the wall is a subset of both. However, this intersection is a result
of the fact that the hammer’s coordinate field places it inside the wall. In the purely topological setting, the sets that
represent the hammer and the wall are each top sets. Thus, in theory the set that represents their intersection has two
maximal ancestors. We do not worry about this case here. Thus, a query for SAF__FSETS_TOP is always a single
set and so either the client asks for the single set handle to be allocated, or it does not.

If fmode is SAF__FSETS_BOUNDARY, some similar arguments apply. There is only ever one boundary of another
set. Thus, if the client queries for the boundary, it is assumed the client has either allocated a single set handle or the
library will and simply fill it in.

For the SAF__FSETS_TOP and SAF__FSETS_BOUNDARY cases, cat must be SAF__NOT_APPLICABLE_CAT.

This function looks for Relations only in the same scope that stores set and thus cannot traverse a subset inclusion
lattice that extends outside that scope. [rpm 2004-06-21]

For a SAF__FSETS_LEAVES search with a null collection category (SAF__ANY_CAT) this function will return a
list of unique sets by pruning out the duplicates. However, the pruning occurs down at the leaves and not in the internal
nodes of the graph, and therefore we may end up traversing portions of the graph repeatedly. [rpm 2004-06-21]

See Also:

• saf_find_matching_sets: 9.5: Find set by matching criteria

• Sets: Introduction for current chapter

74 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Get an attribute from a set

saf_get_set_att is a function defined in set.c.

Synopsis:

int saf_get_set_att(SAF_ParMode pmode, SAF_Set *set, const char *key, hid_t *type, int *count,
void **value)

Description: This function is identical to the generic saf_get_attribute function except that it is specific to SAF__Set
objects to provide the client with compile time type checking. For a description, see saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• Sets: Introduction for current chapter

Put an attribute to a set

saf_put_set_att is a function defined in set.c.

Synopsis:

int saf_put_set_att(SAF_ParMode pmode, SAF_Set *set, const char *key, hid_t type, int count, const
void *value)

Description: This function is identical to the generic saf_put_attribute function except that it is specific to SAF__Set
objects to provide the client with compile time type checking. For a description, see saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• Sets: Introduction for current chapter

Collection Categories

Collection categories are used to categorize collections of sets or cells. Each collection on a set is one of a particular
category. There is only ever one collection of a particular category on a set. Typically, collection categories are
used to categorize, for example collections of nodes, elements, processors, blocks, domains, etc. However, collection
categories may be used however the client wishes to categorize different collections of sets or cells.

Members

The self decomposition of a set

SAF_SELF is a macro defined in saf.h.

Synopsis:

SAF_SELF(Db)

Description: This macro evaluates to the collection category handle for the self decomposition of a set (See *Con-
stants*).

See Also:

• Collection Categories: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 75

SAF User Manual, Release 2.0.3

Declare a collection category

saf_declare_category is a function defined in cat.c.

Synopsis:

SAF_Cat * saf_declare_category(SAF_ParMode pmode, SAF_Db *db, const char *name,
SAF_Role *role, int tdim, SAF_Cat *cat)

Formal Arguments:

• db: The database handle.

• name: The collection category name.

• role: Role of collections of this category (see *Collection Roles*).

• tdim: The maximum topological dimension of the members of collections of this category.

• cat: [OUT] The returned collection category handle.

Description: This function declares a collection category.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• The database must not be open for read-only access. (no-cost)

• A name must be supplied for the category. (low-cost)

• role must be a valid collection role. (low-cost)

• Topological dimension, tdim, must be positive. (low-cost)

Return Value: The new category handle is returned on success; NULL on failure. If cat is non-null then it will be
initialized and used as the return value.

Parallel Notes: This call must be collective across the database communicator.

See Also:

• Collection Categories: Introduction for current chapter

Get a description of a collection category

saf_describe_category is a function defined in cat.c.

Synopsis:

int saf_describe_category(SAF_ParMode pmode, SAF_Cat *cat, char **name, SAF_Role *role,
int *tdim)

Formal Arguments:

• cat: A collection category handle.

• name: If non-NULL, the returned name of the collection category (see *Returned Strings*).

• role: If non-NULL, the returned role of the collection category (see *Collection Roles*).

• tdim: If non-NULL, the returned maximum topological dimension of members of collections of this category.

Description: This call describes a collection category.

Preconditions:

76 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• pmode must be valid. (low-cost)

• cat must be a valid category handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This call must be collective across the database communicator in which the category is defined.

See Also:

• Collection Categories: Introduction for current chapter

Find collection categories

saf_find_categories is a function defined in cat.c.

Synopsis:

int saf_find_categories(SAF_ParMode pmode, SAF_Db *db, SAF_Set *containing_set, const
char *name, SAF_Role *role, int tdim, int *num, SAF_Cat **found)

Formal Arguments:

• db: Database on which to restrict the search.

• containing_set: The set upon which to restrict the search. The special macro ‘‘SAF__UNIVERSE‘‘(db)
(which takes a database handle as an argument) allows the search to span all categories of the specified database.

• name: The name of the categories upon which to restrict the search. The constant SAF__ANY_NAME allows
the search to span categories with any name.

• role: The role of the categories upon which to restrict the search. A null pointer allows the search to span
categories with any role (see *Collection Roles*).

• tdim: The topological dimension of the categories upon which to restrict the search. The constant
SAF__ANY_TOPODIM allows the search to span categories with any topological dimension.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function will find collection categories matching the specified name, role and tdim. It searches
collection categories defined on the containing_set, which can be set to ‘‘SAF__UNIVERSE‘‘(db), implying
that all collection categories in the entire database should be searched. Since the number of collection categories is
relatively small, and global, such a search should not take much time.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

• role must be a valid role handle or NULL. (low-cost)

• containing_set must be a valid set handle or NULL. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: This function must be called collectively across the database communicator of the
containing_set.

See Also:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 77

SAF User Manual, Release 2.0.3

• Collection Categories: Introduction for current chapter

Get an attribute with a cat

saf_get_cat_att is a function defined in cat.c.

Synopsis:

int saf_get_cat_att(SAF_ParMode pmode, SAF_Cat *cat, const char *name, hid_t *datatype,
int *count, void **value)

Formal Arguments:

• cat: Collection category owning the attribute for which we’re searching.

• name: Name of the attribute.

• datatype: [OUT] Datatype of the attribute as it is stored.

• count: [OUT] Number of elements contained in the attribute.

• value: [OUT] On successful return this will point to an allocated array containing count elements each of
type datatype.

Description: This function is identical to the generic saf_get_attribute function except that it is specific to SAF__Cat
objects to provide the client with compile time type checking. For a description, see saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• Collection Categories: Introduction for current chapter

Put an attribute with a cat

saf_put_cat_att is a function defined in cat.c.

Synopsis:

int saf_put_cat_att(SAF_ParMode pmode, SAF_Cat *cat, const char *name, hid_t datatype, int count,
const void *value)

Formal Arguments:

• pmode: Parallel mode for adding the new attribute.

• cat: Collection category for which the new attribute is added.

• name: The name of the attribute.

• datatype: The datatype of each element of the value for the attribute.

• count: The number of elements pointed to by value, each of type datatype.

• value: The array of count elements each of type datatype to use for the attribute’s value.

Description: This function is identical to the generic saf_put_attribute function except that it is specific to SAF__Cat
objects to provide the client with compile time type checking. For a description, see saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• Collection Categories: Introduction for current chapter

78 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Collections

In theory, all nodes, edges, faces, elements, blocks, materials, processor pieces etc. are just sets. See saf_declare_set
for more of a description of sets. In practice, we have a need to distinguish between two kinds of sets: primitive
ones such as the elements of a mesh, and aggregate ones, such as material or block sets. We call these two classes of
sets, Cells and Sets respectively. Cells are primitive sets such as the nodes or elements of a mesh. What makes them
primitive? They are not decomposed into any other sets, whose union can form them. In lattice theory terms, cells are
Join Irreducible Members (or JIMS) of the subset inclusion lattice.

Sets are aggregate sets such as a processor piece or a block. In lattice theory terms, sets are Join Reducible Members
(or JRMS pronounced “germs”). The key point here is that cells are never instantiated as first class sets in this API
(e.g. using the saf_declare_set call). Instead cells only ever exist as members of collections.

On the other hand, collections themselves may be composed of either cells or sets. When a collection is declared, the
client either specifies a cell-type for the members, implying the collection is composed of cells, or not, implying the
collection is composed of sets.

Since collections are defined by their containing set and a collection category, this pair serves to define a collection
and there is no specific SAF__Xxxx handle explicitly for collections.

Members

Declare a collection

saf_declare_collection is a function defined in coll.c.

Synopsis:

int saf_declare_collection(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat,
SAF_CellType ctype, int count, SAF_IndexSpec ispec,
SAF_DecompMode is_decomp)

Formal Arguments:

• pmode: The parallel mode.

• containing_set: The containing set of the collection. In SAF__ONE parallel mode, all processes except
the process identified by the rank argument of the SAF__ONE macro are free to pass SAF__NULL_SET with
the set’s database handle.

• cat: The collection category.

• ctype: The cell type of the members of the collection. If this is a non-primitive collection, pass
SAF__CELLTYPE_SET. If this is a primitive collection of mixed cell type, pass SAF__CELLTYPE_MIXED.
If this is a primitive collection of arbitrarily connected cells, pass SAF__CELLTYPE_ARB. Otherwise, it must
be a primitive collection of homogeneous type and the caller should pass one of the cell types specified by
SAF__CellType.

• count: The number of members of the collection. If the containing set is an extendible set, the count can be
changed by a call to saf_extend_collection.

• ispec: The indexing scheme of the collection (e.g., how are members of the collection identified within the
collection). We have predefined some macros for common cases: SAF__1DC, SAF__2DC, and SAF__3DC
for C-ordered and indexed arrays and likewise for Fortran-ordered and indexed arrays (replace the “C” with an
“F” in the macro name).

• is_decomp: Indicates if the specified collection is a decomposition of its containing set. That is, if we take
the union of all the members of the collection do we form a set that is equal to the containing set?

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 79

SAF User Manual, Release 2.0.3

Description: Collections are contained in sets. Thus there is no explicit object handle for a collection. Instead, a
collection is referenced by a pair: the containing set handle and the category handle.

If the set is extendible, then any collection declared on it is considered extendible.

Preconditions:

• pmode must be valid. (low-cost)

• containing_set must be a valid set handle for participating processes. (low-cost)

• cat must be a valid category handle for participating processes. (low-cost)

• is_decomp must be either SAF__DECOMP_TRUE or SAF__DECOMP_FALSE for participating processes.
(low-cost)

• ispec rank and sizes must be valid for participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: As currently implemented, the count and ispec args are redundant. However, in general, the indexing
schema used to identify members of the collection is nearly totally independent of the count. A common example
SAF does not yet support is the case in which the indexing ids for the members of the collection is some other
arbitrary list of ints (or character string names, etc). For example, all of the nodes on the top set is not necessarily
indexed 0. . . ‘‘num_nodes‘‘-1. Under these conditions, the indexing scheme is another, problem sized array of ints.
However, to handle this, we probably need a saf_write_collection_indexing function to actually write
that data to a file. Writing it in this call would violate our current policy where problem-sized disk I/O occurs only on
calls with “write” or “read” in their names.

See Also:

• saf_extend_collection: 11.3: Add members to a collection

• Collections: Introduction for current chapter

Describe a collection

saf_describe_collection is a function defined in coll.c.

Synopsis:

int saf_describe_collection(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat,
SAF_CellType *t, int *count, SAF_IndexSpec *ispec,
SAF_DecompMode *is_decomp, SAF_Set **member_sets)

Formal Arguments:

• pmode: The parallel mode.

• containing_set: The containing set of the desired collection. In SAF__ONE parallel mode, all processes
except the process identified by the rank argument of the SAF__ONE macro are free to pass SAF__NULL with
the set’s database handle.

• cat: The collection category of the desired collection.

• t: [OUT] The cell-type of the members of the collection. Pass NULL if this return value is not desired.

• count: [OUT] The returned count of the collection. Pass NULL if this return value is not desired.

• ispec: [OUT] The returned indexing specification for the collection. Pass NULL if this return value is not
desired.

80 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• is_decomp: [OUT] Whether the collection is a decomposition of the containing set. Pass NULL if this return
value is not desired.

• member_sets: If the collection is non-primitive, this argument is used to return the specific set handles for
the sets that are in the collection. Pass NULL if this return value is not desired. Otherwise, if member_sets
points to NULL, the library will allocate space for the returned set handles. Otherwise the caller allocates the
space and the input value of count indicates the size of the space in number of set handles.

Description: Returns information about a collection.

Preconditions:

• pmode must be valid. (low-cost)

• The containing_set must be valid for all participating processes. (low-cost)

• cat must be a valid category handle for participating processes. (low-cost)

• NUM_SETS and member_sets must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: having both arguments NULL will cause _saf_valid_memhints to return false, but in this particular case,
having both arguments NULL is ok, so we dont call _saf_valid_memhints if both are 0.

See Also:

• Collections: Introduction for current chapter

Add members to a collection

saf_extend_collection is a function defined in coll.c.

Synopsis:

int saf_extend_collection(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Cat *cat,
int add_count, SAF_IndexSpec add_ispec)

Formal Arguments:

• pmode: The parallel mode.

• containing_set: The containing set of the collection.

• cat: The collection category of the collection.

• add_count: The number of members to add to the collection.

• add_ispec: The new indexing scheme.

Description: This function allows the client to add members to an existing collection. While you can extend a
collection, you cannot change the number of dimensions in the indexing scheme. You can only change the size in each
dimension and then you can only increase it. That is, if the collection was indexed using 2 dimensional indexing, it
cannot be changed to 3 dimensional indexing.

Preconditions:

• pmode must be valid. (low-cost)

• containing_set must be a valid set handle for participating processes. (low-cost)

• cat must be a valid category handle for participating processes. (low-cost)

• add_ispec sizes must be valid, total add_count and be compatible with the existing indexing. (med-cost)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 81

SAF User Manual, Release 2.0.3

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Collections: Introduction for current chapter

Find collections

saf_find_collections is a function defined in coll.c.

Synopsis:

int saf_find_collections(SAF_ParMode pmode, SAF_Set *containing_set, SAF_Role *role,
SAF_CellType cell_type, int topo_dim, SAF_DecompMode decomp_mode,
int *num, SAF_Cat **found)

Formal Arguments:

• pmode: The parallel mode.

• containing_set: The containing set in which to search for collections. In SAF__ONE parallel mode,
all processes except the process identified by the rank argument of the SAF__ONE macro are free to pass
SAF__NULL_SET with the set’s database handle.

• role: The role of the collection. Pass NULL if you do not wish to limit the search by this parameter.

• cell_type: The cell-type of the members of the collection. Pass SAF__ANY_CELLTYPE if you do not wish
to limit the search by this parameter.

• topo_dim: The topological dimension of the collection. Pass SAF__ANY_TOPODIM if you do not wish to
limit the search by this parameter.

• decomp_mode: Whether the found collections must be a decomposition of the containing set. Pass
SAF__DECOMP_TORF if it does not matter.

• num: For this and the succeeding argument, (see *Returned Handles*).

• found: For this and the preceding argument, (see *Returned Handles*).

Description: This function is used to search for collections on a given set. In addition, the client can limit the search
to collections of a given role, with a given cell-type or those which are or are not a decomposition of the containing
set.

Preconditions:

• pmode must be valid. (low-cost)

• containing_set must be a valid set handle for participating processes. (low-cost)

• NUM_COLLS and CATS must be compatible for return value allocation. (low-cost)

• role must be a valid role handle if supplied. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: The documentation for this function originally said it would return all collections in the whole database if the
containing_set arg passed was ‘‘SAF__UNIVERSE‘‘(db). However, it is clear from the implementation that it
cannot do that.

See Also:

• Collections: Introduction for current chapter

82 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Compare two collections

saf_same_collections is a function defined in coll.c.

Synopsis:

hbool_t saf_same_collections(SAF_Set *Sa, SAF_Cat *Ca, SAF_Set *Sb, SAF_Cat *Cb)

Formal Arguments:

• Sa: The set component of the first or left operand of the equality comparison operator.

• Ca: The category component of the first or left operand of the equality comparison operator.

• Sb: The set component of the second or right operand of the equality comparison operator.

• Cb: The category component of the second or right operand of the equality comparison operator.

Description: Compare two given collections for equality. Note that each collection is specified as a set-category pair.
These pairs are equal if they have “the same” sets and “the same” categories.

Parallel Notes: Independent

See Also:

• Collections: Introduction for current chapter

Subset Relations

Subset relations are used to define a relationship between two sets in which one set, the intended subset, is the subset
of the other set, the intended superset. In order to define a subset relation both sets require a common, decomposing
collection. That is, there must exist a collection of the same category on both sets and that collection must be a
decomposition of its containing set. For more information, see *Relation Notes* and saf_declare_subset_relation.

Members

Conveniently specify a boundary subset

SAF_BOUNDARY is a macro defined in saf.h.

Synopsis:

SAF_BOUNDARY(P, B)

Description: This macro provides a convenient way to specify four of the args, sup_cat , sub_cat , sbmode, and cbmode
of the saf_declare_subset_relation call. Use it when the subset is the boundary of the superset. The arguments P and
B represent collection categories of collections on superset and subset, respectively. See saf_declare_subset_relation
for a more detailed description.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Subset Relations: Introduction for current chapter

Conveniently specify a typical subset

SAF_COMMON is a macro defined in saf.h.

Synopsis:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 83

SAF User Manual, Release 2.0.3

SAF_COMMON(C)

Description: This macro provides a convenient way to specify four of the args, sup_cat , sub_cat , sbmode, and
cbmode of the saf_declare_subset_relation call. Use it when you have a typical subset. The argument C is meant to
be a collection category in common to both sup and sub sets. See saf_declare_subset_relation for a more detailed
description.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Subset Relations: Introduction for current chapter

Conveniently specify an embedded boundary subset

SAF_EMBEDBND is a macro defined in saf.h.

Synopsis:

SAF_EMBEDBND(P, B)

Description: This macro provides a convenient way to specify four of the args, supcat , sub_cat , sbmode, and cbmode
of the saf_declare_subset_relation call. Use it when the subset is some internal boundary in the superset but is NOT
the boundary of the superset. The arguments P and B represent collection categories of collections on superset and
subset, respectively.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Subset Relations: Introduction for current chapter

Conveniently specify an general subset

SAF_GENERAL is a macro defined in saf.h.

Synopsis:

SAF_GENERAL(BND)

Description: This macro provides a convenient way to specify four of the args, sup_cat , sub_cat , sbmode, and
cbmode of the saf_declare_subset_relation call. Use it when all that is known is that the subset is indeed a subset of
the superset, but the details of their relationship are unknown (e.g. no data). The argument BND is a boolean meant to
indicate if the subset is the boundary of the superset.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Subset Relations: Introduction for current chapter

Declare a subset relation

saf_declare_subset_relation is a function defined in rel.c.

Synopsis:

84 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

SAF_Rel * saf_declare_subset_relation(SAF_ParMode pmode, SAF_Db *db, SAF_Set *sup,
SAF_Set *sub, SAF_Cat *sup_cat, SAF_Cat *sub_cat,
SAF_BoundMode sbmode, SAF_BoundMode cbmode,
SAF_RelRep *srtype, hid_t A_type, void *A_buf,
hid_t B_type, void *B_buf, SAF_Rel *rel)

Formal Arguments:

• pmode: The parallel mode.

• db: The database in which to place the new relation.

• sup: The superset. In SAF__ONE parallel mode, all processors except the one identified by the SAF__ONE
argument should pass the null set of the database by using the SAF__NULL macro.

• sub: The subset. In SAF__ONE parallel mode, all processors except the one identified by the SAF__ONE
argument should pass the null set of the database by using the SAF__NULL macro.

• sup_cat: The collection category on the sup set upon which the subset relation is being defined. Note that
collections of this category must have already been defined on sup. Otherwise, an error is generated. Note, the
four args, sup_cat, sub_cat, sbmode, cbmode, are typically passed using one of the macros described
above, SAF__COMMON``(C), ``SAF__BOUNDARY``(``P,‘‘B‘‘), SAF__EMBEDBND``(``P,‘‘B‘‘) or
SAF__GENERAL``(``BND)

• sub_cat: The collection category on the sub set upon which the subset relation is being defined. Note that
collections of this category must have already been defined on sub. Otherwise an error is generated.

• sbmode: Indicates whether sub is the boundary of sup. Pass either SAF__BOUNDARY_TRUE or
SAF__BOUNDARY_FALSE

• cbmode: Indicates whether members of collection on sub are on the boundary of members of the collection
on sup. Pass either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE

• srtype: Subset relation types. This argument describes how the data in ABUF represents the subset. Valid
values are SAF__HSLAB meaning that ABUF points to a hyperslab specification and SAF__TUPLES meaning
that ABUF points to a list of N-tuples.

• A_type: The type of the data in A_buf

• A_buf: This buffer contains references, one for each member of the domain collection (on sub), to members
of the range collection (on sup). The client may pass NULL here meaning that the raw data will be bound to
the object during write, rather than declaration.

• B_type: The type of the data in B_buf

• B_buf: This buffer is valid only when the members of the domain collection (on sub) are on the boundaries
of the members of the range collection (on sup). In this case, the data contained in this buffer identifies “which
piece” of the boundary each member of the domain collection is. Otherwise, the client should pass NULL here.
As with ABUF, the client may pass also NULL here meaning the raw data will be bound to the object during
write, rather than declaration.

• rel: [OUT] Optional returned relation handle.

Description: This call is used to declare a subset relation between two sets. The relation is specified in terms of
collections on both sets. The subset, sub, can be either a boundary of sup or not. Which case is indicated by the
sbmode argument which can be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE.

In addition, The members of the collection on the sub set are either on the boundary of the members of the
collection on the sup set or not (the only other acceptable case is one in which the members of the collection on
the sub are equal to the members of the collection on sup). Which case is indicated by the value of the cbmode
argument, can be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 85

SAF User Manual, Release 2.0.3

Thus, there are two statements made about boundary information. One about the sets, sup and sub and one about
the members of the collections on sup and sub. Furthermore, the statement about the sets, indicated by sbmode, is
that sub is the boundary of sup or it is not. The statement about the collections, indicated by cbmode, is that the
members of the sub collection are on the boundary of the members of the sup collection or not.

The values in ABUF enumerate the members of the collection on sub that are either on the boundaries of or equal to the
members of the collection on sup. In the on the boundary of case (e.g. cbmode``==``SAF__BOUNDARY_TRUE)
the values in BBUF, if non-NULL, indicate “which” piece of the sup collection member’s boundary each member of
sub collection is. For example, if the sub collection is faces and the sup collection is a bunch of hexes, BBUF can
be used to identify which of the 6 faces each member of sub collection is. This information is optional.

The group of four formal arguments sup_cat, sub_cat, sbmode, cbmode select from the various cases described
above. For convenience, we provide a number of macros for these four arguments for the common cases. . .

:ref:‘SAF_COMMON <SAF_COMMON>‘(C) : a subset relationship in which the subset is specified by enumerating
those members of the superset that are in the subset. This is the most common case. Argument C is the collection
category both sets have in common.

SAF_BOUNDARY <SAF_BOUNDARY>‘(‘‘P‘,‘‘B‘‘) : a subset relationship in which sub is the boundary of sup
and the members of B on sub are on the boundaries of the members of P on sup.

SAF_EMBEDBND <SAF_EMBEDBND>‘(‘‘P‘,‘‘B‘‘) : a subset relationship in which sub is some embedded bound-
ary in sup and members of the collection B on sub are on the boundaries of the members of collection P on sup.

SAF_GENERAL <SAF_GENERAL>‘(‘‘BND‘) : a subset relationship in which all that is known is that sub is indeed
a subset of sup The details of the relationships are not known. In this case, the BND is a boolean indicating if sub is
the boundary of sup.

Finally, there is the subset relation representation type, srtype. . .

By and large, the details of the relation data can be derived from knowledge of the indexing schemes used in the
domain and range collections of the relation. For example, if the range is indexed using some N dimensional indexing
scheme, then the relation will either be an N dimensional hyperslab or a list of N-tuples.

In the case of SAF__HSLAB, it is assumed the memory pointed to by ABUF contains 3 N-tuples of the form (starts,
counts, strides) where starts, counts, and strides indicate the starting point of the hyperslab in N dimensions, the number
of items in each dimension and the stride (through the range collection) in each dimension respectively. The order of
dimensional axes in each of these arrays is assumed to match the terms in which the range collection’s indexing is
specified.

In the case of SAF__TUPLES, it is assumed the memory pointed to by ABUF contains a list of N-tuples where each
N tuple identifies one member of the range collection. The offsets argument to SAF__TUPLES, if present, indicates a
fixed N-tuple offset to be associated with each N-tuple in ABUF.

There are two ways the client may pass the data buffer holding the relation data; either here as the ABUF argument
of the declare call or later as the ABUF argument of the write call. The client cannot do both. It must choose. This
flexibility was provided to aim the API for in-memory communications as well as persistent file writes. By and large,
the client should pass NULL for the ABUF arg here and pass the buffer in the write call whenever it is writing persistent
data to the file. However, whenever the client is planning to do in-memory communication, it should specify ABUF
here.

Preconditions:

• pmode must be valid. (low-cost)

• sup must be a valid set handle. (low-cost)

• sub must be a valid set handle. (low-cost)

• sbmode must be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE. (low-cost)

• cbmode must be either SAF__BOUNDARY_TRUE or SAF__BOUNDARY_FALSE. (low-cost)

86 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• cbmode must be SAF__BOUNDARY_TRUE if sbmode is SAF__BOUNDARY_TRUE for all participating pro-
cesses. (low-cost)

• Either A_buf is null and both sup_cat and sub_cat are not valid cat handles or. (low-cost)

• B_buf can be non-NULL only when cbmode is SAF__BOUNDARY_TRUE. (low-cost)

• On the reserved, “self” collection, cbmode and sbmode must be SAF__BOUNDARY_FALSE. (low-cost)

• srtype must be a valid relation representation handle. (low-cost)

• srtype must be either SAF__HSLAB or SAF__TUPLES. (low-cost)

• rel must be non-NULL. (low-cost)

• A_type must be an integer type if supplied. (low-cost)

• B_type must be an integer type if supplied. (low-cost)

Return Value: On success returns either the supplied rel argument or a pointer to a newly allocated relation link.
Returns the null pointer on failure.

Issues: We may want to have separate datatypes for ABUF and BBUF as BBUF’s values are likely to always fit in a
byte though I don’t know any clients that actually store them that way.

At present, we assert that for any boundary case, the range collection (on sup) must be of a primitive type (e.g. not
SAF__CELLTYPE_SET). However, this really need not be the case. Any set which has a boundary set can then have
“pieces” of that boundary that could be referred to use the local address space of that boundary. It just so happens that
the most common case for this is when we are referring to cell-types.

If we could guarantee all processors’ is_top member were identical, we could wrap this call so that we don’t try to
put the set record if its already NOT a top set.

See Also:

• Subset Relations: Introduction for current chapter

Get a description of a subset relation

saf_describe_subset_relation is a function defined in rel.c.

Synopsis:

int saf_describe_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_Set *sup,
SAF_Set *sub, SAF_Cat *sup_cat, SAF_Cat *sub_cat,
SAF_BoundMode *sbmode, SAF_BoundMode *cbmode,
SAF_RelRep *srtype, hid_t *data_type)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation handle.

• sup: [OUT] The superset. Pass NULL if you do not want this value returned.

• sub: [OUT] The subset. Pass NULL if you do not want this value returned.

• sup_cat: [OUT] The collection category on the sup set upon which the subset relation is defined. Note that
collections of this category must have already been defined on sup. Otherwise, an error is generated. Note
that the four args sup_cat, sub_cat, sbmode, and cbmode are typically passed using one of the macros
described in the saf_declare_subset_relation call, SAF__COMMON, SAF__BOUNDARY, SAF__EMBEDBND or
SAF__GENERAL. Pass NULL if you do not want this value returned.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 87

SAF User Manual, Release 2.0.3

• sub_cat: [OUT] The collection category on the sub set upon which the subset relation is defined. Again, pass
NULL if you do not want this value returned.

• sbmode: [OUT] Indicates whether sub is the boundary of sup. A value of SAF__BOUNDARY_TRUE, in-
dicates that the sub is a boundary of sup. A value of SAF__BOUNDARY_FALSE indicates sub is not a
boundary of sup. Pass NULL if you do not want this value returned.

• cbmode: [OUT] Indicates whether members of collection on sub are on the boundaries of mem-
bers of the collection on sup. A value of SAF__BOUNDARY_TRUE indicates they are. A value of
SAF__BOUNDARY_FALSE indicates they are not. Pass NULL if you do not want this value returned.

• srtype: [OUT] The representation specification. Pass NULL if you do not want this handle returned. See
saf_declare_subset_relation for the meaning of values of this argument.

• data_type: [OUT] The data-type of the data stored with the relation. Pass NULL if you do not want this value
returned.

Description: Returns information about a subset relation.

Preconditions:

• pmode must be valid. (low-cost)

• The rel argument must be a valid handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Subset Relations: Introduction for current chapter

Find subset relations

saf_find_subset_relations is a function defined in rel.c.

Synopsis:

int saf_find_subset_relations(SAF_ParMode pmode, SAF_Db *db, SAF_Set *sup, SAF_Set *sub,
SAF_Cat *sup_cat, SAF_Cat *sub_cat, SAF_BoundMode sbmode,
SAF_BoundMode cbmode, int *num, SAF_Rel **found)

Formal Arguments:

• pmode: The parallel mode.

• db: Database in which to limit the search.

• sup: The superset to limit search to.

• sub: The subset to limit search to.

• sup_cat: The collection category on the superset to limit search to. Pass SAF__ANY_CAT if you do not want
to limit the search to any particular category.

• sub_cat: The collection category on the subset to limit search to. Pass SAF__ANY_CAT if you do not want
to limit the search to any particular category.

• sbmode: If SAF__BOUNDARY_TRUE, limit search to relations in which the subset is the boundary of the
superset.

• cbmode: If SAF__BOUNDARY_TRUE, limit search to relations in which the members of the subset are on the
boundaries of the members of the superset.

88 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• num: For this and the succeeding argument, (see *Returned Handles*).

• found: For this and the preceding argument, (see *Returned Handles*).

Description: This function finds any subset relations that might exist between two sets or a subset relation on a specific
collection category.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• sup_cat must either be a valid category handle or SAF__ANY_CAT. (low-cost)

• sub_cat must either be a valid category handle or SAF__ANY_CAT. (low-cost)

• sub must be a valid set handle. (low-cost)

• sup must be a valid set handle. (low-cost)

• num and found must be compatible for the return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Subset Relations: Introduction for current chapter

Get datatype and size for a subset relation

saf_get_count_and_type_for_subset_relation is a function defined in rel.c.

Synopsis:

int saf_get_count_and_type_for_subset_relation(SAF_ParMode pmode, SAF_Rel *rel,
SAF_RelTarget *target, size_t *abuf_sz,
hid_t *abuf_type, size_t *bbuf_sz,
hid_t *bbuf_type)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation handle.

• target: Optional relation targeting information.

• abuf_sz: [OUT] The number of items that would be placed in the A-buffer by a call to the
saf_read_subset_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

• abuf_type: [OUT] The type of the items that would be placed in the A-buffer by a call to the
saf_read_subset_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

• bbuf_sz: [OUT] The number of items that would be placed in the B-buffer by a call to the
saf_read_subset_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

• bbuf_type: [OUT] The type of the items that would be placed in the B-buffer by a call to the
saf_read_subset_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 89

SAF User Manual, Release 2.0.3

Description: This function is used to retrieve the number and type of A-buffer and B-buffer data items that would be
retrieved by a call to the saf_read_subset_relation function. This function may be used by the caller to determine the
sizes of the buffers needed when pre-allocation is desired or to determine how to traverse the buffer(s) returned by the
saf_read_subset_relation function.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Relation targeting is not yet implemented.

See Also:

• saf_read_subset_relation: 12.9: Read the data for a subset relation

• Subset Relations: Introduction for current chapter

Read the data for a subset relation

saf_read_subset_relation is a function defined in rel.c.

Synopsis:

int saf_read_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_RelTarget *target,
void **abuf, void **bbuf)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation whose data is to be read.

• target: Relation targeting information.

• abuf: The data representing those members in the range collection (on the superset) that are related to the
members in the domain collection (on the subset).

• bbuf: Optional data for boundary subsets indicating which local piece of boundary each member in the domain
collection represents in each member of the range collection (see saf_declare_subset_relation)

Description: Read the data associated with a subset relation. Note that there is no information about the buffers
passed as formal arguments to this call. Why? Because any information about the “native” buffers is known via the
saf_describe_subset_relation call. The client may “target” the data read in this call for a particular data-type, etc. by
using the saf_target_subset_relation call.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle. (low-cost)

• abuf cannot be null for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: If the client requests bbuf but none was written, is that an error? Unfortunately, the only answer that works
in all cases is to declare this an error. This is so because it is not possible to notify the client that none was written
except by returning ‘‘bbuf‘‘==‘‘NULL‘‘ and that is **not* possible in the case that the client has pre-allocated bbuf

90 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

(except if we opt to free the pre-allocated bbuf, and then set it to NULL which I don’t think would be a good idea).
We limit returning error to only this case. The other case returns bbuf``==``NULL

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• saf_describe_subset_relation: 12.6: Get a description of a subset relation

• saf_target_subset_relation: 12.10: Set the destination form of a subset relation

• Subset Relations: Introduction for current chapter

Set the destination form of a subset relation

saf_target_subset_relation is a function defined in rel.c.

Synopsis:

int saf_target_subset_relation(SAF_RelTarget *target, SAF_RelRep *srtype, hid_t type)

Formal Arguments:

• target: [OUT] Relation targeting information to be initialize herein.

• srtype: Target subset relation types.

• type: Target data types.

Description: This function establishes the target (destination) form of subset relation data during either read or write.
When used prior to a write call, it establishes the form of data in the file. When used prior to a read call, it establishes
the form of data as desired in memory.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Not implemented yet.

See Also:

• Subset Relations: Introduction for current chapter

Reuse data in a subset relation

saf_use_written_subset_relation is a function defined in rel.c.

Synopsis:

int saf_use_written_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_Rel *oldrel,
hid_t A_buf_type, hid_t B_buf_type, SAF_Db *file)

Formal Arguments:

• pmode: the parallel mode.

• rel: The handle for the relation to be updated.

• oldrel: The handle for the relation pointing to the data to be re-used.

• A_buf_type: The type of data that would be written for the A buffer (see saf_write_subset_relation) if this
call was actually doing any writing.

• B_buf_type: The type of data that would be written for the B buffer (see saf_write_subset_relation) if this
call was actually doing any writing.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 91

SAF User Manual, Release 2.0.3

• file: The file the data would be written to if this call was actually doing any writing.

Description: This call binds data for an existing relation to a new relation. This call can be used in place of a
saf_write_subset_relation call if the data that would have been written in the subset relation is identical to some other
relation data already written to the database.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle. (low-cost)

• oldrel must be a valid relation handle. (low-cost)

• oldrel must be same as rel to re-use data written to it. (no-cost)

• oldrel must be same as rel to re-use data written to it. (no-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_write_subset_relation: 12.12: Write a subset relation

• Subset Relations: Introduction for current chapter

Write a subset relation

saf_write_subset_relation is a function defined in rel.c.

Synopsis:

int saf_write_subset_relation(SAF_ParMode pmode, SAF_Rel *rel, hid_t A_type, void *A_buf,
hid_t B_type, void *B_buf, SAF_Db *file)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation whose data is to be written.

• A_type: The type of A_buf (if not already supplied through the saf_declare_subset_relation call).

• A_buf: The data (if not already supplied through the saf_declare_subset_relation call).

• B_type: The type of B_buf (if not already supplied through the saf_declare_subset_relation call.

• B_buf: The data (if not already supplied through the saf_declare_subset_relation call).

• file: The optional destination file to write the data to. A null pointer for this argument indicates that the data
is to be written to the same file as rel.

Description: This call writes relation data to the specified file.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle. (low-cost)

• A_buf should be specified either here or in the saf_declare_subset_relation. (low-cost)

• B_buf, if present, should be specified either here or in the. (low-cost)

92 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: SAF_EACH mode is a collective call where each of the N tasks provides a unique relation. SAF will
create a single HDF5 dataset to hold all the data and will create N blobs to point into nonoverlapping regions in that
dataset.

Issues: Overwrite is not currently allowed.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Subset Relations: Introduction for current chapter

Topology Relations

Topology relations are used to define the inter-relationships between the members of a collection and how those mem-
bers are knitted together to form a mesh. For more information, see *Relation Notes* and saf_declare_topo_relation.
Also, see this detailed discussion of the difference between mapping of degrees of freedom of a field to the members
of a collection and the mapping of the members of a collection to themselves to indicate topological relationships,
(github.com/markcmiller86/SAF/blob/master/src/safapi/docs/dof_maps_and_topo_rels.pdf)

Members

Declare a topological relation

saf_declare_topo_relation is a function defined in rel.c.

Synopsis:

SAF_Rel * saf_declare_topo_relation(SAF_ParMode pmode, SAF_Db *db, SAF_Set *set,
SAF_Cat *pieces, SAF_Set *range_set,
SAF_Cat *range_cat, SAF_Cat *storage_decomp,
SAF_Set *my_piece, SAF_RelRep *trtype, hid_t A_type,
void *A_buf, hid_t B_type, void *B_buf, SAF_Rel *rel)

Formal Arguments:

• pmode: The parallel mode.

• db: The dataset where the new relation will be created.

• set: The containing set of the collection whose members are being sewn together by the relation.

• pieces: The collection of members that are being sewn together.

• range_cat: Together, range_set and range_cat identify the range of the relation (e.g., collection used
to glue the pieces together). There are really only two valid values for RANGES_S: the set set or the set
my_piece.

• storage_decomp: The decomposition of set upon which the relation is stored.

• my_piece: The piece of the decomposition being declared here.

• trtype: The relation types. One of SAF__STRUCTURED, SAF__UNSTRUCTURED, or SAF__ARBITRARY.

• A_type: The type of the data in A_buf.

• A_buf: The buffer. Pass NULL if you would rather provide this in the write call.

• B_type: The type of the data in B_buf.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 93

https://github.com/markcmiller86/SAF
http://github.com/markcmiller86/SAF/blob/master/src/safapi/docs/dof_maps_and_topo_rels.pdf

SAF User Manual, Release 2.0.3

• B_buf: The buffer. Pass NULL if you would rather provide this in the write call.

• rel: [OUT] Optional memory that will be initialized (and returned) to point to the new relation.

Description: A topology relation describes how the individual members of a collection are sewn together to form a
mesh. A topology relation is composed of one or more steps. Each step in the relation represents a portion of the
dimensional cascade in representing an N dimensional set in terms of a bunch of N-1 dimensional sets that form its
boundary, which are, in turn, represented by a bunch of N-2 dimensional sets, etc. The last step is always on zero
dimensional sets (e.g., SAF__CELLTYPE_POINT cells). Typically, there is only ever one step from a primitive
decomposition to SAF__CELLTYPE_POINT cells (nodes). In this case, the topology relation is a list describing the
nodal connectivity for each element in the decomposition.

In the case of SAF__STRUCTURED, all other arguments are currently ignored and rectangular structure is assumed.
Later, different types of structure will be supported. In the case of SAF__UNSTRUCTURED, ABUF is a pointer to one
value of type DATA_TYPE representing the number of range references for each member of the domain collection and
BBUF is an array of type DATA_TYPE containing that number of range references for each member of the domain.
In the case of SAF__ARBITRARY, ABUF is a pointer to an array of values of type DATA_TYPE equal to the size of
the domain collection. Each value in the ABUF array represents the number of range references for the corresponding
number of the domain collection. BBUF is a pointer to the range references.

By convention, a topology relation should be declared on the maximal set in the subset inclusion lattice (e.g., the
top-most set in the subset inclusion lattice) for which it makes sense to define the topology. If the topology relation is,
in fact, stored in non-contiguous chunks, then the client should use the storage_decomp argument of the topology
relation to declare that the relation data is stored in pieces on the given decomposition.

Preconditions:

• pmode must be valid. (low-cost)

• set must be a valid set handle. (low-cost)

• pieces must be a valid category. (low-cost)

• range_set must be a valid set. (low-cost)

• range_cat must be a valid category. (low-cost)

• MY_PIECES must be a valid handle. (low-cost)

• storage_decomp must be either the self decomposition or a valid cat handle. (low-cost)

• trtype must be a consistent relation representation handle. (low-cost)

• trtype must be a valid topology representation. (low-cost)

• If supplied, A_type must be an integer type (or SAF__HANDLE if decomposed). (low-cost)

• A_type must be supplied if A_buf is supplied. (low-cost)

• B_type must be an integer type or handle type. (low-cost)

• B_type must be supplied if B_buf if supplied. (low-cost)

• A_type must be handle if storage decomposition is not self. (low-cost)

Return Value: On success, returns a pointer to the new relation: either the rel argument or an allocated relation.
Returns the null pointer on failure.

See Also:

• Topology Relations: Introduction for current chapter

94 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Get description of topological relation

saf_describe_topo_relation is a function defined in rel.c.

Synopsis:

int saf_describe_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_Set *set,
SAF_Cat *pieces, SAF_Set *range_set, SAF_Cat *range_cat,
SAF_Cat *storage_decomp, SAF_RelRep *trtype,
hid_t *data_type)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation to be described.

• set: [OUT] The containing set of the collection that is sewn together by the relation.

• pieces: [OUT] The collection of members that are sewn together.

• range_cat: [OUT] Together the RANGE_S and RANGE_C pair identifies the collection used to glue the pieces
together.

• storage_decomp: [OUT] The decomposition of set upon which the relation is actually stored.

• trtype: [OUT] The topology relation type.

• data_type: [OUT] The type of the data.

Description: This function returns information about a topological relation.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Topology Relations: Introduction for current chapter

Find topological relations

saf_find_topo_relations is a function defined in rel.c.

Synopsis:

int saf_find_topo_relations(SAF_ParMode pmode, SAF_Db *db, SAF_Set *set,
SAF_Set *topo_ancestor, int *num, SAF_Rel **found)

Formal Arguments:

• pmode: The parallel mode.

• db: The database in which to search for topology relations.

• set: The set whose topology is sought.

• topo_ancestor: [OUT] In many cases, the topology for a given set is known only on some ancestor of the
set. This return value indicates that ancestor. If SAF__EQUIV for set and topo_ancestor is true, then the

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 95

SAF User Manual, Release 2.0.3

topology relations found by this call are indeed those defined on the specified set. Otherwise, they are defined
on the topo_ancestor.

• num: For this and the succeeding argument, (see *Returned Handles*).

• found: For this and the preceding argument, (see *Returned Handles*).

Description: This function will find the topological relations governing a given set. Note that if the given set is one
that is the subset of where the topological relations are actually declared, this call will return that set and the topological
relation(s) defined on that set.

Preconditions:

• pmode must be valid. (low-cost)

• set must be a valid handle. (low-cost)

• topo_ancestor must be non-null. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: What if there are multiple topological relations governing a given set which are declared on different sets? The
topo_ancestor argument needs to be of length *Pnum_rels.

The topo_ancestor argument is not actually referenced or returned by this function.

See Also:

• Topology Relations: Introduction for current chapter

Get datatype and size for a topological relation

saf_get_count_and_type_for_topo_relation is a function defined in rel.c.

Synopsis:

int saf_get_count_and_type_for_topo_relation(SAF_ParMode pmode, SAF_Rel *rel,
SAF_RelTarget *target, SAF_RelRep *Prep-
Type, size_t *abuf_sz, hid_t *abuf_type,
size_t *bbuf_sz, hid_t *bbuf_type)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation handle.

• target: Targeting information.

• PrepType: [OUT] The mapping representation type (arbitrary, structured, or unstructured). The caller may
pass value of NULL for this parameter if this value is not desired.

• abuf_sz: [OUT] The number of items that would be placed in the A-buffer by a call to the
saf_read_topo_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

• abuf_type: [OUT] The type of the items that would be placed in the A-buffer by a call to the
saf_read_topo_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

96 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• bbuf_sz: [OUT] The number of items that would be placed in the B-buffer by a call to the
saf_read_topo_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

• bbuf_type: [OUT] The type of the items that would be placed in the B-buffer by a call to the
saf_read_topo_relation function. The caller may pass value of NULL for this parameter if this value is not
desired.

Description: This function is used to retrieve the number and type of A-buffer and B-buffer data items that would be
retrieved by a call to the saf_read_topo_relation function. This function may be used by the caller to determine the
sizes of the buffers needed when pre-allocation is desired or to determine how to traverse the buffer(s) returned by the
saf_read_topo_relation function.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle. (low-cost)

• If targeting of storage decomposition is used, the read must be a SAF__ALL mode read. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_read_topo_relation: 13.6: Read topological relation data

• Topology Relations: Introduction for current chapter

Is topological relation stored on self

saf_is_self_stored_topo_relation is a function defined in rel.c.

Synopsis:

int saf_is_self_stored_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, hbool_t *Presult)

Formal Arguments:

• pmode: The parallel mode.

• rel: The handle of the topological relation which is to be examined.

• Presult: [OUT] A pointer to caller supplied memory which is to receive the result of the test: true if the
relation is self stored or false if it is stored on a decomposition. Note that it is permitted for the caller to pass a
value of NULL for this parameter.

Description: This function is used by a client to test if a topology relation is stored on self. The boolean result is
returned by reference.

Preconditions:

• pmode must be valid. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Topology Relations: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 97

SAF User Manual, Release 2.0.3

Read topological relation data

saf_read_topo_relation is a function defined in rel.c.

Synopsis:

int saf_read_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, SAF_RelTarget *target,
void **abuf, void **bbuf)

Formal Arguments:

• pmode: The parallel mode.

• rel: The topology relation to be read.

• target: Relation targeting information.

• abuf: The returned data. See saf_declare_topo_relation.

• bbuf: The returned data. See saf_declare_topo_relation.

Description: This function reads topological relation data from the database.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid relation handle. (low-cost)

• abuf must be non-null. (low-cost)

• Either both abuf and bbuf point to NULL or both abuf and bbuf do not point to NULL. (low-cost)

• If targeting of storage decomposition is used, the read must be a SAF__ALL mode read. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_declare_topo_relation: 13.1: Declare a topological relation

• Topology Relations: Introduction for current chapter

Set the destination form of a topological relation

saf_target_topo_relation is a function defined in rel.c.

Synopsis:

int saf_target_topo_relation(SAF_RelTarget *target, SAF_Set *range_set, SAF_Cat *range_cat,
SAF_Cat *decomp, SAF_RelRep *trtype, hid_t data_type)

Formal Arguments:

• target: [OUT] Relation targeting information to be initialized by this function.

• range_set: Optional set.

• range_cat: Together the range_set this identifies the target collection to be used to glue the pieces to-
gether. Currently both of these parameters are ignored.

• decomp: The optional target decomposition.

• trtype: The optional target relation types. Currently this parameter is ignored.

• data_type: The optional target data type.

98 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: This function establishes the target (destination) form of topo relation data during either read or write.
When used prior to a write call, it establishes the form of data in the file. When used prior to a read call, it establishes
the form of data as desired in memory.

Preconditions:

• Must pass non-null target information. (low-cost)

• decomp must be either NOT_SET, SELF_DECOMP or a valid cat handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Not all features have been implemented yet.

See Also:

• Topology Relations: Introduction for current chapter

Write topological relation data

saf_write_topo_relation is a function defined in rel.c.

Synopsis:

int saf_write_topo_relation(SAF_ParMode pmode, SAF_Rel *rel, hid_t A_type, void *A_buf,
hid_t B_type, void *B_buf, SAF_Db *file)

Formal Arguments:

• pmode: The parallel mode.

• rel: The relation handle.

• A_type: See saf_declare_topo_relation.

• A_buf: See saf_declare_topo_relation.

• B_type: See saf_declare_topo_relation.

• B_buf: See saf_declare_topo_relation.

• file: The optional destination file. By default (if null) the data is written to the same file to which rel
belongs.

Description: This function writes topological relation data to the given file.

Preconditions:

• pmode must be valid. (low-cost)

• rel must be a valid rel handle. (low-cost)

• A_type must be supplied if A_buf is supplied. (low-cost)

• A- and B-buffers and types must be set appropriately. (high-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: SAF_EACH mode is a collective call where each of the N tasks provides a unique relation. SAF will
create a single HDF5 dataset to hold all the data and will create N blobs to point into nonoverlapping regions in that
dataset.

See Also:

• saf_declare_topo_relation: 13.1: Declare a topological relation

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 99

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• Topology Relations: Introduction for current chapter

Relations

No description available.

Members

The null relation handle

SAF_NULL_REL is a macro defined in saf.h.

Synopsis:

SAF_NULL_REL(Db)

Description: This macro evaluates to the relation handle for the null relation of the database. The null relation handle
is most often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of
collectivity (See *Constants*).

See Also:

• Relations: Introduction for current chapter

Field Templates

A field template represents all the abstract features of a field. That is, those features that are immutable as the data
is exchanged between one scientific computing client and another. By contrast, a field (which is defined in terms of
a field template) represents all the features of a field that might possibly change as the field is exchanged between
scientific computing clients.

By and large, a field template can be viewed as defining a class of fields.

Members

The null field template handle

SAF_NULL_FTMPL is a macro defined in saf.h.

Synopsis:

SAF_NULL_FTMPL(Db)

Description: This macro evaluates to the field template handle for the null field template of the database. The null
field template handle is most often only used in a SAF__ONE parallel call where many processors are participating
solely for the sake of collectivity (See *Constants*).

See Also:

• Field Templates: Introduction for current chapter

100 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Declare a field template

saf_declare_field_tmpl is a function defined in ftempl.c.

Synopsis:

SAF_FieldTmpl * saf_declare_field_tmpl(SAF_ParMode pmode, SAF_Db *db, const
char *name, SAF_Algebraic *atype, SAF_Basis *ba-
sis, SAF_Quantity *quantity, int num_comp,
SAF_FieldTmpl *ctmpl, SAF_FieldTmpl *ftmpl)

Formal Arguments:

• pmode: The parallel mode.

• db: The database handle in which to create the template.

• name: The name of the field template.

• atype: The algebraic type: SAF__ALGTYPE_SCALAR, SAF__ALGTYPE_VECTOR,
SAF__ALGTYPE_TENSOR, SAF__ALGTYPE_SYMTENSOR, SAF__ALGTYPE_FIELD. If the alge-
braic type is SAF__ALGTYPE_FIELD, then all we know about the field is that it references other fields (i.e.,
an indirect field). Therefore, the next four arguments are not applicable. More generalized user defined type
definitions will be available in later implementations.

• basis: The basis. Not implemented yet. Pass null

• quantity: The quantity. See saf_declare_quantity for quantity definitions and how to define new quantities.

• num_comp: Number of components. Although this may often be inferred from atype, SAF currently does
no work to infer it. Pass SAF__NOT_APPLICABLE_INT if this template will be used in the declaration of
an inhomogeneous field. Otherwise, pass the number of components. For a simple scalar field, the number of
components is 1. See Fields for further discussion of inhomogeneous fields.

• ctmpl: This is an array of NUM_COMPS field template handles that comprise the composite field template or
NULL if there are no component field templates. Pass NULL if this field template will be used in the declaration
of an INhomogeneous field.

• ftmpl: Returned field template handle for composite fields. If the algebraic type (atype) is
SAF__ALGTYPE_FIELD, then the returned field template may be used as a state template (see *State Tem-
plates*).

Description: This function declares a field template. A field template defines the implementation independent features
of a field such as its algebraic type, the quantity it represents, etc.

Preconditions:

• pmode must be valid. (low-cost)

• ftmpl must be non-null. (low-cost)

• name must be non-null. (low-cost)

• num_comp >= 1. (low-cost)

• ctmpl must be non-NULL if num_comp > 1. (low-cost)

• atype must be a valid algebraic type handle. (low-cost)

• ctmpl may be NULL only if num_comp == 1 and atype must be direct. (low-cost)

• ctmpl must be NULL if components are not appropriate. (low-cost)

• basis must be a valid basis handle or NULL. (low-cost)

• quantity must be a valid quantity handle if supplied. (low-cost)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 101

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Return Value: A pointer to the new field template handle is returned on success, either the ftmpl argument if
non-null or a freshly allocated handle. A null pointer is returned on failure.

Issues: It would be better if we could create new field types (templates) from old ones, or alternatively, construct
new algebriac types from old ones. This is most apparent when the alg-type is SAF__FIELD. This is the C-language
equivalent of a void . It tells us only that it is a reference to a field (in fact, the lib doesn’t care if you pass ‘‘SAF__Rel‘‘
objects here) but does not say what kind of fields (e.g. field templates) it should reference. One might be inclined
to think that the component fields templates can serve to define the type of references of a ‘‘SAF__FIELD‘‘ entity.
However, this is not so. The component field templates define the *component fields. We can illustrate by an example.

Suppose we have a time series of the coordinate field of an airplane. Each instant in time of the coordinate field
is a field on SPACE. To create the coordinates as a function of time, we create a field on TIME whose alg-type is
SAF__FIELD. What are its component fields? If we want somehow to use the component fields to define the kinds
of field this SAF__FIELD entity refers to, we’d specify the field template for coordinate fields on SPACE as the
component field template here. However, if we do that, how do we then specify the components of coordinates as a
function of time, namely x(t), y(t), and z(t) whose field template is on TIME. We can’t! In essence, we need to be able
to say what kind of SAF__FIELD this entity is by passing a list of field templates as the algebraic type. Or, more
specifically, we need to generalize the notion of algebraic type and allow the client to build new types from old ones.
That will be deferred to a later release. For now, the best we can do with this is equivalent to a void* field reference.

We could extend the API and allow a list of field templates for the atype argument. Alternatively, would could allow
the member field types to come in via the component fields of the component fields of a SAF__FIELD template.
However, that is rather convoluted.

See Also:

• saf_declare_quantity: 20.9: Declare a new quantity

• Field Templates: Introduction for current chapter

Get a description of a field template

saf_describe_field_tmpl is a function defined in ftempl.c.

Synopsis:

int saf_describe_field_tmpl(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, char **name,
SAF_Algebraic *alg_type, SAF_Basis *basis, SAF_Quantity *quantity,
int *num_comp, SAF_FieldTmpl **ctmpl)

Formal Arguments:

• pmode: The parallel mode.

• ftmpl: The field template to be described.

• name: [OUT] The returned name. Pass NULL if you do not want the name returned. (see *Returned Strings*).

• alg_type: [OUT] The returned algebraic type. Pass NULL if you do not want the type returned.

• basis: [OUT] The returned basis. Pass null if you do not want the basis returned.

• quantity: [OUT] The returned quantity. Pass null if you do not want the name returned.

• num_comp: [OUT] The returned number of components. Pass NULL if you do not want the name returned.
Note that if the field template is assocaited with an INhomogeneous field, the returned value will always be
SAF__NOT_APPLICABLE_INT.

• ctmpl: [OUT] The returned array of component field template handles. Pass NULL if you do not want the
array returned. If the field template is associated with an INhomogeneous field, the returned value, if requested,
will always be NULL. (If the field template does not point to other field templates then this argument will be
untouched by this function.)

102 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: This function returns information about a field template.

Preconditions:

• pmode must be valid. (low-cost)

• ftmpl must be a valid field template handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Field Templates: Introduction for current chapter

Find field templates

saf_find_field_tmpls is a function defined in ftempl.c.

Synopsis:

int saf_find_field_tmpls(SAF_ParMode pmode, SAF_Db *db, const char *name,
SAF_Algebraic *atype, SAF_Basis *basis, SAF_Quantity *quantity,
int *num, SAF_FieldTmpl **found)

Formal Arguments:

• pmode: The parallel mode.

• db: the database context for this search (previously retrieved from base_space)

• name: The name of the field template.

• atype: The algebraic type to limit the search to. Pass NULL if you do not want to limit the search by this
parameter.

• basis: The basis to limit the search to. Pass NULL if you do not want to limit the search by this parameter.

• quantity: The quantity to search for. Pass NULL if you do not want to limit the search by this parameter.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function finds field templates according to specific search criteria.

Preconditions:

• pmode must be valid. (low-cost)

• atype must be a valid algebraic handle if supplied. (low-cost)

• basis must be a valid basis handle if supplied. (low-cost)

• quantity must be a valid quantity handle if supplied. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Field Templates: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 103

SAF User Manual, Release 2.0.3

Get an attribute with a field template

saf_get_field_tmpl_att is a function defined in ftempl.c.

Synopsis:

int saf_get_field_tmpl_att(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, const char *name,
hid_t *type, int *count, void **value)

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__FieldTmpl objects to provide the client with compile time type checking. For a description, see
saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• Field Templates: Introduction for current chapter

Put an attribute with a field template

saf_put_field_tmpl_att is a function defined in ftempl.c.

Synopsis:

int saf_put_field_tmpl_att(SAF_ParMode pmode, SAF_FieldTmpl *ftmpl, const char *name,
hid_t type, int count, const void *value)

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__FieldTmpl objects to provide the client with compile time type checking. For a description, see
saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• Field Templates: Introduction for current chapter

Fields

A field is some physical phenomenon known or expected to have value at every point in the set over which the field is
defined. In other words, a field represents some continuous (as opposed to discrete) function which is defined over the
infinite point set specified as the base space for the field.

In SAF, we divide the notion of a field into two pieces; a wholly abstract piece free of the details of how a
field is is implemented, and an implementation specific piece. The abstract piece is called a field template. See
saf_declare_field_tmpl for more information. Essentially, a field template defines a class of fields. The implementa-
tion specific piece of a field is called, simply, a field.

Presently, SAF requires the client to create a new scientific modeling primitive (e.g. a field object) for each instance of
a field’s data. For example, if you have a pressure field that is evolving with time, each time the field’s data is written
to the database, the client needs to declare a new field object. The client is not simply writing more data for the same
field object. As more experience is gained with the data model and implementation, this behavior will be modified to
be more natural. It is ok for a client to simply create a field with the same name, etc. This will not cause any problems
in SAF. For example, if a client creates several pressure fields, all of which are instances of the same field at different
points in time, that is ok. However, the client will probably want to organize those fields into a more aggregate field
of fields (e.g. a field whose “values” are other fields on other base spaces). We call such a field an indirect field. In
fact, the states and suites interface is provided as a conventient way to construct an indirect field representing various
states of the problem output by the client. See *States* or saf_declare_state_group. However, there are a variety of

104 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

situations in which a client may want to define an indirect field. The remaining portions of this chapter introduction
discuss these situations in some detail. We’ll begin with some definitions.

Degrees Of Freedom**(**dofs): The degrees of freedom or dofs of a field is the name we give to the data associated
with the field. Typically, the dofs are the problem sized arrays of floats or doubles representing some independent (or
dependent) variables of a simulation. We call these datums degrees of freedom because, within the context of SAF,
they are the degrees of freedom in the representation of the field. It is important to recognize this context of the
representation of the field. That is what SAF is solely concerned with: representing fields so that other clients can
read and interpret them. In this context, every datum represents a degree of freedom. This sense of degree of freedom
should not be confused with, for example, similar terminology in the linear system of equations a client might be
solving. That is an entirely different context in which similar terminology is used to describe those datums that effect
the solution of the system of equations being solved. SAF is concerned with data that effects the representation of
the field. Why don’t we call these values? Because the word “values” implies that the field is, in fact, equal to these
numbers for some (maybe many) points in the base-space. And, this is only true when the field’s evaluation function
is interpolating. That is, the interpolation functions pass through the dofs controlling the interpolation. This is most
certainly not true for a field represented by, for example, a Fourier series.

Indirect Field: An indirect field is any field whose algebraic type is SAF__ALGTYPE_FIELD. Equivalently, this
means that if you were to call saf_read_field for such a field, you would obtain a bunch of SAF__Field field
handles. Likewise, when the algebraic type of a field is not SAF__ALGTYPE_FIELD, the field is not an indirect field
and we, instead, call it a direct field. Note that indirection is, in general, recursive. An indirect field can refer to fields
that are themselves indirect fields. An example of an indirect field is the pressure over a mesh as a function of time for
9 time instances. There would be 9 instances of pressure fields on the mesh, one for each time instant. Each of these
fields is just one of the instances of the pressure on the mesh. To characterize the pressure field’s variation over time,
we would define another field on the time base space having 9 dofs. Each dof would be a different one of the pressure
fields over the mesh as illustrated in figure “indirect field-1.gif”.

Homogeneous Field: A homogeneous field is any field whose defining characteristics do not vary over the base space
upon which the field is declared. We include in “defining characteristics” all those parameters used to declare a field
and its field template such as algebraic type, number of components, quantity, units, component interleave, component
order, evaluation function and even its storage.

Any field that is not homogeneous is inhomogeneous. An example of an inhomogeneous field is a stress tensor defined
over a 3D rocket body and its 2D fins. Over the 3D body, the field is a 3D symmetric tensor and over the 2D fins it is
a 2D symmetric tensor. This is illustrated in “indirect field-2.gif”.

Another example is a coordinate field of a mesh whose storage is decomposed into separate chunks, one for each
processor in a parallel decomposition. This is illustrated in “indirect field-3.gif”.

SAF deals with inhomogeneous fields by breaking them up, recursively in general, into homogeneous pieces. Thus,
the data for an inhomogeneous field is the handles to these field pieces. An inhomogeneous field is, therefore, also an
indirect field. Furthermore, if a field is inhomogeneous, all bets are off about any of the field’s defining characteristics.
All that can be said, for sure, about an inhomogeneous field is that there is some decomposing collection of the field’s
base-space upon which it is presumably piecewise homogeneous. We say presumably here because any piece of an
inhomogeneous field can itself be inhomogeneous so that, in general, its decomposition into homogeneous pieces is
recursive.

With all of this information, we can construct a pseudo class-hierarchy for these various kinds of fields.

1 Field
2 |
3 ---------------------------------
4 | |

(continues on next page)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 105

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

(continued from previous page)

5 INdirect Direct
6 | |
7 ------------------- |
8 | | |
9 INhomogeneous Homogeneous Homogeneous

10 |
11 |
12 |
13 State Field

Because an inhomogeneous field is also an indirect field, it is often convenient when talking about both inhomogeneous
indirect fields and homogeneous indirect fields to simply refer to the two as inhomogeneous and indirect fields, respec-
tively. There are some important conceptual differences between inhomogeneous and indirect fields worth mentioning
here.

First, one requirement of the various fields comprising an inhomogeneous field is that the union of the base-spaces
of all the homogeneous pieces must form a decomposition of the base-space of the inhomogeneous aggregate. SAF
enforces this condition and will not permit a client to construct an inhomogeneous field for which this is not true.

Second, it does not make sense to conceive of interpolating between the pieces of an inhomogeneous field in the same
way we might want to interpolate between the pieces of an indirect field. For example, it doesn’t make sense to try to
interpolate between the stress tensor on the fins and the stress tensor on the rocket body of the inhomogeneous field in
“indirect field-2.gif” while it does make sense to try to interpolate between the 4th and 5th instances of the pressure
field in “indirect field-1.gif”.

Third, for all homogeneous fields, the number of dofs read from and written to a field is the product of the number
of components in the field, the size of the collection the field’s dofs are associated with and the association ratio (see
saf_declare_field). This is true for homogeneous, direct fields where the dofs might be floats or doubles as well as
homogeneous, indirect fields where the dofs are handles to other fields. However, for inhomogenous fields, the number
of field handles to be read and written is determined by the size of the decomposing collection upon which the field is
presumably piecewise homogeneous. That collection is what determines the number of pieces the field is decomposed
into.

FIELD TARGETING: SAF now offers some limited ability to transform a field during read. Currently, this capability
is available only during read. Transformations during write will be made available later. Currently, on read, a client
can invoke the following transformations:

a. changes in precision (single<–>double)

b. changes in interleave (vector<–>component)

c. changes in storage decomposition (self<–>other immediate). By immediate we mean a decomposition
which is immediately below the self set in the subset relation graph.

The targeting function, saf_target_field, is used to tell SAF to invoke such transforms during read. The intent is that a
reader will call saf_target_field before making a call to read the field. The target call will indicate the intended form
of the field in the destination. Once targeting has been setup with a call to saf_target_field, a call to saf_read_field
will do the right thing resulting in the altered field in the destination’s buffers. This is an experimental capability and
interface. Field targeting will only work on serial SAF clients or single processor parallel SAF clients (i.e. SAF clients
that have opened the database on just one processor).

Soon, SAF will offer some limited ability to transform a field during read or write. The intent is that a reader or writer
will call saf_target_field before making a call to read or write the field. The target call will indicate the intended form
of the field in the destination (the database during write or the client’s memory during read). Once targeting has been
setup with a call to saf_target_field, a call to saf_read_field or saf_write_field will do the right thing resulting in the
altered field in the destination’s buffers.

106 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Members

Conveniently specify a constant field

SAF_CONSTANT is a macro defined in saf.h.

Synopsis:

SAF_CONSTANT(db)

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have a constant field. The db argument is meant to
represent the database handle. See saf_declare_field for a more detailed description.

See Also:

• saf_declare_field: 16.12: Declare a field

• Fields: Introduction for current chapter

Conveniently specify a decomposition-centered field

SAF_DECOMP is a macro defined in saf.h.

Synopsis:

SAF_DECOMP(D)

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have a field in which you have 1 degree of freedom for
each set in a collection of sets forming a decomposition of their parent set. For example, if you have a collection of
sets where each set represents one processor’s piece and you wish to characterize a field that represents the min (or
max) of some field over each piece. The argument D is meant to be a collection category for a non-primitive collection
of set known to form a decomposition of the set upon which the field is being defined.

See Also:

• saf_declare_field: 16.12: Declare a field

• Fields: Introduction for current chapter

Conveniently specify a node-centered field

SAF_NODAL is a macro defined in saf.h.

Synopsis:

SAF_NODAL(N, Z)

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have what is often referred to as a node centered field.
The argument N is meant to be a collection category representing collections of SAF__CELLTYPE_POINT (nodes)
cells. The argument Z is meant to be a collection category representing collections of element cells.

See Also:

• saf_declare_field: 16.12: Declare a field

• Fields: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 107

SAF User Manual, Release 2.0.3

The null field handle

SAF_NULL_FIELD is a macro defined in saf.h.

Synopsis:

SAF_NULL_FIELD(Db)

Description: This macro evaluates to the field handle for the null field of the database. The null field handle is most
often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of collectivity
(See *Constants*).

See Also:

• Fields: Introduction for current chapter

More meaningful alias for SAF_TOTALITY

SAF_WHOLE_FIELD is a symbol defined in saf.h.

Synopsis:

SAF_WHOLE_FIELD

Description: The SAF__TOTALITY subset relation representation is most often only ever used during a
saf_write_field call to indicate the entire field is being written rather than just a portion. However, in that context,
the meaning of a totality is obscured. So, we provide SAF__WHOLE_FIELD as a more meaningful alias for that
value. In addition, this macro replaces the three args, MEMBER_COUNT, REQUEST_TYPE, MEMBER_IDS, used in a
partial saf_write_field call.

See Also:

• saf_write_field: 16.23: Write the data for a field

• Fields: Introduction for current chapter

Conveniently specify a zone-centered field

SAF_ZONAL is a macro defined in saf.h.

Synopsis:

SAF_ZONAL(Z)

Description: This macro provides a convenient way to specify four of the args, coeff_assoc , assoc_ratio , eval_coll,
and eval_func of the saf_declare_field call. Use it when you have what is often referred to as a zone centered field.
The argument Z is meant to be a collection category representing collections of element cells.

See Also:

• saf_declare_field: 16.12: Declare a field

• Fields: Introduction for current chapter

Find the parent of a component field

_saf_find_parent_field is a function defined in field.c.

Synopsis:

108 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

SAF_Field * _saf_find_parent_field(SAF_ParMode pmode, SAF_Field *component_field,
SAF_Field *retval)

Formal Arguments:

• component_field: Field for which we are searching for a parent.

• retval: [OUT] Optional buffer in which to store the result. If this is NULL then a buffer will be allocated for
the return value.

Description: Find the parent of a component field. Find the field who has the input field as a component. This function
caches the parent field in the component field in order to keep the performance good.

Preconditions:

• pmode must be valid. (low-cost)

See Also:

• Fields: Introduction for current chapter

Queries whether data has been written

saf_data_has_been_written_to_comp_field is a function defined in field.c.

Synopsis:

int saf_data_has_been_written_to_comp_field(SAF_ParMode pmode, SAF_Field *field,
hbool_t *Presult)

Formal Arguments:

• pmode: The parallel mode.

• field: The field handle.

• Presult: [OUT] A pointer to caller supplied memory which is to receive the answer to the question. A value
of true is saved at this location if the field has had data written to it, false if not.

Description: Does a composite or component field have written data corresponding to this field.

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Fields: Introduction for current chapter

Does field have data

saf_data_has_been_written_to_field is a function defined in field.c.

Synopsis:

int saf_data_has_been_written_to_field(SAF_ParMode pmode, SAF_Field *field, hbool_t *Pre-
sult)

Formal Arguments:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 109

SAF User Manual, Release 2.0.3

• pmode: The parallel mode.

• field: The field handle.

• Presult: [OUT] A pointer to caller supplied memory which is to receive the answer to the question. A value
of true is saved at this location if the field has had data written to it, false if not.

Description: This function is used to check if a given field has a valid blob id (which it would if it has had data written
to it and doesn’t if it has not).

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Fields: Introduction for current chapter

Declare a field as a candidate coordinate field

saf_declare_coords is a function defined in field.c.

Synopsis:

int saf_declare_coords(SAF_ParMode pmode, SAF_Field *field)

Formal Arguments:

• pmode: The parallel mode.

• field: The field to be characterized as a coordinate field.

Description: Use the function to indicate that a particular field is a coordinate field. This merely identifies a field as a
candidate coordinate field. More than one field may serve as the coordinate field for a set. For example, in engineering
codes, there are the deformed and un-deformed coordinates.

Preconditions:

• pmode must be valid. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Fields: Introduction for current chapter

Declare default coordinates of a given set

saf_declare_default_coords is a function defined in field.c.

Synopsis:

int saf_declare_default_coords(SAF_ParMode pmode, SAF_Set *base, SAF_Field *field)

Formal Arguments:

• pmode: the parallel mode

110 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• base: the base space set whose default coordinates are being declared

• field: the field to serve as the default coordinates

Description: Many fields might be suitable to serve as a coordinate field. Absolute coordinates and displacements are
just two examples. This reference manual is not the appropriate place to go into the specific mathematical requirements
for a field to serve as a coordinate field. However, recognizing that more than one field can serve as a coordinate field
raises the issue, which field should be used as the coordinate field if nothing else is specified. This function declares
which field ought to be treated as the default coordinates.

Note that in order for a field to be declared as the default coordinate field for a set, the field must first be declared as a
coordinate field.

Preconditions:

• pmode must be valid. (low-cost)

• base must be a valid set handle. (low-cost)

• field must be a valid field handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Fields: Introduction for current chapter

Declare a field

saf_declare_field is a function defined in field.c.

Synopsis:

SAF_Field * saf_declare_field(SAF_ParMode pmode, SAF_Db *db, SAF_FieldTmpl *ftmpl,
const char *name, SAF_Set *base_space, SAF_Unit *unit,
SAF_Cat *homog_decomp, SAF_Cat *coeff_assoc, int assoc_ratio,
SAF_Cat *eval_cat, SAF_Eval *eval_func, hid_t data_type,
SAF_Field *comp_flds, SAF_Interleave comp_intlv, int *comp_order,
void **bufs, SAF_Field *fld)

Formal Arguments:

• pmode: The parallel mode.

• db: The database where the new field will be created.

• ftmpl: The field template handle for this field. Recall that the field template describes the abstract features
of the field, including the quantity the field represents, and the algebraic type. The field being created in this
saf_declare_field call is simply an instance of the abstract field characterized by the field template
passed as this argument.

• name: The name of this field. If a writer client declares different fields with the same name, a reader client that
searches for fields by name will find multiple matches. However, it is ok to declare different fields with the same
name.

• base_space: The base_space of this field

• unit: The specific units of measure. If in the field template, the quantity was not specified, then
the only valid value that can be passed for units is SAF__NOT_APPLICABLE_UNIT. Otherwise, pass
SAF__NOT_SET_UNIT if you do not want to specify units for the field or pass one of the valid units of
measure.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 111

SAF User Manual, Release 2.0.3

• homog_decomp: If the field is homogeneous, enter SAF__SELF here. Otherwise, the field is inhomogenous
and this argument must indicate a decomposing collection of the field’s base-space upon which it is presumably
homogeneous. We say presumably because it is not a requirement that the field be homogeneous on each of
the members of the collection indentified here. The field pieces defined on any one or all of those members can,
in turn, also be inhomogeneous. The only requirement is that the collection identified here be a decomposition
of the associated set and that, ultimately, the recursion of defining inhomogeneous fields in terms of other
inhomogeneous fields terminates on a bunch of homogeneous pieces. A common use of this argument is to
indicate that the field is broken into independent chunks of storage (either within a single processor or distributed
across other processors). In fact, prior to SAF-1.2.1, that was all this argument was used for and documented
as supporting. Any collections contained in the base space set for which the IS_DECOMP argument in the
saf_declare_collection call was SAF__DECOMP_TRUE, can be passed here. See the chapter introduction for
fields for further information (see *Fields*).

• coeff_assoc: This argument identifies the category of a collection in the base space set which the field’s
coefficients are n:1 associated with. For example, for a field whose coefficients are 1:1 with a collection of a
category representing the nodes, you would identify that collection category with this argument. Likewise, for
a field whose coefficients are 4:1 with a collection of a category representing the elements in the problem, you
would identify that collection with this argument. Note, if the coefficients are associated with the base space
itself, and not the members of a collection in the base-space set, you would pass SAF__SELF for this argument.

• assoc_ratio: This argument specifies the n in the n:1 association described above. For example, if for
every member of the collection representing the elements, you have 1 coefficient, then this value would be 1.
This value is always non-negative.

• eval_cat: This argument specifies the collection whose members represent the pieces in the piecewise eval-
uation of the field. If there is only a single piece (e.g. the whole base space), then pass SAF__SELF. For
example, a collection category identifying the nodes for the coeff_assoc argument and an assoc_ratio
of 1 indicates only that we have 1 coefficient for each member of the collection of nodes. It does not indicate
which collection in the base space (for example the elements), the field is actually piecewise evaluated on.

• eval_func: This argument identifies one of several evaluation functions currently known to SAF. Again,
SAF does not yet actually evaluate a field. It only stores the descriptive information to support its evaluation.
See definition of SAF__EvalFunc enum for the possible values. Also, we have provided some convenience
macros for this and coeff_assoc, assoc_ratio, and eval_cat arguments for common cases; node
centered and zone centered fields. Pass SAF__NODAL for a node centered field, SAF__ZONAL for a zone
centered field, SAF__DECOMP for a field that is piecewise constant over some decomposing collection (e.g.
domains) or SAF__CONSTANT for a constant field.

• data_type: The type of data in bufs if bufs are provided.

• comp_flds: Array of component field handles. Pass null only if there are no components to this field (the
field is a scalar field).

• comp_intlv: The particular fashion in which components are interleaved. Currently there are really
only two: SAF__INTERLEAVE_VECTOR and SAF__INTERLEAVE_COMPONENT. These represent the
XYZXYZ. . . ‘‘XYZ‘‘ and the XXX. . . ‘‘XYYY‘‘. . . ‘‘YZZZ‘‘. . . ‘‘Z‘‘ cases. Note that interleave really only deals
within a single blob of storage. In the case of a composite field whose coefficients are stored independently
on the component fields, interleave really has no meaning (use SAF__INTERLEAVE_INDEPENDENT). Inter-
leave only has meaning on fields with storage. In the case of a scalar field interleave is also meaningless, both
cases degenerate to the same layout: XXX. . . ‘‘X‘‘ (use SAF__INTERLEAVE_NONE).

• comp_order: Only relevant for fields with component fields. This value indicates the order of the fields in the
comp_flds relative to the registered order. Pass NULL if the permutation is the identity.

• bufs: The field data buffers. Pass NULL if you would rather provide this on the write call. Note that the
number and size of buffers (if any) is specified by the interleave and number of components. If the field has
vector interleave then there may only be 1 buffer, if the field has component interleave then there must be
num_components buffers. The number of components is defined in the field template specified by ftmpl.

112 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• fld: [OUT] The optional returned field handle. If NULL is passed here then this function allocates the field
handle before returning it.

Description: This function is used to declare a field. A field is some physical quantity known to have value at every
point in the infinite set of points that serves as the field’s base space. That is, a field is some continuous (as opposed
to discrete) quantity that exists and has value everywhere over the base space the field is defined on - that is, at every
point in the infinite set of points that is the field’s base space.

We apologize for the large number of arguments in this function call. We have developed prototype interfaces that
reduce this complexity significantly but introduce other issues. As more experience is gained with this software and
data model, we’ll have a better idea how to proceed.

In SAF, the description of a field is done in two parts; a field template (see saf_declare_field_tmpl) and an instance of a
field. The field template object describes all the abstract information about a field. The field object itself describes the
implementation details of an instance of a field. For example, the field template object describes the abstract quantity
of measure the field represents, such as length (see *Quantities*) while the field object describes specific units of
measure for that quantity such as meters (see *Units*).

You will notice that the base space upon which the field is defined is not part of the field object. Instead it is part of
the field template object. This allows the field template object to classify fields according to which pieces of the base
space they are defined on.

In the hierarchy of sets that serve as candidate base spaces for fields, the idea is to declare a field on the top-most set in
the hierarchy which contains all points the field is defined on but contains no points the field is not defined on. Such a
set is also called the maximal set of the field. It could also be thought of as the region of support of the field.

There is a big difference between declaring a field that is identically zero over portions of a set and declaring the field
only over the subset(s) for which it is non-zero. The former indicates that the field is known everywhere on the set and
is zero in some places. The latter indicates that the field is known on the subset(s) and undefined (e.g. does not exist)
anywhere else.

At present, SAF really does not do much to interpret the data or descriptive information for a field. Currently, SAF
simply allows a writer client to describe the salient features of a field and a reader client to discover them. As SAF
evolves, SAF will be able to interpret more and more about the field itself.

Preconditions:

• pmode must be valid. (low-cost)

• base_space must be a valid set handle. (low-cost)

• name must be non-null. (low-cost)

• ftmpl must be a valid field template. (low-cost)

• STORAGE_DECOMP must be either SELF_DECOMP or a valid cat handle. (low-cost)

• coeff_assoc must be a valid cat handle. (low-cost)

• eval_cat must be a valid cat handle. (low-cost)

• unit must be a valid unit handle if supplied. (low-cost)

• unit must agree with quantity defined on field template. (low-cost)

• assoc_ratio must be non-negative. (low-cost)

• eval_func must be a valid evaluation type handle if supplied. (low-cost)

• Units of component fields must match units of composite field. (low-cost)

Return Value: Returns a handle to the set on success (either the one passed in by the fld argument or one allocated
herein); returns NULL on failure.

See Also:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 113

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• saf_declare_collection: 11.1: Declare a collection

• saf_declare_field_tmpl: 15.2: Declare a field template

• Fields: Introduction for current chapter

Get a description of a field

saf_describe_field is a function defined in field.c.

Synopsis:

int saf_describe_field(SAF_ParMode pmode, SAF_Field *field, SAF_FieldTmpl *ftmpl,
char **name, SAF_Set *base_space, SAF_Unit *unit, hbool_t *is_coord,
SAF_Cat *homog_decomp, SAF_Cat *coeff_assoc, int *assoc_ratio,
SAF_Cat *eval_coll, SAF_Eval *eval_func, hid_t *data_type, int *num_comps,
SAF_Field **comp_flds, SAF_Interleave *comp_intlv, int **comp_order)

Formal Arguments:

• pmode: The parallel mode.

• field: The field handle.

• ftmpl: [OUT] The returned field template handle. Pass NULL if you do not want this value returned.

• name: [OUT] The returned name of the field. Pass NULL if you do not want this value returned. (see *Returned
Strings*).

• base_space: [OUT] The returned base space of the field. Pass NULL if you do not want this value returned.

• unit: [OUT] The returned unit of measure.

• is_coord: [OUT] A returned boolean indicating if the field is a coordinate field. Pass NULL if you do not
want this value returned.

• homog_decomp: NULL: If the field is homogeneous, the value returned here, if requested, is always
SAF__SELF. That is, SAF__EQUIV``(``SAF__SELF``(db), ``homog_decomp) will return true.
Otherwise, it will return false, the field is inhomogeneous and this argument is the decomposition on which the
field is presumably piecewise homogeneous. Pass NULL if you do not want this value returned.

• coeff_assoc: [OUT] The collection with which the field coefficients are associated in an n:1 relationship.
Pass NULL if you do not want this value returned.

• assoc_ratio: [OUT] The n’ in the ‘‘n:1‘ relationship described for the coeff_assoc argument. Pass
NULL if you do not want this value returned.

• eval_coll: [OUT] The collection whose sets decompose the base space set and over which the field is actually
evaluated. Pass NULL if you do not want this value returned.

• eval_func: [OUT] The evaluation function. Pass NULL if you do not want this value returned.

• data_type: [OUT] The file datatype of the field. Pass NULL if you do not want this value returned. The
caller is responsible for invoking H5Tclose when the datatype is no longer needed. A negative returned value
indicates no known file datatype.

• num_comps: [OUT] The number of components in the field. Pass NULL if you do not want this value returned.

• comp_flds: [OUT] The component fields. Pass NULL if you do not want this value returned.

• comp_intlv: [OUT] The particular fashion in which components are interleaved. Currently there are re-
ally only two: SAF__INTERLEAVE_VECTOR and SAF__INTERLEAVE_COMPONENT. These represent the
XYZXYZ. . . ‘‘XYZ‘‘ and the XXX. . . ‘‘XYYY‘‘. . . ‘‘YZZZ‘‘. . . ‘‘Z‘‘ cases. Note that interleave really only deals
within a single blob of storage. In the case of a composite field whose coefficients are stored independently

114 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

on the component fields then interleave really has no meaning (use SAF__INTERLEAVE_INDEPENDENT).
Interleave only has meaning on fields with storage. In the case of a scalar field interleave is also meaningless,
both cases degenerate to the same layout: XXX. . . ‘‘X‘‘ (use SAF__INTERLEAVE_NONE).

• comp_order: [OUT] The component ordering in the field. Pass NULL if you do not want this value returned.

Description: NOT WRITTEN YET.

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle for all participating processes. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Fields: Introduction for current chapter

Find coordinate fields

saf_find_coords is a function defined in field.c.

Synopsis:

int saf_find_coords(SAF_ParMode pmode, SAF_Db *db, SAF_Set *base, int *num,
SAF_Field **found)

Formal Arguments:

• pmode: The parallel mode.

• db: Database in which to limit the search.

• base: The base space for which coordinate fields are desired.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: Use this function to find the coordinate fields of a set. In general, we allow for more than one coordinate
field to be defined. For example, in engineering codes, there are the deformed and undeformed coordinates. Thus, this
function can return multiple fields. Even so, there is only ever one field known as the default coordinate field for a
set. This field is found with a call to saf_find_default_coords.

Preconditions:

• pmode must be valid. (low-cost)

• base must be either a valid set handle or the universe set for all participating processes. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_find_default_coords: 16.15: Find default coordinate fields

• Fields: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 115

SAF User Manual, Release 2.0.3

Find default coordinate fields

saf_find_default_coords is a function defined in field.c.

Synopsis:

SAF_Field * saf_find_default_coords(SAF_ParMode pmode, SAF_Set *base, SAF_Field *field)

Formal Arguments:

• pmode: The parallel mode

• base: The set for which the default coordinate field is returned

• field: [OUT] The returned field handle, if found, otherwise SAF__NOT_SET_FIELD

Description: Use this function to find the default coordinate fields of a set. There is only ever one default coordinate
field for a set.

Preconditions:

• pmode must be valid. (low-cost)

• base must be a valid set handle for participating processes. (low-cost)

Return Value: On success, returns a pointer to the default coordinate field. If the field argument was supplied then
it is filled in and becomes the return value, otherwise a new field link is allocated and returned. Returns NULL on
failure. If no default coordinate field has been assigned to the base set then a valid object link is returned but that
link is nil (i.e., a call to :file:`SS_PERS_ISNULL ../sslib_refman.rest/SS_PERS_ISNULL.rst‘ on the return value is
true but the return value is not a NULL C pointer).

See Also:

• Fields: Introduction for current chapter

Find fields

saf_find_fields is a function defined in field.c.

Synopsis:

int saf_find_fields(SAF_ParMode pmode, SAF_Db *db, SAF_Set *base, const char *name,
SAF_Quantity *quantity, SAF_Algebraic *atype, SAF_Basis *basis,
SAF_Unit *unit, SAF_Cat *coeff_assoc, int assoc_ratio, SAF_Cat *eval_decomp,
SAF_Eval *eval_func, int *nfound, SAF_Field **found)

Formal Arguments:

• pmode: The parallel mode.

• db: Database in which to limit the search.

• base: The base space to limit the search to. Pass SAF__UNIVERSE or NULL if you do not want to limit the
search to any particular base space.

• name: Limit search to fields with this name. Pass SAF__ANY_NAME if you do not want to limit the search.

• quantity: Limit search to fields of specified quantity. Pass NULL to not limit search.

• atype: Limit the search to this algebraic type. Pass SAF__ALGTYPE_ANY if you do not want to limit the
search.

• basis: Limit the search to this basis. Pass SAF__ANY_BASIS if you do not want to limit the search.

• unit: Limit search to fields with these units. Pass SAF__ANY_UNIT to not limit search.

116 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• coeff_assoc: Limit search. Pass SAF__ANY_CAT to not limit the search.

• assoc_ratio: Limit search. Pass SAF__ANY_RATIO to not limit the search.

• eval_decomp: Limit search. Pass SAF__ANY_CAT to not limit the search.

• eval_func: Limit search. Pass SAF__ANY_EFUNC to not limit the search.

• nfound: For this and the succeeding argument, (see *Returned Handles*).

• found: For this and the preceding argument, (see *Returned Handles*).

Description: This function allows a client to search for fields in the database. The search may be limited by one or
more criteria such as the name of the field, the quantity the field represents, the base space the field is defined on, etc.,
etc.

Preconditions:

• pmode must be valid. (low-cost)

• base must either be a valid set handle or the universe set if supplied. (low-cost)

• quantity must either be a valid quantity handle or SAF__ANY_QUANTITY. (low-cost)

• atype must be a valid algebraic type handle or SAF__ANY_ALGEBRAIC. (low-cost)

• basis must be a valid basis handle or SAF__ANY_BASIS. (low-cost)

• unit must either be a valid unit handle or SAF__ANY_UNIT. (low-cost)

• eval_func must be a valid evaluation function handle or SAF__ANY_EVALUATION. (low-cost)

• coeff_assoc must either be a valid cat handle or SAF__ANY_CAT. (low-cost)

• eval_decomp must either be a valid cat handle or SAF__ANY_CAT. (low-cost)

• nfound and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Should SAF traverse up the SIL to find all fields that are actually defined for the given set?

See Also:

• Fields: Introduction for current chapter

Get datatype and size for a field

saf_get_count_and_type_for_field is a function defined in field.c.

Synopsis:

int saf_get_count_and_type_for_field(SAF_ParMode pmode, SAF_Field *field,
SAF_FieldTarget *target, size_t *Pcount, hid_t *Ptype)

Formal Arguments:

• pmode: The parallel mode.

• field: The field handle.

• target: Optional field targeting information.

• Pcount: [OUT] The number of items that would be placed in the buffer by a call to the saf_read_field function.
The caller may pass a value of NULL for this parameter if this value is not desired.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 117

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• Ptype: [OUT] The type of the items that would be placed in the buffer by a call to the saf_read_field function.
The caller may pass a value of NULL for this parameter if this value is not desired. The returned HDF5 datatype
can be closed by the caller when no longer needed.

Description: This function is used to retrieve the number and type of items that would be retrieved by a call to the
saf_read_field function. This function may be used by the caller to determine the size of the buffer needed when
pre-allocation is desired or to determine how to traverse the buffer returned by the saf_read_field function.

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle. (low-cost)

• If targeting of storage decomposition is used, the read must be a SAF__ALL mode read or the. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: Fields stored on a decomposition must have same datatype. It may be possible to relax this a bit. Also what
if the field has been decomposed into blocks? say triangles and quads, field remapping may be possible but makes no
sense as the DOFs would be all mixed-up some for triangles, some for quads.

See Also:

• saf_read_field: 16.21: Read the data for a field

• Fields: Introduction for current chapter

Get an attribute from a field

saf_get_field_att is a function defined in field.c.

Synopsis:

int saf_get_field_att(SAF_ParMode pmode, SAF_Field *fld, const char *name, hid_t *type, int *count,
void **value)

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__Field objects to provide the client with compile time type checking. For a description, see saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• Fields: Introduction for current chapter

Is field stored on self

saf_is_self_stored_field is a function defined in field.c.

Synopsis:

int saf_is_self_stored_field(SAF_ParMode pmode, SAF_Field *field, hbool_t *result)

Formal Arguments:

• pmode: The parallel mode.

• field: The handle of the field which is to be examined.

• result: [OUT] Optional pointer to memory which is to receive the result of the test: true if the field is self
stored or false if it is stored on a decomposition.

118 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: This function is used by a client to test if a field is stored on self or on a decomposition. The boolean
result is returned by reference.

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Fields: Introduction for current chapter

Put an attribute with a field

saf_put_field_att is a function defined in field.c.

Synopsis:

int saf_put_field_att(SAF_ParMode pmode, SAF_Field *field, const char *name, hid_t type, int count,
const void *value)

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__Field objects to provide the client with compile time type checking. For a description, see saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• Fields: Introduction for current chapter

Read the data for a field

saf_read_field is a function defined in field.c.

Synopsis:

int saf_read_field(SAF_ParMode pmode, SAF_Field *field, SAF_FieldTarget *target, int mem-
ber_count, SAF_RelRep *req_type, int *member_ids, void **Pbuf)

Formal Arguments:

• pmode: The parallel mode.

• field: The field which is to be read.

• target: Field targeting information.

• member_count: A count of the number of members of the collection in which the field’s dofs are n:1
associated with that are actually being written in this call. This value is ignored if you are reading the entire
field’s dofs in this call (i.e., req_type = SAF__TOTALITY). Also note that as a convenience, we provide the
macro SAF__WHOLE_FIELD which expands to a comma separated list of appropriate values for this argument
and the next two, for the case in which the whole field is being read in this call.

• req_type: The type of I/O request. We use a relation representation type here to specify the type of the
partial request because it captures the necessary information. Pass SAF__HSLAB if you are reading the dofs of
a partial hyperslab of the members of the associated collection. In this case, member_ids points to 3 N-tuples
of starts, counts and strides of the hyperslab (hypersample) request. Pass SAF__TUPLES, if you are reading
the dofs for an arbitrary list of members of the associated collection. In this case, the member_ids points to

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 119

SAF User Manual, Release 2.0.3

a list of N-tuples. In both cases, ‘N’ is the number of indexing dimensions in the associated collection. Finally,
pass SAF__TOTALITY if you are reading the entire field’s set of dofs.

• member_ids: Depending on the value of req_type, this argument points to 3 N-tuples storing, respectively,
the starts, counts and strides in each dimension of the associated collection or to a list of member_count
N-tuples, each one identifying a single member of the associated collection or to NULL in the case of a
SAF__TOTALITY request.

• Pbuf: [IN``|``OUT] A pointer to a buffer pointer which is to receive the values read. The caller may supply
a pointer to a value of NULL if this function is to allocate a buffer. If the caller supplies a pointer to a non-NULL
pointer (to a buffer) then it is up to the caller to ensure that the buffer is of sufficient size to hold all of the
data retrieved. The caller should use saf_describe_field or saf_get_count_and_type_for_field to determine the
datatype of the values read.

Description: This is function is used to read a field’s data. If the field is not an indirect reference to other fields, this
call involves real disk I/O. All functions in SAF with either “read” or “write” in the name potentially involve real disk
I/O.

This function allows a client to read either the entire field’s data or a portion of the field’s data. Recall that the degrees
of freedom (dofs) of a field are n:1 associated with the members of some collection in the set upon which the field is
defined. We call this collection the associated collection.

In order to specify a partial request, the client is required to specify which members of the associated collection it is
reading the dofs for. Ultimately, those members may be specified using a N dimensional hyperslab (or hypersample)
or an arbitrary list of N-tuples. In either case, the number of dimensions, ‘N’, is the number of indexing dimensions in
the associated collection.

At present, there are several limitations. First, the collection must be 1 dimensionally indexed. Next, only the hyperslab
mode or a single member in tuple-mode are supported; not hypersamples and not an arbitrary list. Also, if the field is
a multi-component field, then the only supported interleave mode is SAF__INTERLEAVE_VECTOR.

Finally, we provide as a convenience the macro SAF__WHOLE_FIELD which expands to a comma separated list of
values, 0, SAF__TOTALITY, NULL, for the three arguments member_count, req_type, member_ids for the
case in which the client is reading the whole field in this call.

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle. (low-cost)

• Pbuf must be non-null. (low-cost)

• If partial I/O request, associated collection must be 1D indexed, req_typemust be SAF__HSLAB. (high-cost)

• If field targeting of storage decomposition is used, the read must be a SAF__ALL mode read or the. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: A partial I/O request looks a lot like a subset relation. In fact, we even use the same data type, SAF__SRType,
to identify the type of partial I/O request. It may be difficult for a client to distinguish between making a partial I/O
request and making real subsets. In theory, there really should be no difference. The act of reading/writing a portion
of a field is the act of defining a subset of the base space the field is defined on and then restricting the field to that
subset. In the current implementation, this requires, at a minimum, the ability to create transient objects such as the
subset representing the piece of the field being read/written in this call. In addition, it really requires decoupling the
storage containers into which field’s data goes from declaring and reading/writing fields.

For an indirect field the the local fields are all “similar”. That is, they have the same algebraic type, association
category, units and such. This function should check for this but doesn’t. In the future some differences can be
smoothed-over (such as units) but some probably can not (such as algebraic type).

120 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

The proper use of pmode is not fully worked out.

Multiple indirection may actually fall out of this solution but that is not at all clear.

When remapping an indirect field we only look in the top-scope of the file containing the field’s base space when
searching for the subset relations. [rpm 2004-05-24]

See Also:

• saf_describe_field: 16.13: Get a description of a field

• saf_get_count_and_type_for_field: 16.17: Get datatype and size for a field

• Fields: Introduction for current chapter

Set the destination form of a field

saf_target_field is a function defined in field.c.

Synopsis:

int saf_target_field(SAF_FieldTarget *target, SAF_Unit *targ_units,
SAF_Cat *targ_storage_decomp, SAF_Cat *targ_coeff_assoc,
int targ_assoc_ratio, SAF_Cat *targ_eval_coll, SAF_Eval *targ_func,
hid_t targ_data_type, SAF_Interleave comp_intlv, int *comp_order)

Formal Arguments:

• target: [OUT] The target information that will be initialized by this call.

• targ_units: The new units. This parameter is ignored at this time.

• targ_storage_decomp: The new storage decomposition.

• targ_coeff_assoc: This parameter is ignored at this time.

• targ_assoc_ratio: This parameter is ignored at this time.

• targ_eval_coll: This parameter is ignored at this time.

• targ_func: This parameter is ignored at this time.

• targ_data_type: The new destination data type. When the saf_write_field function is called the datatype
of the dataset produced is determined by this parameter. When the saf_read_field function is called, the datatype
of the values placed in the caller’s memory is determined by this parameter. If a value of H5I_INVALID_HID
is passed for this parameter then datatype targeting is turned off and the default mechanism for determining the
destination datatype is used.

• comp_intlv: The particular fashion in which components are interleaved. Currently there are really
only two: SAF__INTERLEAVE_VECTOR and SAF__INTERLEAVE_COMPONENT. These represent the
XYZXYZ. . . ‘‘XYZ‘‘ and the XXX. . . ‘‘XYYY‘‘. . . ‘‘YZZZ‘‘. . . ‘‘Z‘‘ cases. Note that interleave really only deals
with a single blob of storage. In the case of a composite field whose coefficients are stored independently on
the component fields then interleave really has no meaning (use SAF__INTERLEAVE_INDEPENDENT). In-
terleave only has meaning on fields with storage. In the case of a scalar field interleave is also meaningless,
both cases degenerate to the same layout: XXX. . . ‘‘X‘‘ (use SAF__INTERLEAVE_NONE). This parameter is
ignored at this time.

• comp_order: Only relevant for fields with component fields. This value indicates the order of the field IDs in
the COMP_FLDS relative to the registered order. Pass NULL if the permutation is the identity. This parameter is
ignored at this time.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 121

SAF User Manual, Release 2.0.3

Description: Setup targeting information for a field during read or write. Please see the introductory note in the Field’s
chapter for some information on field targeting.

Preconditions:

• STORAGE_DECOMP must be either NOT_SET, SELF_DECOMP or a valid cat handle. (low-cost)

• target must be non-null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_read_field: 16.21: Read the data for a field

• saf_write_field: 16.23: Write the data for a field

• Fields: Introduction for current chapter

Write the data for a field

saf_write_field is a function defined in field.c.

Synopsis:

int saf_write_field(SAF_ParMode pmode, SAF_Field *field, int member_count,
SAF_RelRep *req_type, int *member_ids, int nbufs, hid_t buf_type, void **bufs,
SAF_Db *file)

Formal Arguments:

• pmode: The parallel mode.

• field: The field to write.

• member_count: A count of the number of members of the collection in which the field’s dofs are n:1
associated that are actually being written in this call. This value is ignored if you are writing the entire field’s
dofs in this call (i.e., req_type is SAF__TOTALITY). Also note that as a convenience, we provide the macro
SAF__WHOLE_FIELD which expands to a comma separated list of appropriate values for this argument and
the next two, for the case in which the whole field is being written in this call.

• req_type: The type of I/O request. We use a relation representation type here to specify the type of the
partial request because it captures the necessary information. Pass SAF__HSLAB if you are writing the dofs of
a partial hyperslab of the members of the associated collection. In this case, member_ids points to 3 N-tuples
of starts, counts and strides of the hyperslab (hypersample) request. Pass SAF__TUPLES, if you are writing the
dofs for an arbitrary list of members of the associated collection. In this case, the member_ids points to a list
of N-tuples. In both cases, ‘N’ is the number of indexing dimensions in the associated collection. Finally, pass
SAF__TOTALITY if you are writing the entire field’s set of dofs.

• member_ids: Depending on the value of req_type, this argument points to 3 N-tuples storing, respectively,
the starts, counts and strides in each dimension of the associated collection or to a list of member_count
N-tuples, each one identifying a single member of the associated collection or to NULL in the case of a
SAF__TOTALITY request.

• nbufs: The number of buffers. Valid values are either 1 or a value equal to the number of components of the
field. A value greater than 1 indicates that the field is stored component by component, one buffer for each
component. Note, however, that current limitations of partial requests support only fields that are interleaved by
SAF__INTERLEAVE_VECTOR. This, in turn, means that in a partial I/O request, nbufs can only ever be one.

• buf_type: The type of the objects in the buffer(s). If the buffer datatype was provided in the saf_declare_field
call that produced the field handle then this parameter should have a negative value. If however the datatype was

122 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

not provided in the saf_declare_field or if the handle was the result of a find operation then the datatype must
be provided in this call.

• bufs: The buffers.

• file: Optional file into which the data is written. If none is supplied then the data is written to the same file as
the field.

Description: This function is used to write a field’s data. If the field is not an indirect reference to other fields, this
call involves real disk I/O. All functions in SAF with either “read” or “write” in the name potentially involve real disk
I/O.

This function allows a client to write either the entire field’s data or a portion of the field’s data. Recall that the degrees
of freedom (dofs) of a field are n:1 associated with the members of some collection in the set upon which the field is
defined. We call this collection the associated collection.

In order to specify a partial request, the client is required to specify which members of the associated collection it is
writing the dofs for. Ultimately, those members may be specified using a N dimensional hyperslab (or hypersample)
or an arbitrary list of N-tuples. In either case, the number of dimensions, ‘N’, is the number of indexing dimensions in
the associated collection.

At present, there are several limitations. First, the collection must be 1 dimensionally indexed. Next, only the hyperslab
mode or a single member in tuple-mode are supported, not hypersamples and not an arbitrary list. Finally, if the field
is a multi-component field, then the only supported interleave mode is SAF__INTERLEAVE_VECTOR.

For indirect fields, the notion of writing on the composite or component fields is lost. On an indirect, composite field,
the values written must be handles to other composite fields. Likewise for its component fields. The values written
must be handles for other component fields.

Finally, we provide as a convenience the macro SAF__WHOLE_FIELD which expands to a comma separated list of
values, 0, SAF__TOTALITY, NULL, for the three arguments member_count, req_type, member_ids for the
case in which the client is writing the whole field in this call.

Preconditions:

• pmode must be valid. (low-cost)

• field must be a valid field handle. (low-cost)

• bufs must be specified here or in the saf_declare_field call (not both). (low-cost)

• Pass either valid bufs and nbufs``>0 or ``NULL and ‘‘nbufs‘‘==0. (low-cost)

• If partial I/O request, collection must be 1D indexed, req_type must be SAF__HSLAB. (high-cost)

• Buffer datatype must be specified in field declaration or write. (low-cost)

• Buffer datatype must be consistent between field declaration and write. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: SAF_EACH mode is a collective call where each of the N tasks provides a unique relation. SAF will
create a single HDF5 dataset to hold all the data and will create N blobs to point into nonoverlapping regions in that
dataset. In SAF__EACH mode the call must still be collective across the file communicator (or the communicator
of the dataset to which field belongs if file is null). This requirement is due to the fact that an HDF5 dataset may
need to be created and such an operation is collective.

Issues: A partial I/O request looks a lot like a subset relation. In fact, we even use the same data type, SAF__SRType,
to identify the type of partial I/O request. It may be difficult for a client to distinguish between making a partial I/O
request and making real subsets. In theory, there really should be no difference. The act of writing a portion of a
field is the act of defining a subset of the base space the field is defined on and then restricting the field to that subset.
In the current implementation, this requires, at a minimum, the ability to create transient objects such as the subset

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 123

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

representing the piece of the field being written in this call. In addition, it really requires decoupling the storage
containers into which field’s data goes from declaring and writing fields.

For a compound data-type on a composite field, we probably ought to confirm a) the rank of the compound type is
equal to the number of components, b) the type of each member of the compound type is equal to the type of each of
the component fields (assuming both are ordered the same), and c) the names of the member types are the same as the
component fields. Currently we are only checking a).

Computing the actual size of the I/O request here is NO SMALL TASK. It depends on a combination of factors including
the number of buffers, the number of members whose dofs are being written, the association ratio, the data-type and
whether the field is direct or indirect.

Is it possible that a SAF__EACH call will have a different offset and data for each task? If so we’ll have to do some
communicating first otherwise :file:`ss_file_synchronize ../sslib_refman.rest/ss_file_synchronize.rst‘ will see
that each task made incompatible modifications to this object. This code just checks that for now. [rpm 2004-06-07]

See Also:

• saf_declare_field: 16.12: Declare a field

• Fields: Introduction for current chapter

State Templates

A state template is a pattern for what types of fields can be grouped into a state. This pattern is specified by a list of
field templates.

Members

The null state template handle

SAF_NULL_STMPL is a macro defined in saf.h.

Synopsis:

SAF_NULL_STMPL(Db)

Description: This macro evaluates to the state template handle for the null state template of the database. The null
set handle is most often only used in a SAF__ONE parallel call where many processors are participating solely for the
sake of collectivity (See *Constants*).

See Also:

• State Templates: Introduction for current chapter

Declare a state template

saf_declare_state_tmpl is a function defined in stempl.c.

Synopsis:

SAF_StateTmpl * saf_declare_state_tmpl(SAF_ParMode pmode, SAF_Db *database, const
char *name, int num_ftmpls, SAF_FieldTmpl *ftmpls,
SAF_StateTmpl *stmpl)

Formal Arguments:

• pmode: The parallel mode.

124 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• name: The name of the state template.

• num_ftmpls: Number of field templates that will comprise this state template.

• ftmpls: Array of field template handles.

• stmpl: The returned state template handle.

Description: This creates a state template associated with a specified suite.

Return Value: Returns a pointer to the new state template on success; null on failure. If the caller supplies a non-null
stmpl argument then this pointer will be the return value, otherwise a state template link will be allocated.

See Also:

• State Templates: Introduction for current chapter

Get a description of a state template

saf_describe_state_tmpl is a function defined in stempl.c.

Synopsis:

int saf_describe_state_tmpl(SAF_ParMode pmode, SAF_StateTmpl *stmpl, char **name,
int *num_ftmpls, SAF_FieldTmpl **ftmpls)

Formal Arguments:

• pmode: The parallel mode.

• stmpl: The state template handle.

• name: [OUT] The returned name. Pass NULL if you do not want the name returned.

• num_ftmpls: [OUT] The returned number of field templates which comprise this state template.

• ftmpls: [OUT] The returned field templates.

Description: Returns a description of a state template.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• State Templates: Introduction for current chapter

Find a state template

saf_find_state_tmpl is a function defined in stempl.c.

Synopsis:

int saf_find_state_tmpl(SAF_ParMode pmode, SAF_Db *database, const char *name,
int *num_stmpls, SAF_StateTmpl **stmpls)

Formal Arguments:

• pmode: The parallel mode.

• database: the database context for this search

• name: The name of the state template you are searching for. Pass SAF__ANY_NAME if you do not wish to limit
your search to just this name.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 125

SAF User Manual, Release 2.0.3

• num_stmpls: For this and the succeeding argument [see Returned Handles].

• stmpls: For this and the preceding argument [see Returned Handles].

Description: Find state templates in a suite.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• State Templates: Introduction for current chapter

Get an attribute attached to a state template

saf_get_state_tmpl_att is a function defined in stempl.c.

Synopsis:

int saf_get_state_tmpl_att(SAF_ParMode pmode, SAF_StateTmpl *stmpl, const char *att_key,
hid_t *att_type, int *count, void **value)

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__StateTmpl objects to provide the client with compile time type checking. For a description, see
saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• State Templates: Introduction for current chapter

Attach an attribute to a state template

saf_put_state_tmpl_att is a function defined in stempl.c.

Synopsis:

int saf_put_state_tmpl_att(SAF_ParMode pmode, SAF_StateTmpl *stmpl, const char *att_key,
hid_t att_type, int count, const void *value)

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__StateTmpl objects to provide the client with compile time type checking. For a description, see
saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• State Templates: Introduction for current chapter

States

A state is a “slice” through a suite at a fixed parameter value (typically time). For example, a state contains all the
following that is associated with a specific time step of a simulation:

• pointer to the computational mesh (i.e., a set);

• pointer to the default coordinate field (an independent variable) of the mesh;

• the time value (also an independent variable) of the state;

126 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• pointers to all the fields (the dependent variables) attached to the mesh at the specific time step.

What if the desired output changes from state to state?. For example, suppose a client writes various combintations
of Coordinates (C), Pressure (P), Temperature (T), Velocity (V) and Stress (S) fields according to the following se-
quence. . .

1 C C
2 C C C C V V
3 C C V V V V C C T T
4 V V T T T T V V P P
5 S S P P P P S S S S
6 +---+---+---+---+---+---+---+---+---+
7 0 1 2 3 4 5 6 7 8 9 <-- indices

1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 <-- times

The client should declare a state template that contains field templates for all the fields that will be referenced at any
state. In the example above, the state template should consist of field templates for C, V, T, P, and S. For the states that
don’t contain all the fields, the client should pass a SAF__NOT_APPLICABLE_FIELD for those fields that aren’t
applicable for the state being written.

Members

The null state group handle

SAF_NULL_STATE_GRP is a macro defined in saf.h.

Synopsis:

SAF_NULL_STATE_GRP(Db)

Description: This macro evaluates to the state handle for the null state of the database. The null state handle is most
often only used in a SAF__ONE parallel call where many processors are participating solely for the sake of collectivity
(See *Constants*).

See Also:

• States: Introduction for current chapter

Declare a state group

saf_declare_state_group is a function defined in state.c.

Synopsis:

SAF_StateGrp * saf_declare_state_group(SAF_ParMode pmode, SAF_Db *db, const
char *name, SAF_Suite *suite, SAF_Set *mesh_space,
SAF_StateTmpl *stmpl, SAF_Quantity *quan-
tity, SAF_Unit *unit, hid_t coord_data_type,
SAF_StateGrp *state_grp)

Formal Arguments:

• pmode: The parallel mode.

• db: The database in which to declare the new state group.

• name: The name of this state group.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 127

SAF User Manual, Release 2.0.3

• suite: The suite that these states are associated with.

• mesh_space: The set representing the computational mesh

• stmpl: A state template that defines the pattern (via a list of field templates) of fields that can be stored in each
state.

• quantity: The quantity associated with the axis of the parametric space. For example,
SAF__TIME_QUANTITY.

• unit: The units associated with the axis of the parametric space.

• coord_data_type: The data type of the coordinates of the parametric space.

• state_grp: The returned handle for a state group.

Description: A state group contains all of the states associated with a suite. It contains:

1 - a name
2 - pointer to the suite that these states are attached to
3 - array of sets that represent the computational meshes associated with each state
4 - a coordinate field containing two components
5 -- a scalar field whose values are the parametric values (e.g., time values)

→˓associated with each state
6 -- a field whose values are IDs of the default coordinate fields (the

→˓independent variable) of the
7 computational mesh associated with each state
8 - a field containing IDs of all the fields (dependent variables) attached to the

→˓computational mesh at each state

Return Value: Returns a pointer to the new state group on success; null on failure. If the caller supplies a state_grp
argument then that becomes the return value, otherwise a new state group link is allocated herein.

Issues: The new implementation of state group supercedes the current concept of a “state field”. A “state field”, as cur-
rently implemented, is just one component of a state group. Thus, we can delete all references to SAF__StateFld
and add the new type SAF__StateGrp that contains:

1 - the name of the state group
2 - pointer to the SAF_Suite that the state group is attached to
3 - array of pointers to the SAF_Sets that represent the computational meshes

→˓associated with each state
4 - pointer to a SAF_Field coordinate field containing two components (this field may

→˓have to be an indirect field
5 if we don't support composite fields with heterogeneous components):
6 -- a scalar field whose values are the parametric values (e.g., time values)

→˓associated with each state
7 -- an indirect field whose values are IDs of the default coordinate fields of

→˓the computational mesh
8 associated with each state
9 - pointer to an indirect SAF_Field containing IDs of all the fields (dependent

→˓variables) attached to the
10 computational mesh at each state (this indirect field is what is currently a

→˓"state field")

See Also:

• States: Introduction for current chapter

128 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Get a description of a state group

saf_describe_state_group is a function defined in state.c.

Synopsis:

int saf_describe_state_group(SAF_ParMode pmode, SAF_StateGrp *state_grp, char **name,
SAF_Suite *suite, SAF_StateTmpl *stmpl, SAF_Quantity *quantity,
SAF_Unit *unit, hid_t *coord_data_type, int *num_states)

Formal Arguments:

• pmode: The parallel mode.

• state_grp: The state group to be described.

• name: [OUT] Returned name of the state group. Pass NULL if you do not want this value returned.

• suite: [OUT] Returned suite the state group is associated with.

• stmpl: [OUT] Returned state template. Pass NULL if you do not want this value returned.

• quantity: [OUT] The returned quantity associated with the axis of the parametric space. For example,
SAF__TIME_QUANTITY.

• unit: [OUT] The returned units associated with the axis of the parametric space.

• coord_data_type: [OUT] The returned data type of the coordinates of the parametric space.

• num_states: [OUT] Returned number of states that have been written to this state group. Pass NULL if you
do not want this value returned.

Description: Returns the description of a state group

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• States: Introduction for current chapter

Find state groups

saf_find_state_groups is a function defined in state.c.

Synopsis:

int saf_find_state_groups(SAF_ParMode pmode, SAF_Suite *suite, const char *name,
int *num_state_grps, SAF_StateGrp **state_grps)

Formal Arguments:

• pmode: The parallel mode.

• suite: The suite within which to search.

• name: The name of the state group for which to search. Pass SAF__ANY_NAME if you do not want to limit
your search.

• num_state_grps: [OUT] Returned number of state groups found.

• state_grps: [OUT] Returned state groups found.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 129

SAF User Manual, Release 2.0.3

Description: This finds the state groups that match specified criteria.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• States: Introduction for current chapter

Get an attribute attached to a state group

saf_get_state_grp_att is a function defined in state.c.

Synopsis:

int saf_get_state_grp_att(SAF_ParMode pmode, SAF_StateGrp *state_grp, const char *key,
hid_t *type, int *count, void **value)

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__StateGrp objects to provide the client with compile time type checking. For a description, see
saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• States: Introduction for current chapter

Attach an attribute to a state group

saf_put_state_grp_att is a function defined in state.c.

Synopsis:

int saf_put_state_grp_att(SAF_ParMode pmode, SAF_StateGrp *state_grp, const char *key,
hid_t type, int count, const void *value)

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__StateGrp objects to provide the client with compile time type checking. For a description, see
saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• States: Introduction for current chapter

Retrieve a state

saf_read_state is a function defined in state.c.

Synopsis:

int saf_read_state(SAF_ParMode pmode, SAF_StateGrp *state_grp, int state_index, SAF_Set *mesh,
SAF_Field *deflt_coords, void *coord_data, SAF_Field **fields)

Formal Arguments:

• pmode: The parallel mode

• state_grp: The state group from which this state will be read.

130 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• state_index: An index that specifies which state within the state group will be read. This index is 0-based.

• mesh: [OUT] Returned ID of the mesh associated with this state.

• deflt_coords: [OUT] Returned ID of the default coordinate field of mesh; we may want to delete this
argument since the client can call saf_find_default_coords for mesh.

• coord_data: [OUT] Returned coordinate of state_index within the state group. For instance, this is
typically the time value of the state.

• fields: The IDs of the fields (the dependent variables) to be read from this state. The caller may supply a
pointer to a value of NULL if this function is to allocate a buffer. If the caller supplies a pointer to a non-nil
pointer, then it is the responsibility of the caller to ensure that the buffer is of sufficient size to contain the
coordinates. This size (NUM_FIELDS) is the number of field templates (NUM_FTMPLS) obtained by a call to
saf_describe_state_tmpl.

Description: Read all the elements of a state. This includes the following:

• ID of the computational mesh (i.e., a set ID) associated with this state;

• ID of the default coordinate field of the mesh;

• the parametric value (e.g., the time value) associated with this state;

• IDs of all the fields (the dependent variables) attached to the mesh at this state.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_describe_state_tmpl: 17.3: Get a description of a state template

• saf_find_default_coords: 16.15: Find default coordinate fields

• States: Introduction for current chapter

Write out a state

saf_write_state is a function defined in state.c.

Synopsis:

int saf_write_state(SAF_ParMode pmode, SAF_StateGrp *state_grp, int state_index,
SAF_Set *mesh_space, hid_t coord_data_type, void *coord_data,
SAF_Field *fields)

Formal Arguments:

• pmode: The parallel mode.

• state_grp: The state group into which this state will be inserted.

• state_index: The index within the state group at which this state will be written. This index is 0-based.

• mesh_space: The ID of the mesh associated with this state.

• coord_data_type: The data type of COORD

• coord_data: The coordinate of state_index within the state group. For instance, this is typically the
time value of the state.

• fields: The fields (the dependent variables) to be written to this state.

Description: Write out all the elements of a state. This includes the following:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 131

SAF User Manual, Release 2.0.3

• ID of the computational mesh (i.e., a set ID) associated with this state;

• ID of the default coordinate field of the mesh;

• the parametric value (e.g., the time value) associated with this state;

• IDs of all the fields (the dependent variables) attached to the mesh at this state.

The state is referenced by an index which is an index into each of the arrays that compose the state group. See the
description of a state group.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: This function does the following actions under the covers to implement the cross-product base space.

• increments the “SAF__SPACE_SLICE” collection

• adds a subset relation between the set identified by the MESH argument and the suite set

See Also:

• States: Introduction for current chapter

Suites

A suite is a cartesian product of two base spaces (i.e., sets): one is the mesh from a simulation (typically a set with
a SIL role of SAF__SPACE) and the other is a base space representing time or some other parametric space. Fields
can be defined on a suite that are either slices through space (at constant times) or slices through time (at constant
locations in space). The former are referred to as states; the latter are histories.

Members

The null suite handle

SAF_NULL_SUITE is a macro defined in saf.h.

Synopsis:

SAF_NULL_SUITE(Db)

Description: This macro evaluates to the suite handle for the null suite of the database. The null suite is most often
only used in a SAF__ONE parallel call where many processors are participating solely for the sake of collectivity (See
Constants).

See Also:

• Suites: Introduction for current chapter

Declare a suite

saf_declare_suite is a function defined in suite.c.

Synopsis:

SAF_Suite * saf_declare_suite(SAF_ParMode pmode, SAF_Db *database, const char *name,
SAF_Set *mesh_space, SAF_Set *param_space, SAF_Suite *suite)

Formal Arguments:

• pmode: The parallel mode.

132 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• database: The SAF database handle.

• name: The name of the suite.

• mesh_space: The set representing the computational mesh. this is currently only a single set, so assume that
the user cannot supply a list of mesh_space sets when declaring a suite

• param_space: The set representing the parametric space, such as time. If this is NULL, a set will be created
with a SIL role of type TYPE.

• suite: [OUT] Optional memory for the returned handle. If null then a new handle is allocated by this function.

Description: This creates a suite with the given name.

Return Value: Returns a pointer to a new suite on success; null on failure. If the caller supplies a suite argument
then this will be the pointer that is returned instead of allocating a new suite handle.

Issues: Currently, a SAF__Suite is #typedef’d to a SAF__Set. This may still work if we can identify suites with
a new SIL role (“SAF__SUITE”).

The ability to declare “subsuites” may be needed but won’t be available in this implementation. This implementation
will handle just 1-dimensional parametric spaces, such as time.

This function will create an extendible SAF__Set with two collections: one for associating states (fields across space
at a fixed value of the specified parameter, usually time) and one for associating histories (fields across the specified
parameter, usually time, at a fixed point in space). We will declare two new categories, “SAF__SPACE_SLICE” and
“SAF__PARAM_SLICE”, respectively, that will be used in the declaration of these collections. These new categories
will be a minor enhancement to the current self category.

If param_space is passed as NULL, this function will create a SAF__Set to represent the parametric space.

See Also:

• Suites: Introduction for current chapter

Get a description of a suite

saf_describe_suite is a function defined in suite.c.

Synopsis:

int saf_describe_suite(SAF_ParMode pmode, SAF_Suite *suite, char **name, int *num_space_sets,
SAF_Set **mesh_space, SAF_Set **param_space)

Formal Arguments:

• pmode: The parallel mode.

• suite: A suite handle.

• name: [OUT] The returned name of the suite. Pass NULL if you do not want this value returned.

• num_space_sets: [OUT] The number of sets returned in mesh_space.

• mesh_space: [OUT] The returned array of sets representing the computational meshes associated with each
state of the suite. This is the list of sets in the “SAF__SPACE_SLICE” collection.

• param_space: [OUT] The returned array of sets representing the parametric space, such as time. These are
associated with the histories of the suite and are thus contained in the “SAF__PARAM_SLICE” collection. This
will not be implemented at this time.

Description: Returns the description of a suite. This includes the name of the suite and the sets associated with the
“SAF__SPACE_SLICE” and “SAF__PARAM_SLICE” collections.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 133

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Suites: Introduction for current chapter

Find suites

saf_find_suites is a function defined in suite.c.

Synopsis:

int saf_find_suites(SAF_ParMode pmode, SAF_Db *database, const char *name, int *num_suites,
SAF_Suite **suites)

Formal Arguments:

• pmode: The parallel mode.

• database: The database in which to search.

• name: The name to limit the search to. The constant SAF__ANY_NAME can be passed if the client does not
want to limit the search by name.

• num_suites: [OUT] The returned number of suites.

• suites: [OUT] The returned suites.

Description: Find all the suites in a SAF database. Under the cover, this finds all sets with a SIL_ROLE of
SAF__SUITE.

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Suites: Introduction for current chapter

Get an attribute attached to a suite

saf_get_suite_att is a function defined in suite.c.

Synopsis:

int saf_get_suite_att(SAF_ParMode pmode, SAF_Suite *suite, const char *att_key, hid_t *att_type,
int *count, void **value)

Description: This function is identical to the generic saf_get_attribute function except that it is specific to
SAF__Suite objects to provide the client with compile time type checking. For a description, see saf_get_attribute.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• Suites: Introduction for current chapter

Attach an attribute to a suite

saf_put_suite_att is a function defined in suite.c.

Synopsis:

134 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

int saf_put_suite_att(SAF_ParMode pmode, SAF_Suite *suite, const char *att_key, hid_t att_type,
int count, const void *value)

Description: This function is identical to the generic saf_put_attribute function except that it is specific to
SAF__Suite objects to provide the client with compile time type checking. For a description, see saf_put_attribute.

See Also:

• saf_put_attribute: 23.2: Create or update a non-sharable attribute

• Suites: Introduction for current chapter

Quantities

A quantity in the general sense is a property ascribed to phenomena, bodies, or substances that can be quantified for,
or assigned to, a particular phenomenon, body, or substance. The library defines seven basic quantities (length, mass,
time, electric current, thermodynamic temperature, amount of a substance, and luminous intensity) and additional
quantities can be derived as products of powers of the seven basic quantities (e.g., “volume” and “acceleration”). All
quantities are unitless – they describe what can be measured but not how to measure it.

Unlike many other quantity implementations, this one is able to distinguish between dimensionless things like mass
fractions (mass/mass) and length fractions (length/length). It does so by canceling numerators with denominators
except when the numerator and denominator are equal. That is, mass/mass is considered a different quantity than
length/length.

The library defines the seven basic quantities whose names follow the format “SAF__QX” where “X” is replaced by
one of the words LENGTH, MASS, TIME, CURRENT, TEMP, AMOUNT, or LIGHT. Additional quantities can be derived
from these by first creating an empty quantity and then multiplying powers of other quantities. For instance, volume
per unit time would be defined as

1 SAF_Quantity *q_vpt = saf_declare_quantity(SAF_ALL, db, "volume per time", "vol/time
→˓", NULL);

2 saf_multiply_quantity(SAF_ALL, q_vpt, SAF_QLENGTH, 3);
3 saf_multiply_quantity(SAF_ALL, q_vpt, SAF_QTIME, -1);

The reader is encouraged to visit physics.nist.gov/cuu/Units/units.html to get more information about quantities and
units.

Members

The quantity Amount

SAF_QAMOUNT is a symbol defined in SAFquant.h.

Synopsis:

SAF_QAMOUNT

Description: A macro which refers to Amount, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 135

http://physics.nist.gov/cuu/Units/units.html
http://physics.nist.gov/cuu/Units/units.html

SAF User Manual, Release 2.0.3

The quantity Current

SAF_QCURRENT is a symbol defined in SAFquant.h.

Synopsis:

SAF_QCURRENT

Description: A macro which refers to Current, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

The quantity Length

SAF_QLENGTH is a symbol defined in SAFquant.h.

Synopsis:

SAF_QLENGTH

Description: A macro which refers to Length, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

The quantity Light

SAF_QLIGHT is a symbol defined in SAFquant.h.

Synopsis:

SAF_QLIGHT

Description: A macro which refers to Light, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

The quantity Mass

SAF_QMASS is a symbol defined in SAFquant.h.

Synopsis:

SAF_QMASS

Description: A macro which refers to Mass, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

136 Chapter 1. SAF User Manuals

http://physics.nist.gov/cuu/Units/units.html
http://physics.nist.gov/cuu/Units/units.html
http://physics.nist.gov/cuu/Units/units.html
http://physics.nist.gov/cuu/Units/units.html

SAF User Manual, Release 2.0.3

An arbitrary named quantity

SAF_QNAME is a macro defined in SAFquant.h.

Synopsis:

SAF_QNAME(DB, NAME)

Description: A macro which refers to an arbitrary named quantity

See Also:

• Quantities: Introduction for current chapter

The quantity Temperature

SAF_QTEMP is a symbol defined in SAFquant.h.

Synopsis:

SAF_QTEMP

Description: A macro which refers to Temperature, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

The quantity Time

SAF_QTIME is a symbol defined in SAFquant.h.

Synopsis:

SAF_QTIME

Description: A macro which refers to Time, one of the 7 basic quantities defined at
physics.nist.gov/cuu/Units/units.html

See Also:

• Quantities: Introduction for current chapter

Declare a new quantity

saf_declare_quantity is a function defined in quant.c.

Synopsis:

SAF_Quantity * saf_declare_quantity(SAF_ParMode pmode, SAF_Db *db, const char *de-
scription, const char *abbreviation, const char *url,
SAF_Quantity *quant)

Formal Arguments:

• description: A short description of the new quantity (e.g., “volume per time”).

• abbreviation: An optional abbreviation or symbol name for the quantity.

• url: An optional url to the quantity documentation.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 137

http://physics.nist.gov/cuu/Units/units.html
http://physics.nist.gov/cuu/Units/units.html

SAF User Manual, Release 2.0.3

• quant: [OUT] Optional quantity handle to initialize (and return).

Description: This function declares a new quantity whose product of powers is unity. The client is expected to multiply
powers of other quantities into this new quantity (via saf_multiply_quantity) in order to complete its definition.

Preconditions:

• pmode must be valid. (low-cost)

Return Value: A new quantity handle is returned on success. Otherwise a SAF__ERROR_HANDLE value is returned
or an exception is raised, depending on the error handling property of the library.

Parallel Notes: This function must be called collectively in the database communicator.

See Also:

• saf_multiply_quantity: 20.14: Multiply a quantity into a quantity definition

• Quantities: Introduction for current chapter

Query quantity characteristics

saf_describe_quantity is a function defined in quant.c.

Synopsis:

int saf_describe_quantity(SAF_ParMode pmode, SAF_Quantity *quantity, char **description,
char **abbreviation, char **url, unsigned *flags, unsigned *power)

Formal Arguments:

• quantity: Quantity about which to retrieve information.

• description: If non-null then upon return this will point to an allocated copy of the quantity description.

• abbreviation: If non-null then upon return this will point to an allocated copy of the quantity abbreviation
if one is defined.

• url: If non-null then upon return this will point to an allocated copy of the quantity documentation url if one
is defined.

• flags: If non-null then the special quantity flags are written into the location indicated by this pointer.

• power: If non-null then upon return this seven-element array will be filled in with the powers of the seven basic
quantities.

Description: Given a quantity this function returns any information which is known about that quantity.

Preconditions:

• pmode must be valid. (low-cost)

• quantity must be a valid quantity handle. (low-cost)

Return Value: A non-negative value is returned on success. Failure is indicated by a negative return value or the
raising of an exception, depending on the error handling property of the library.

Parallel Notes: This function must be called collectively in the database communicator.

See Also:

• Quantities: Introduction for current chapter

138 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Divide a quantity into a quantity definition

saf_divide_quantity is a macro defined in SAFquant.h.

Synopsis:

saf_divide_quantity(PMODE, Q, DIVISOR, POWER)

Description: This macro simply calls saf_multiply_quantity with a negated POWER argument.

See Also:

• saf_multiply_quantity: 20.14: Multiply a quantity into a quantity definition

• Quantities: Introduction for current chapter

Convenience function for finding a quantity

saf_find_one_quantity is a function defined in quant.c.

Synopsis:

SAF_Quantity * saf_find_one_quantity(SAF_Db *database, const char *desc, SAF_Quantity *buf)

Formal Arguments:

• database: The database in which to find the specified quantity.

• desc: Quantity description to find.

• buf: [OUT] Optional quantity handle to initialize and return.

Description: This is a simple version of saf_find_quantity that takes fewer arguments.

Return Value: On success, a handle for the first quantity found which has description desc in database database
is returned. Otherwise a SAF__ERROR_HANDLE is returned.

Parallel Notes: This function must be called collectively in the database communicator.

See Also:

• Quantities: Introduction for current chapter

Find quantities

saf_find_quantities is a function defined in quant.c.

Synopsis:

int saf_find_quantities(SAF_ParMode pmode, SAF_Db *db, const char *desc, const char *abbr, const
char *url, unsigned flags, int *power, int *num, SAF_Quantity **found)

Formal Arguments:

• db: Database in which to limit the search.

• desc: Optional quantity description for which to search.

• abbr: Optional abbreviation for which to search.

• url: Optional url for which to search.

• flags: Optional flags for which to search, or SAF__ANY_INT.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 139

SAF User Manual, Release 2.0.3

• power: Optional base quantity powers for which to search. If the pointer is non-null then the elements can be
SAF__ANY_INT for the ones in which the caller is not interested.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for quantities in the database. The search may be limited by one
or more criteria such as the name of the quantity, etc.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

• Quantities: Introduction for current chapter

Multiply a quantity into a quantity definition

saf_multiply_quantity is a function defined in quant.c.

Synopsis:

int saf_multiply_quantity(SAF_ParMode pmode, SAF_Quantity *quantity, SAF_Quantity *multi-
plier, int power)

Formal Arguments:

• quantity: IN``[``OUT] The quantity which is affected by this operation

• multiplier: What to multiply into quantity

• power: Number of times to multiply multiplier into quantity

Description: After creating a new quantity with saf_declare_quantity, the quantity is defined by multiplying
powers of other quantities into it, one per call to this function. A division can be accomplished by supplying a negative
power (a power of zero has no effect).

Preconditions:

• pmode must be valid. (low-cost)

• quantity must be a valid quantity handle. (low-cost)

• multiplier must be a valid quantity handle. (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value
or raises an exception, depending on the error handling property of the library.

Parallel Notes: Depends on the pmode argument.

See Also:

• saf_declare_quantity: 20.9: Declare a new quantity

• saf_divide_quantity: 20.11: Divide a quantity into a quantity definition

140 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• Quantities: Introduction for current chapter

Units

A unit is a particular physical quantity, defined and adopted by convention, with which other particular quantities
of the same kind are compared to express their value. The library has two classes of units: basic units and derived
units. Basic units measure some arbitrary amount of a specific quantity while derived units are created by multiplying,
scaling, and translating powers of other units (basic and/or derived). All units are associated with a specific quantity of
the database either explicitly or implicitly. Implicit association is allowed if the appropriate quantity is not ambiguous.
The library is able to convert an array of measurements from one unit to another if the source and destination unit
measure the same specific quantity.

The definition of a basic unit is a two step process. First an empty definition is created with saf_declare_unit, then the
unit is associated with a quantity with saf_quantify_unit. Example: define meters as a basic unit of length. That is,
meters measures some arbitrary amount of length and will be the basis for deriving all compatible units.

1 SAF_Unit *m = saf_declare_unit(SAF_ALL,db,"meter","m",NULL);
2 saf_quantify_unit(SAF_ALL,m,SAF_QLENGTH,1);
3 saf_commit(m,SAF_ALL,database);

The definition of derived units is similar when the new unit measures the same quantity. Example: define kilometers
as 1000 meters (km and m both measure the same quantity).

1 SAF_Unit *km = saf_declare_unit(SAF_ALL,db,"kilometer","km",NULL);
2 saf_multiply_unit(SAF_ALL,km,1000,m,1);

Another way to define a unit is to multiply other units together. When this happens the new unit measures a different
quantity than its unit divisors. In most cases the library can figure out what specific quantity to use for the unit,
but this is not possible when the library contains multiple quantity definitions for similar quantities (e.g., ‘molecular
amount’ and ‘monetary amount’ are both amount-of-a-substance quantities, but the library has two separate quantity
definitions because it should should not be possible to convert between moles and dollars). Example: define coulomb
as an ampere second instead of some arbitrary amount of charge:

1 SAF_Unit *C = saf_declare_unit(SAF_ALL,db,"coulomb","C",NULL);
2 saf_multiply_unit(SAF_ALL,C,1,A,1); // ampere
3 saf_multiply_unit(SAF_ALL,C,1,s,1); // second
4 SAF_Quantity *charge = saf_find_one_quantity(db,"electric charge",NULL);
5 saf_quantify_unit(SAF_ALL,C,charge,1);

In the previous example the saf_quantify_unit could have been omitted since the library only defines one electric
charge quantity and there is no ambiguity.

Two notable units are thermodynamic temperature measured in absolute Celsius and Fahrenheit. Both of these are the
same amount as a degree Kelvin or a degree Rankine, but are offset by some amount. These units can be declared with
saf_offset_unit:

1 SAF_Unit *absC = saf_declare_unit(SAF_ALL,db,"absolute Celceus","absC",NULL);
2 saf_multiply_unit(SAF_ALL,absC,1,k,1); // degree Kelvin
3 saf_offset_unit(SAF_ALL,absC,273.5); // 0 deg C is 273.15 k

Another special type of unit is one which uses a logarithmic scale instead of a linear scale. For example, a decibel
is a dimensionless measure of the ratio of two powers, equal to ten times the logarithm to the base ten of the ratio of
two powers. In acoustics the decibel is 20 times the common log of the ratio of sound pressures, with the denominator
usually being 2e-5 pascal. The saf_log_unit can be used to define such a unit:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 141

SAF User Manual, Release 2.0.3

1 SAF_Unit *dB = saf_declare_unit(SAF_ALL,db,"decibel","dB",NULL);
2 SAF_Quantity *spr = saf_find_one_quantity(db,"sound pressure ratio",NULL);
3 saf_quantify_unit(SAF_ALL,dB,spr,1);
4 saf_log_unit(SAF_ALL,dB,10,20);

The saf_offset_unit and saf_log_unit can only be applied to a unit after all multiplications have been performed, and
such a unit cannot be used to derive other units.

Members

Declare a new unit

saf_declare_unit is a function defined in unit.c.

Synopsis:

SAF_Unit * saf_declare_unit(SAF_ParMode pmode, SAF_Db *db, const char *name, const
char *abbr, const char *url, SAF_Unit *unit)

Formal Arguments:

• db: The database in which to create the new unit.

• name: Optional singular unit name.

• abbr: Optional singular abbreviation

• url: Optional documentation url.

• unit: [OUT] Optional unit handle to initialize and return.

Description: This function declares a new unit whose product of quantity powers is unity. The client is expected to
multiply powers of other quantities or units into this new unit via saf_multiply_unit.

Preconditions:

• pmode must be valid. (low-cost)

Return Value: A new unit handle is returned on success. Otherwise a SAF__ERROR_HANDLE is returned or an
exception is raised, depending on the error handling property of the library.

See Also:

• saf_multiply_unit: 21.8: Multiply a unit into a unit definition

• Units: Introduction for current chapter

Query unit characteristics

saf_describe_unit is a function defined in unit.c.

Synopsis:

int saf_describe_unit(SAF_ParMode pmode, SAF_Unit *unit, char **name, char **abbr,
char **url, double *scale, double *offset, double *logbase, double *logcoef,
SAF_Quantity *quantity)

Formal Arguments:

• unit: Unit about which to retrieve information.

• name: If non-null then upon return this will point to an allocated copy of the unit singular name.

142 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• abbr: If non-null then upon return this will point to an allocated copy of the unit singular abbreviation.

• url: If non-null then upon return this will point to an allocated copy of the url for the unit’s documentation.

• scale: If non-null then upon return *scale will be the scale factor for the unit.

• offset: If non-null then upon return *offset will be the offset for the unit.

• logbase: If non-null then upon return *logbase will be the logarithm base for the unit. The returned value
zero indicates no logarithm is applied.

• logcoef: If non-null then upon return *logcoef will be the multiplier of the logarithmic scale.

• quantity: If non-null then upon return this will point to the handle of the quantity on which this unit is based.
If the unit has not been defined yet (such as calling this function immediately after saf_declare_unit) then the
quantity handle will be initialized to a null link.

Description: Given a unit, this function returns any information which is known about that unit.

Preconditions:

• pmode must be valid. (low-cost)

• unit must be a valid unit handle. (low-cost)

Return Value: A non-negative value is returned on success. Failure is indicated by a negative return value or the
raising of an exception, depending on the error handling property of the library.

See Also:

• saf_declare_unit: 21.1: Declare a new unit

• Units: Introduction for current chapter

Divide a unit into a unit definition

saf_divide_unit is a macro defined in SAFunit.h.

Synopsis:

saf_divide_unit(U, SCALE, DIVISOR, POWER)

Description: This macro simply calls saf_multiply_unit with a negated POWER argument and the reciprocal of the
SCALE argument.

See Also:

• saf_multiply_unit: 21.8: Multiply a unit into a unit definition

• Units: Introduction for current chapter

Convenience function for finding a unit

saf_find_one_unit is a function defined in unit.c.

Synopsis:

SAF_Unit * saf_find_one_unit(SAF_Db *database, const char *name, SAF_Unit *buf)

Formal Arguments:

• database: The database in which to find the specified unit.

• name: The singular name of the unit to find, e.g., “meter”.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 143

SAF User Manual, Release 2.0.3

• buf: [OUT] Optional unit handle to initialize and return.

Description: This is a simple version of saf_find_unit that takes fewer arguments.

Return Value: On success, a handle for the first unit found which has name name or abbreviation name in database
database. Otherwise a SAF__ERROR_HANDLE is returned.

See Also:

• Units: Introduction for current chapter

Find the not applicable unit

saf_find_unit_not_applicable is a function defined in unit.c.

Synopsis:

SAF_Unit * saf_find_unit_not_applicable(void)

Description: Find and return the not applicable unit.

Return Value: On success, a handle for the first unit found. Otherwise a SAF__ERROR_HANDLE is returned.

See Also:

• Units: Introduction for current chapter

Find units

saf_find_units is a function defined in unit.c.

Synopsis:

int saf_find_units(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *abbr,
const char *url, double scale, double offset, double logbase, double logcoef,
SAF_Quantity *quant, int *num, SAF_Unit **found)

Formal Arguments:

• db: Database in which to limit the search.

• name: Optional unit description for which to search.

• abbr: Optional abbreviation for which to search.

• url: Optional url for which to search.

• scale: Optional scale for which to search (or pass SAF__ANY_DOUBLE).

• offset: Optional offset for which to search (or pass SAF__ANY_DOUBLE).

• logbase: Optional logorithm base for which to search (or pass SAF__ANY_DOUBLE).

• logcoef: Optional logorithm coefficient for which to search (or pass SAF__ANY_DOUBLE).

• quant: Optional quantity for which to search.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for units in the database. The search may be limited by one or
more criteria such as the name of the unit, etc.

Preconditions:

144 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

• Units: Introduction for current chapter

Apply a logarithmic scale to a unit

saf_log_unit is a function defined in unit.c.

Synopsis:

int saf_log_unit(SAF_ParMode pmode, SAF_Unit *unit, double logbase, double logcoef)

Formal Arguments:

• unit: The unit which is being translated by OFFSET.

• logbase: The base of the logarithm

• logcoef: The amount by which to multiply the unit after taking the log.

Description: Some units of measure use a logarithmic scale. An example is decibels. This function sets the base for
the logarithm. A logbase of zero implies a linear scale and is the default for all units. This function should only be
called after any calls to saf_multiply_unit and saf_offset_unit for unit.

1 U' = LOGCOEF *log* UNIT

where log is to the base logbase.

Preconditions:

• pmode must be valid. (low-cost)

• unit must be a valid unit handle. (low-cost)

• logbase must be non-negative. (low-cost)

• logcoef must be non-zero if a logarithmic scale is used. (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value
or raises an exception, depending on the error handling property of the library.

See Also:

• saf_multiply_unit: 21.8: Multiply a unit into a unit definition

• saf_offset_unit: 21.9: Translate unit by an offset

• Units: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 145

SAF User Manual, Release 2.0.3

Multiply a unit into a unit definition

saf_multiply_unit is a function defined in unit.c.

Synopsis:

int saf_multiply_unit(SAF_ParMode pmode, SAF_Unit *unit, double coef, SAF_Unit *multiplier,
int power)

Formal Arguments:

• unit: The unit which is being modified by multiplying multiplier into it.

• coef: A real coefficient multiplied into unit

• multiplier: The optional multiplicand unit

• power: The power to which multiplier is raised before multiplying it into unit

Description: After creating a new unit with saf_declare_unit, the unit is defined by multiplying scaled powers of
other units into it, one per call to this function. A division by multiplier can be accomplished by supplying a
negative power, although coef is always multiplied into U. Essentially, the result is:

1 UNIT' = UNIT * COEF * (MULTIPLIER ^ POWER)

If multiplier is NULL then it is assumed to be unity. In other words, the scale factor can be adjusted for the unit
by calling this function with only a coef value.

Preconditions:

• pmode must be valid. (low-cost)

• unit must be a valid unit handle. (low-cost)

• unit must have a zero offset (the default). (low-cost)

• unit must not have a logarithm base assigned (the default). (low-cost)

• coef must be positive. (low-cost)

• multiplier must be a valid unit handle if supplied. (low-cost)

• multiplier must have a zero offset if supplied. (low-cost)

• multiplier must not use a logarithmic scale if supplied. (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value
or raises an exception, depending on the error handling property of the library.

See Also:

• saf_declare_unit: 21.1: Declare a new unit

• saf_divide_unit: 21.3: Divide a unit into a unit definition

• Units: Introduction for current chapter

Translate unit by an offset

saf_offset_unit is a function defined in unit.c.

Synopsis:

int saf_offset_unit(SAF_ParMode pmode, SAF_Unit *unit, double offset)

Formal Arguments:

146 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• unit: The unit which is being translated by offset.

• offset: The amount by which to translate the unit.

Description: Some units of measure have a scale which is translated from the origin by some amount. The most
notable examples are absolute degrees Celsius and Fahrenheit.

1 SAF_Unit absC = saf_declare_unit("Celsius","absC");
2 SAF_multiply_unit(absC, 1, kelvin, 1);
3 SAF_offset_unit(absC, 273.15);

Preconditions:

• pmode must be valid. (low-cost)

• unit must be a valid unit handle. (low-cost)

• unit must not have a logarithm base assigned (the default). (low-cost)

Return Value: This function returns some non-negative value on success; otherwise, it either returns a negative value
or raises an exception, depending on the error handling property of the library.

See Also:

• Units: Introduction for current chapter

Associates a unit of measure with a specific quantity

saf_quantify_unit is a function defined in unit.c.

Synopsis:

int saf_quantify_unit(SAF_ParMode pmode, SAF_Unit *unit, SAF_Quantity *quantity, double scale)

Formal Arguments:

• unit: The unit whose quantity information is being set.

• quantity: The quantity which this unit measures.

• scale: This argument can be used to defined a new unit as some scale of the base unit for the quantity without
requiring the unit definition to include a multiplication by the base unit. The scale is multiplied into any scale
which is already present.

Description: A basic unit is a unit which measures an arbitrary amount of some quantity, and is defined simply by
associating the unit with its quantity by calling this function. (no multiplications by other units are necessary).

Derived units are built by multiplying together powers of one or more other units. If just one unit is multiplied into the
new definition then the new definition will refer to the same specific quantity as the unit on which it is based (if the
power is one). Otherwise, when units are multiplied together the quantity measured by the product is different than
the quantity measured by any of the multiplicands. When this happens it may be necessary for the client to call this
function to associate a specific quantity with this new unit (it is not necessary if the library can deduce the specific
quantity unambiguously from the unit’s database).

Preconditions:

• pmode must be valid. (low-cost)

• unit must be a valid unit handle. (low-cost)

• quantity must be a valid quantity handle. (low-cost)

• scale must be positive. (low-cost)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 147

SAF User Manual, Release 2.0.3

Return Value: A non-negative value is returned on success; otherwise either a negative value is returned or an excep-
tion is raised, depending on the error handling property of the library.

See Also:

• Units: Introduction for current chapter

Attributes

As mentioned in the object handles chapter (see Object Handles) there currently (saf-1.2.0) exist two styles of handles:
“old” handles and “new” handles. For each “old” object class there are functions to put (saf_put_XXX_att) and get
(saf_get_XXX_att) attributes, as well as generic forms of these functions (saf_put_attribute and saf_get_attribute)
which operate on any object type but do not provide rigorous compile-time type checking. The “new” object classes use
only saf_putAttribute and saf_getAttribute, which employ compile-time and run-time type checking.

There is an important limitation to the attributes interface in SAF. First and foremost, it should be clearly understood
that there is no expectation that any data stored in attributes be shareable. If there is any expectation that any software
other than the writer of the attributes should be sensitive to and/or aware of the data stored in them, the data should
not be stored in attributes. If for some reason, your client is unable to model important features of the data without
encoding something into attributes, then the current implementation of this data model is failing.

By convention, attributes whose names begin with a dot (“.”) are read-only. Thus, a client may create and initialize a
new attribute whose name begins with a dot, but thereafter any client operating on the database can only read the value
of that attribute.

Issues: Each attribute has its own HDF5 dataset in the SAF file. For a SAF__EACH mode call, we need to loop
creating num_procs datasets.

Also, performance of attribute access is likely to be poor, particularly in parallel.

Members

Read a non-sharable attribute

saf_get_attribute is a function defined in utils.c.

Synopsis:

int saf_get_attribute(SAF_ParMode pmode, ss_pers_t *obj, const char *name, hid_t *type, int *count,
void **value)

Formal Arguments:

• pmode: One of the parallel modes.

• obj: The handle to the object from which the attribute will be read.

• name: The name of the attribute. See SAF__ATT_NAMES and other reserved attribute names for special kinds
of attribute queries.

• type: IN``[``OUT] If type is NULL, this argument will be ignored. If type points to a valid datatype, then
the attribute will be converted to the specified type as it is read. If it does not, there will be no data conversion
and the output value will be the datatype of the data returned (the caller should invoke H5Tclose).

• count: [OUT] The number of items in the attribute. If count is NULL, then the value of count will not be
returned.

• value: IN``[``OUT] Points to an array of count values each having datatype type. If value is NULL,
then no attribute values will be returned. If value points to NULL, then the library will allocate the array of
values which is returned. Otherwise the library assumes that value points to an array whose size is sufficient

148 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

for storing count values of datatype type. That is, if value is pointing to non-NULL, then so must count
point to non-NULL and the value pointed to by count will be used by SAF as the size, in items of type type,
of the block of memory pointed to by value. For a SAF__ATT_NAMES query if the caller supplies a buffer for
this argument then it should be a buffer of char pointers, the values of which will be allocated by this function.

Description: This function provides a method by which existing, generic, non-sharable attributes may be read from
an object. Attributes are pieces of meta data which fall outside the scope of the sharable data model (i.e., things which
are not fields) but which are often useful for conveying additional information. The meaning of a particular attribute
is determined by convention, requiring additional communication between the writer and the reader (often in the form
of documentation or word of mouth).

Preconditions:

• pmode must be valid. (low-cost)

• name must not be null. (low-cost)

• count and value must be compatible for return value allocation. (low-cost)

• obj must not be null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

Issues: On error, the argument return values are undefined.

If the attribute name is SAF__ATT_NAMES then the client must not preallocate space for the value return value,
but must allow the library to handle the allocation. That is, if the arg passed for name is SAF__ATT_NAMES, the
client must not pass value such that it points to a non-null pointer.

The reserved attribute name queries, SAF__ATT_FIRST and SAF__ATT_NEXT, are not yet implemented.

This is a weird interface. There should be a separate function to obtain the datatype and count of an attribute so that
this function doesn’t need to return those values. The type and count arguments should instead specify what value
is returned by this function. And the value should be just an optional ‘void*’ buffer which if not supplied is allocated
and which is the successful return value of this function. [rpm 2004-08-25]

If the pool allocation is being used then we’ll have a problem if there are more attributes than what the string pool can
store.

See Also:

• Attributes: Introduction for current chapter

Create or update a non-sharable attribute

saf_put_attribute is a function defined in utils.c.

Synopsis:

int saf_put_attribute(SAF_ParMode pmode, ss_pers_t *obj, const char *name, hid_t type, int count,
const void *value)

Formal Arguments:

• pmode: One of the parallel modes.

• obj: The handle to the object the attribute is to be associated with.

• name: The name of the attribute.

• type: The datatype of the attribute.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 149

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• count: The number of items of type type pointed to by *value.

• value: The attribute value(s) (an array of count value(s) of type type).

Description: This function provides a method by which generic, non-sharable attributes may be added to an object.
Attributes are pieces of meta data which fall outside the scope of the sharable data model (i.e., things which are
not fields) but which are often useful for conveying additional information. The meaning of a particular attribute is
determined by convention, requiring additional, apriori agreement between the writer and the reader (often in the form
of documentation or word of mouth) as to the meaning and intent of a given attribute/value pair.

If type is H5T_C_S1 (which isn’t very useful by itself since it’s just a one-byte string that’s always the NUL character)
then a temporary datatype is created which is exactly as long as the value string including its NUL terminator.
value in this case should be a pointer to char. Be aware that querying the attribute for its datatype will not return
H5T_C_S1 unless the string was empty.

Preconditions:

• pmode must be valid. (low-cost)

• obj must not be null. (low-cost)

• name must not be null. (low-cost)

• count must be non-negative. (low-cost)

• If count is non-zero, value must not be null. (low-cost)

• Database in which object exists must not be open for read-only access. (no-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

• Attributes: Introduction for current chapter

Miscellaneous Utilities

No description available.

Members

Synchronization barrier

SAF_BARRIER is a macro defined in saf.h.

Synopsis:

SAF_BARRIER(Db)

Description: A macro which causes all processors in the communicator used to open the database or, if Db is NULL,
to initialize the library, to wait until all reach this point (See *Constants*).

See Also:

• Miscellaneous Utilities: Introduction for current chapter

150 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Determine if two handles refer to the same object

SAF_EQUIV is a macro defined in saf.h.

Synopsis:

SAF_EQUIV(A, B)

Description: This macro returns true if the two object handles passed to it refer to the same object. Otherwise, it
returns false.

See Also:

• Miscellaneous Utilities: Introduction for current chapter

Array size

SAF_NELMTS is a macro defined in safP.h.

Synopsis:

SAF_NELMTS(X)

Description: Return number of elements in array.

See Also:

• Miscellaneous Utilities: Introduction for current chapter

The rank of the calling process

SAF_RANK is a macro defined in saf.h.

Synopsis:

SAF_RANK(Db)

Description: A macro which evaluates to the MPI_Rank of the calling processor in the communicator used to open
the database. If NULL is passed for the Db argument, the MPI_Rank of the calling process in the communicator used
to initialize the library is returned. In serial, a value of 0 is returned. If not called within an enclosing pair of saf_init /
saf_final calls, the value -1 is returned (See *Constants*).

See Also:

• saf_final: 4.2: Finalize access to the library

• saf_init: 4.3: Initialize the library

• Miscellaneous Utilities: Introduction for current chapter

The size of the communicator

SAF_SIZE is a macro defined in saf.h.

Synopsis:

SAF_SIZE(Db)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 151

SAF User Manual, Release 2.0.3

Description: A macro which evaluates to the MPI_Size of the communicator used to open the database. If NULL is
passed for the Db argument, the MPI_Size of the communicator used to initialize the library is returned. In serial a
value of 1 is returned. If not called within an enclosing pair of saf_init / saf_final calls, the value -1 is returned (See
Constants).

See Also:

• saf_final: 4.2: Finalize access to the library

• saf_init: 4.3: Initialize the library

• Miscellaneous Utilities: Introduction for current chapter

Determine if a handle is a valid handle

SAF_VALID is a macro defined in saf.h.

Synopsis:

SAF_VALID(A)

Description: This macro returns true if the handle passed to it is valid, that is, that its members define a legitimate
handle. Otherwise, it returns false.

See Also:

• Miscellaneous Utilities: Introduction for current chapter

Exclusive OR operator

SAF_XOR is a macro defined in safP.h.

Synopsis:

SAF_XOR(A, B)

Description: Returns A XOR B

See Also:

• Miscellaneous Utilities: Introduction for current chapter

Copy a string

_saf_strdup is a function defined in utils.c.

Synopsis:

char * _saf_strdup(const char *s)

Description: Same functionality as strdup but returns an empty string when s is the null pointer.

Return Value: Returns an allocated, null terminated string on success; null on failure.

Parallel Notes: Independent

See Also:

• Miscellaneous Utilities: Introduction for current chapter

152 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Exchange handles

saf_allgather_handles is a function defined in utils.c.

Synopsis:

ss_pers_t * saf_allgather_handles(ss_pers_t *_pers, int *commsize, ss_pers_t *result)

Formal Arguments:

• _pers: A Pointer to the handle to be exchanged. Every participant must supply a valid handle of the same type
and in the same scope as every other participant.

• commsize: [OUT] A pointer to optional caller supplied memory which is to receive the integer number of
handles returned by this function. This is the number of participants or the size of the communicator associated
with the given database.

• result: [OUT] An optional pointer to an array that will will be initialized with a handle from each MPI task in
task rank order. If this buffer is supplied then it should be at least as large as the communicator associated with
the DB argument. If not supplied (i.e., null) then a buffer will be allocated for the return value.

Description: This function is used to exchange handles created locally by processes for global writing. This is
generally done when collecting the local handles to be written stored with an indirect relation or field.

Preconditions:

• _pers must be a valid object link. (low-cost)

Return Value: Returns a buffer of handles on success or null on failure. The buffer is either the non-null value of the
result argument or a buffer which is allocated by this function.

Parallel Notes: This call must be collective across the communicator for the given database.

See Also:

• Miscellaneous Utilities: Introduction for current chapter

Version Numbers

The SAF source code has various version numbers assigned to parts of the system: source files, header files, library,
API definition, and database files.

Source file versions are identical to CVS file revision numbers. These numbers are not stored in the source file but
rather maintained by CVS. (We don’t store them in the source file because it makes it more difficult to synchronize
local and remote source trees since a ‘cvs commit’ would modify all the source files.) We use CVS in such a way that
the main branch always contains the latest development version of SAF. When a public release is about to occur a new
branch is created, version numbers are adjusted on both branches, and development stops on the new branch.

The header files and library each have a four-part version number: major, minor, patch, and comment. The version
number of the header files must exactly match the version number of the library, or the library will refuse to operate.
The major number is incremented only if the API changes in a way which is not backward compatible. The increment
happens when the development branch is split to produce a new release branch, and the minor number is set to zero
or one (depending on branch) and the patch number is reset to zero. The minor number is incremented each time the
main branch is split to produce a release branch. The minor number is always even on a release branch and odd on
the development branch (the latest development version minor number is one greater than the latest release version).
The patch number is incremented each time bugs are fixed on the release branch, or each time a snapshot is produced
on the development branch. The comment is a character string indicating the scope of the release and is the empty
string for all public releases and snapshots. Library version numbers are printed as i.j.k-c where i is the major number,
j is the minor number, k is the patch number, and -c is the comment string (the hyphen is printed only if the comment
string is non-empty.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 153

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

The API definition has a two-part version number which is the same as the major and minor version numbers of the
header files and library. For any given release or snapshot the library must implement the corresponding version of the
API. The API may document certain features as “not yet implemented”.

Database files will contain the library version number as an attribute named “SAF” attached to the group containing
the VBT files. The attribute will be of compound type and contain all global SAF metadata.

Standard Comment Strings: The comment string for all development versions which have not yet passed the snap-
shot operation will be ‘devel’. When the main branch is split to create a release branch the comment string on the
release branch will be cleared. Pre-releases will then be created from the release branch while holding the patch num-
ber at zero so the release can be tested by the developers. Such prereleases will be commented as ‘preN’ where n is a
number beginning at zero. When a prerelease passes all developer tests the comment will be removed or changed to
‘beta’.

Almost all programs call saf_init and/or saf_open_database in order to do something useful. So we’ve chosen to
wrap those functions in macros which also make a reference to a global variable whose name is derived from the SAF
version number. This variable is declared in the SAF library so that if an application is compiled with SAF header files
which have a different version than the SAF library a link-time error will result. A version mismatch will result in an
error similar to undefined reference to ‘‘SAF__version_0_1_0‘’ from the linker.

Members

Serial/Parallel-dependent variable

SAF_PARALLEL_VAR is a symbol defined in saf.h.

Synopsis:

SAF_PARALLEL_VAR

Description: This is simply a global integer variable whose name depends somehow on whether the library is being
compiled for serial or parallel. It is used to check at link-time whether the header files used by an application match
the SAF library to which the application is linked.

See Also:

• Version Numbers: Introduction for current chapter

Version Annotation

SAF_VERSION_ANNOT is a symbol defined in saf.h.

Synopsis:

SAF_VERSION_ANNOT

Description: The version annotation of the SAF header files. This indicates a restriction of the release (such as ‘beta’).

See Also:

• Version Numbers: Introduction for current chapter

Major version number

SAF_VERSION_MAJOR is a symbol defined in saf.h.

Synopsis:

154 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

SAF_VERSION_MAJOR

Description: The major version number of the SAF header files. If this number is not equal to the major version
number of the SAF library with which the application was linked then the library will raise an error.

See Also:

• Version Numbers: Introduction for current chapter

Minor version number

SAF_VERSION_MINOR is a symbol defined in saf.h.

Synopsis:

SAF_VERSION_MINOR

Description: The minor version number of the SAF header files. If this number is not equal to the minor version
number of the SAF library with which the application was linked then the library will raise an error.

See Also:

• Version Numbers: Introduction for current chapter

Release number

SAF_VERSION_RELEASE is a symbol defined in saf.h.

Synopsis:

SAF_VERSION_RELEASE

Description: The patch number of the SAF header files. If this number is not equal to the patch number of the SAF
library with which the application was linked then the library will raise an error.

See Also:

• Version Numbers: Introduction for current chapter

Version-dependent variable

SAF_VERSION_VAR is a symbol defined in saf.h.

Synopsis:

SAF_VERSION_VAR

Description: This is simply a global integer variable whose name depends somehow on the SAF version numbers
defined above. It is used to check at link-time whether the header files used by an application match the SAF library
version number to which the application is linked.

See Also:

• Version Numbers: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 155

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Returns string representation of version number

saf_version_string is a function defined in utils.c.

Synopsis:

char * saf_version_string(int verbose, char *buffer, size_t bufsize)

Description: Provides a function that should be used so version numbers all have a common format. If verbose is
set then the returned string will be of the form ‘version 1.2 release 3 (comment)’, otherwise the returned string will
be of the form ‘1.2.3-comment’. The ‘ (comment)’ or ‘-comment’ part of the string is omitted if there is no version
annotation.

Return Value: buffer

See Also:

• Version Numbers: Introduction for current chapter

Datatypes

No description available.

Members

Wildcards for searching

SAF is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_ANY_INT:

SAF_ANY_DOUBLE:

SAF_ANY_FLOAT:

SAF_ANY_TOPODIM:

SAF_CELLTYPE_ANY:

SAF_ANY_RATIO:

SAF_ANY_NAME:

SAF_ANY_CAT:

Description: In saf_find calls, the client may not want to limit the search to all of the available argument’s values.
SAF_ offers these wildcard values, all with the word ANY in them, to pass as the value for an argument that the client
does NOT wish to use in limiting a search. For example, see saf_find_matching_set.

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_1DC is a macro defined in saf.h.

Synopsis:

156 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

SAF_1DC(nx)

Description: One-dimensional C array of size nx. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_1DF is a macro defined in saf.h.

Synopsis:

SAF_1DF(nx)

Description: One-dimensional Fortran array of size nx. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_2DC is a macro defined in saf.h.

Synopsis:

SAF_2DC(nx, ny)

Description: Two-dimensional C array of size nx by ny. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_2DF is a macro defined in saf.h.

Synopsis:

SAF_2DF(nx, ny)

Description: Two-dimensional Fortran array of size nx by ny. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_3DC is a macro defined in saf.h.

Synopsis:

SAF_3DC(nx, ny, nz)

Description: Three-dimensional C array of size nx, ny, nz elements. (See *Constants*)

See Also:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 157

SAF User Manual, Release 2.0.3

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_3DF is a macro defined in saf.h.

Synopsis:

SAF_3DF(nx, ny, nz)

Description: Three-dimensional Fortran array of size nx, ny, nz elements. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Reserved attribute name keys

SAF_ATT is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_ATT_NAMES: If the client passes SAF__ATT_NAMES for the NAME arg in a call to saf_get_attribute, SAF will
return a TYPE of string (if the TYPE return value is requested), a COUNT equal to the number of attributes (if the
COUNT return value was requested), and a VALUE array containing the names of all attributes defined for the object.

SAF_ATT_COUNT: If the client passes SAF__ATT_COUNT for the NAME arg in a SAF call to saf_get_attribute, SAF
will return the count of number of attributes defined for the given object in the COUNT. It is an error to request a count
with SAF__ATT_COUNT, but pass NULL for the COUNT argument in a call to get attributes.

SAF_ATT_FIRST: If the client passes SAF__ATT_FIRST, for the NAME argument in a SAF call to
saf_get_attribute, SAF will return the first attribute that was ever defined for the object. Thereafter, any call with
SAF__ATT_NEXT will iterate through the list of attributes defined for the object.

SAF_ATT_NEXT: This reserved attribute name works in conjunction with SAF__ATT_FIRST, to allow the client to
iterate through all attributes defined for a given object. It is an error to pass SAF__ATT_NEXT without at least one
prior call with SAF__ATT_FIRST.

Description: There are some reserved attribute names. These reserved attribute names may be passed as the NAME
argument in any calls to get attributes (see saf_get_attribute). The SAF__ATT_NAMES / SAF__ATT_COUNT pair of
reserved names provide a mechanism to the client to determine the count of attributes defined for a given object and
their names. Or, alternatively, the SAF__ATT_FIRST / SAF__ATT_NEXT provide a mechanism for the client to
make repetitive calls to iterate through the attributes for a given object.

See Also:

• saf_get_attribute: 23.1: Read a non-sharable attribute

• Datatypes: Introduction for current chapter

Basis types

SAF_BasisConstants is a collection of related C preprocessor symbols defined in SAFbasis.h.

Synopsis:

SAF_UNITY: The basis set with a single basis vector; {1}

SAF_CARTESIAN: The basis set with N basis vectors; {e0, e1, . . . , eN}

158 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

SAF_SPHERICAL: The basis set with 3 basis vectors {r, theta, phi}

SAF_CYLINDRICAL: The basis set with 3 basis vectors {r, theta, h}

SAF_UPPERTRI: The basis set of a symmetric tensor. Why do we need this if the algebraic type already captures it?

SAF_VARIYING: For a basis that is varying over the base space. Often needed if the basis is derived from local
surface behavior such as surface normals. Although, shouldn’t we use something like SAF__SURFACE_NORMAL for
that?

SAF_ANY_BASIS: Wildcard for searching.

Description: For every field, not just coordinate fields, SAF needs to be told what are the basis vectors for identifying
the field’s values. For example, if we have a field of N pairs of floats representing complex numbers, do those floats
represent the real and imaginary part of the complex number (e.g. cartesian basis) or do they represent the magnitude
and phase (e.g. the polar basis).

Likewise, if we have N triples representing color of each pixel in image are they RGB triples, LUV triples, YIQ triples,
etc.? The basis type is designed to indicate what the basis vectors for a given field are.

See Also:

• Datatypes: Introduction for current chapter

Boundary set tri-state

SAF_BoundMode is an enumerated type defined in saf.h.

Synopsis:

SAF_BOUNDARY_FALSE:

SAF_BOUNDARY_TRUE:

SAF_BOUNDARY_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to indicate whether a one set in a subset
relation is the boundary of another set. See saf_declare_subset_relation for more information.

See Also:

• saf_declare_subset_relation: 12.5: Declare a subset relation

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_CORDER is a macro defined in saf.h.

Synopsis:

SAF_CORDER(N)

Description: C order array of N dimensions. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 159

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Library properties

SAF_DEFAULT_LIBPROPS is a symbol defined in SAFlibprops.h.

Synopsis:

SAF_DEFAULT_LIBPROPS

Description: Identifiers for default properties for the library.

See Also:

• Datatypes: Introduction for current chapter

Decomposition tri-state

SAF_DecompMode is an enumerated type defined in saf.h.

Synopsis:

SAF_DECOMP_FALSE:

SAF_DECOMP_TRUE:

SAF_DECOMP_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to indicate whether a given collection is
a decomposition of its containing set.

See Also:

• Datatypes: Introduction for current chapter

Error return modes

SAF_ErrMode is an enumerated type defined in SAFlibprops.h.

Synopsis:

SAF_ERRMODE_RETURN: (The default) Library will issue return codes rather than throw exceptions

SAF_ERRMODE_THROW: Library will throw exceptions rather than issue return codes

Description: see saf_setProps_ErrMode

See Also:

• Datatypes: Introduction for current chapter

Evaluation Types

SAF_EvalConstants is a collection of related C preprocessor symbols defined in SAFevaluation.h.

Synopsis:

SAF_SPACE_CONSTANT: identifies an evaluation method that is constant. This is really just an alias for piecewise
constant in which there is only one piece.

SAF_SPACE_PWCONST: identifies an evaluation method that is piecewise constant. That is it is constant over each
piece in the EVAL_COLL argument of saf_declare_field.

160 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

SAF_SPACE_PWLINEAR: identifies an evaluation method that is piecewise linear.

SAF_SPACE_UNIFORM: identifies an evaluation method that is a single piece of linear evaluation such as is common
for uniform coordinate fields.

Description: SAF currently supports specification of a field’s evaluation method by picking from a list of known meth-
ods Currently, that list is relatively short. SAF provides tags for specifying constant, piecewise linear and piecewise
constant evaluations of a field.

Eventually, this list of evaluation methods will be expanded to include many of the common spline, and spectral
evaluation schemes and they will also be user-definable. However, in this first implementation of SAF, we provide
only an enumeration of the most commonly used evaluation methods.

See Also:

• Datatypes: Introduction for current chapter

Extendable set tri-state

SAF_ExtendMode is an enumerated type defined in saf.h.

Synopsis:

SAF_EXTENDIBLE_FALSE:

SAF_EXTENDIBLE_TRUE:

SAF_EXTENDIBLE_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to indicate whether a set is extendible or
not. See saf_declare_set for more information.

See Also:

• saf_declare_set: 9.3: Declare a set

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_FORDER is a macro defined in saf.h.

Synopsis:

SAF_FORDER(N)

Description: Fortran order array of N dimensions. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Set find modes

SAF_FindSetMode is an enumerated type defined in saf.h.

Synopsis:

SAF_FSETS_TOP: find the top-level from the given set

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 161

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

SAF_FSETS_BOUNDARY: find the boundary of the given set

SAF_FSETS_SUBS: find the immediate subsets of the given set

SAF_FSETS_SUPS: find the immediate supersets of the given set

SAF_FSETS_LEAVES: find all the bottom most sets in the tree rooted at the given set

Description: These are the possible modes that saf_find_set can operate in.

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_IndexSchema is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_F_ORDER:

SAF_C_ORDER:

Description: Macros for dealing with common indexing schema (Fortran and C 1,2 and 3D arrays).

See Also:

• Datatypes: Introduction for current chapter

Field component interleave modes

SAF_Interleave is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_BLOCKED: An alias for SAF__INTERLEAVE_COMPONENT.

SAF_INTERLEAVED: An alias for SAF__INTERLEAVE_VECTOR.

Description: When fields have multiple components, the components can be stored in the field’s blob in different ways
relative to each other. For example, in a 3D coordinate field, we will have 3 components for the x, y and z components
of each coordinate. These can be stored as three different component fields or as a single composite field. If they are
stored as a single composite field, they may be stored interleaved or non-interleaved.

The SAF__INTERLEAVE_``* constants are defined by the ``ss_interleave_t enumeration
type. In addition we define aliases SAF__BLOCKED and SAF__INTERLEAVED.

See Also:

• Datatypes: Introduction for current chapter

Indexing scheme

SAF_NA_INDEXSPEC is a symbol defined in saf.h.

Synopsis:

SAF_NA_INDEXSPEC

162 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: Not applicable index scheme. (See *Constants*)

See Also:

• Datatypes: Introduction for current chapter

Not applicable

SAF_NOT_APPLICABLE_INT is a symbol defined in saf.h.

Synopsis:

SAF_NOT_APPLICABLE_INT

Description: This is used for arguments of type int that aren’t applicable in the current context

See Also:

• Datatypes: Introduction for current chapter

Not implemented

SAF_NOT_IMPL is a symbol defined in saf.h.

Synopsis:

SAF_NOT_IMPL

Description: This is used in parts of the API that are not implemented yet.

See Also:

• Datatypes: Introduction for current chapter

Associating a role with a collection category

SAF_RoleConstants is a collection of related C preprocessor symbols defined in SAFrole.h.

Synopsis:

SAF_TOPOLOGY: This role is associated with collection categories whose purpose is to knit the fine grained topology
of the mesh together.

SAF_PROCESSOR: This role is associated with collection categories whose purpose is to represent different proces-
sor’s pieces

SAF_BLOCK: This role is associated with collection categories whose purpose is to represent different blocks (regions
of homogenous cell type)

SAF_DOMAIN: This role is associated with collection categories whose purpose is to represent different domains;
fundamental quanta of a mesh that can be assigned to or, perhaps, migrate between, different processors.

SAF_ASSEMBLY: This role is associated with collection categories whose purpose is to represent parts in an assembly
of parts.

SAF_MATERIAL: This role is associated with collection categories whose purpose is to represent materials.

SAF_SPACE_SLICE:

SAF_PARAM_SLICE:

SAF_ANY_ROLE: Wildcard role for searching

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 163

SAF User Manual, Release 2.0.3

Description: The Role object is used in calls to saf_declare_category to associate a role with a collection category.
We use the role of a collection category to hint at the purpose or intent of collections created of a given category. Some
collections are used to represent processor pieces. Some are used to knit individual computational elements together
into a mesh. Some are used to represent different materials, etc. The list of roles here is by no means complete.

Issues: It is unclear whether any routines in SAF will be or ought to be sensitive to the value of role or whether SAF
simply passes the role around without ever interpreting it. There are two clear cases in which SAF itself might need
to interpret the role; topology and boundary information. It might also be useful if SAF could interpret the processor
role as this could help to make SAF knowledgeable about what pieces of the mesh are on which processors.

See Also:

• saf_declare_category: 10.2: Declare a collection category

• Datatypes: Introduction for current chapter

Subset inclusion lattice roles

SAF_SilRole is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_TIME: For sets specifying pieces of time

SAF_SPACE: For sets specifying pieces of space

SAF_PARAM: For sets specifying pieces of some arbitrary, user defined parameter space

SAF_SUITE: for sets specifying whole suites

SAF_ANY_SILROLE: Wildcard role for searching

Description: Every subset inclusion lattice defines pieces of some all-encompassing space in which those pieces live.
For example, the lattice may be specifying pieces of the time-base, or pieces of space, or pieces of some user defined
parameter space.

In future versions of SAF, this information will be supplanted by the quantity associated with the coordinate field for
a given base space.

See Also:

• Datatypes: Introduction for current chapter

String allocation modes

SAF_StrMode is an enumerated type defined in SAFlibprops.h.

Synopsis:

SAF_STRMODE_LIB: library allocates but client frees (zero is the default)

SAF_STRMODE_CLIENT: client allocates and client frees

SAF_STRMODE_POOL: library allocates and library frees using a least recently used strategy involving a pool of
many strings

Description: see saf_setProps_StrMode

See Also:

• saf_setProps_StrMode: 5.9: Set string allocation style

• Datatypes: Introduction for current chapter

164 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Subset relation representation types

SAF_SubsetRelRep is a collection of related C preprocessor symbols defined in SAFrelrep.h.

Synopsis:

SAF_HSLAB: Indicates a hyperslab which is stored as 3 N-tuples; N indices for the start value in each of the N
dimensions, followed by N indices for the count in each of the N dimensions followed by N indices for stride in each
of the N dimensions. Use a stride of 1 for each of the N dimensions if you do not have a hypersample.

SAF_TUPLES: Indicates a list of N-tuples. Each N-tuple identifies one member of an N dimensionally indexed collec-
tion.

SAF_TOTALITY: Indicates that all members of the collection are involved–which probably also means the subset is
equal to the superset. Perhaps a better name for this value would be SAF__IDENTITY. However, that is being used
elsewhere. Typically, this value is only ever used during a saf_write_field call.

Description: The subset relationship between a superset and a subset can take many forms. In theory, the subset
relation identifies every member of the superset that is in the subset. In practice, depending on the nature of the
indexing schemes used to identify members of collections on the superset and subset, there are a number of different
ways a client may represent a subset relationship. In an unstructured gridded code, the natural thing to do is simply
enumerate each member of the superset in the subset by listing them. In a structured gridded code, the natural approach
is to specify a hyperslab (or hypersample). Another natural approach for a structured gridded code is to specify a chain-
code boundary where everything surrounded by the boundary is in the subset. This latter form is not yet supported by
SAF.

Issues: These representational issues raise a more fundamental question. Is the act of defining a subset one of enu-
merating every point of the superset that is in the subset or can it also be achieved by enumerating a boundary in the
superset where everything inside the boundary is in the subset? In other words, do we deal only with solid representa-
tions or both solid and boundary representations for sets?

We do not support a list of hyperslabs (hypersamples) due to the confusion of this representation with the union of a
number of individual sets which are hyperslab subsets of some parent superset.

See Also:

• Datatypes: Introduction for current chapter

Top mode tri-state

SAF_TopMode is an enumerated type defined in saf.h.

Synopsis:

SAF_TOP_FALSE:

SAF_TOP_TRUE:

SAF_TOP_TORF:

Description: To make each function call made by a client a little more self-documenting, we provide specific tri-state
tags to represent the meaning of that particular boolean. The one here is used to limit a search to top level sets in a
saf_find_matching_sets call.

See Also:

• saf_find_matching_sets: 9.5: Find set by matching criteria

• Datatypes: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 165

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Topological dimensions

SAF_TopoDim is an enumerated type defined in saf.h.

Synopsis:

SAF_TOPODIM_0D: a zero dimensional topological dimension (e.g. a point)

SAF_TOPODIM_1D: a one dimensional topological dimension (e.g. a curve)

SAF_TOPODIM_2D: a two dimensional topological dimension (e.g. a surface)

SAF_TOPODIM_3D: a three dimensional topological dimension (e.g. a volume)

Description: These are really just more informative aliases for the numbers 0, 1, 2 and 3 so that when these are seen
in saf function calls, the purpose of the argument will be more clear.

See Also:

• Datatypes: Introduction for current chapter

Relation representation types

SAF_TopoRelRep is a collection of related C preprocessor symbols defined in SAFrelrep.h.

Synopsis:

SAF_STRUCTURED: N-dimensional rectangular topology

SAF_UNSTRUCTURED: unstructured, finite element zoo topology

SAF_ARBITRARY: arbitrary topology

Description: There are three basic classes of topology supported by SAF; N-dimensional rectangular structured topol-
ogy, unstructured, finite element zoo topology and completely arbitrary topology. These three tags are used to define
which class is being used in a saf_declare_topology_relation call.

In future versions of SAF, user defined cell types will be supported. Thus, the zoo from which element types are used
in defining topology will eventually be filled with whatever cell-types the client needs.

Also, in future versions of SAF, structured topology will be represented by a structuring template similar to the notion
of a stencil in finite difference computations. This would permit the characterization of hexagonal grids, triangle-strips,
etc.

See Also:

• Datatypes: Introduction for current chapter

Standard tri-state values

SAF_TriState is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_TRISTATE_FALSE:

SAF_TRISTATE_TRUE:

SAF_TRISTATE_TORF:

Description: In many portions of SAF’s API, there are boolean values to indicate if a particular feature of an object is
true or false. In addition, it is possible to invoke searches using saf_find. . . kinds of functions that will search for

166 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

objects for which the given boolean feature is true or false or either. So, we’ve defined a standard tri-state enumeration
for these three cases.

See Also:

• Datatypes: Introduction for current chapter

NULL aliases

SAF_VoidPtr is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_IDENTITY:

SAF_NO_COMPONENTS:

SAF_NO_DATA:

Description: A bunch of useful aliases for ‘NULL’

See Also:

• Datatypes: Introduction for current chapter

Return codes

SAF_return_t is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_FAILURE:

SAF_SUCCESS:

Description: Not written yet.

See Also:

• Datatypes: Introduction for current chapter

Predefined scalar datatypes

SAF_type_t is a collection of related C preprocessor symbols defined in saf.h.

Synopsis:

SAF_CHAR: Character datatype.

SAF_INT: Integer datatype.

SAF_LONG: Long integer datatype.

SAF_FLOAT: Single-precision floating-point datatype.

SAF_DOUBLE: Double-precision floating-point datatype.

SAF_HANDLE: Object handle datatype.

Description: These C preprocessor symbols represent various SAF predefined scalar datatypes. (See *Constants*)

Issues: These constants are mostly for backward compatibility. SAF now uses HDF5’s datatype interface instead of
the DSL interface. Applications should eventually switch over to HDF5 constants.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 167

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

See Also:

• Datatypes: Introduction for current chapter

Notes

Miscellaneous notes.

Members

Constants

Many constants defined in saf.h have similar limitations to some C programming language constants such as ‘stderr’
and ‘stdout’. If you have a file-scope static variable initialized to stderr or stdout, you will find that your variable gets
initialized with garbage. In C, the reason is that these constants don’t really get defined until run-time and when you
initialize a file-scope static, you are relying upon it having been defined at compile time.

The same is true for many of SAF’s constants. Therefore, you should take care not to use them in a manner which
assumes they are defined at compile time. We have made an effort to denote all such constants in the reference manual
so that you can easily determine for which constants this is true.

Some constants require a database argument. This means the constant is not defined except within the scope of an
open database. Thus, these constants are even more restricted in use than those that can be used at any run-time.

In summary, there are three classes of constants. Compile-time constants can be used anywhere. Run-time constants
can be used only after the code has begun executing. Database-time constants can be used only after a database has
been opened.

Properties

A property abstraction is used to control various behaviors of the library and its interactions with databases, supple-
mental files and other things. A specific set of properties is constructed prior to a scope-beginning call in which
those properties are applied. For example, since library properties effect the behavior of the library, they are ap-
plied in the saf_init call. Likewise, database properties are applied in the saf_open_database call. Once applied, the
properties remain in effect until a corresponding scope-ending call. For example, saf_final for library properties or
saf_close_database for database properties. You cannot change properties mid-stream. If this is a desired modality,
please contact saf-help@sourceforge.sandia.gov with such a request.

The general way to control properties is to build up the desired property set of properties by first calling a
saf_createProps_xxx function where ‘xxx’ is, for example, ‘lib’ or ‘database’. This creates a default set of
properties. You can then adjust specific properties in this set by calling individual functions described in the properties
chapters of the API. The resultant set of properties is applied when they are passed in a scope-beginning call such as
saf_init or saf_open_database. See descriptions of the individual member property functions for a description of the
properties supported.

Algebraic Types

No description available.

168 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
mailto:saf-help@sourceforge.sandia.gov

SAF User Manual, Release 2.0.3

Members

Common algebraic types

SAF_ALGTYPE is a collection of related C preprocessor symbols defined in SAFalgebraic.h.

Synopsis:

SAF_ALGTYPE_SCALAR: Used to specify fields that obey properties of scalar algebra.

SAF_ALGTYPE_VECTOR: Used, generically, for fields that obey properties of vector algebra.

SAF_ALGTYPE_COMPONENT: Used, generically, for any component of a multi-component field. In many cases, it
might be just as well to treat each component of a multi-component field as a scalar field. However, this is not entirely
mathematically correct.

SAF_ALGTYPE_TENSOR: Used for general, non-symmetric tensor fields

SAF_ALGTYPE_SYMTENSOR: Used for general, symmetric tensor fields.

SAF_ALGTYPE_TUPLE: Used to identify a field which evaluates to a group of otherwise unrelated fields. Typically
used in a State field.

SAF_ALGTYPE_FIELD: This algebraic type is used for fields that are, in reality, simply references to other fields.
These are called field indirections or, indirect*fields. Indirect fields are used, primarily for two kinds of fields; *inho-
mogeneous fields and cross-product fields. An inhomogeneous field is represented as references to pieces of the field
over subsets of its base-space over which each piece is homogenous. Likewise, a cross-product field is used to work
around the fact that SAF does NOT deal with cross product sets in the base-spaces of fields. Thus, we represent such
fields as references to fields over other base spaces.

SAF_ALGTYPE_ANY: Wildcard for find operations.

Description: SAF supports the characterization of various algebraic types for fields. An algebraic type specifies the
algebraic properties of the field.

We should probably identify an algebraic type for a Barycentric field; a field whose components are between 0.0 and
1.0 and which sum to 1.0.

See Also:

• Algebraic Types: Introduction for current chapter

Declare a new algebraic type

saf_declare_algebraic is a function defined in algebraic.c.

Synopsis:

SAF_Algebraic * saf_declare_algebraic(SAF_ParMode pmode, SAF_Db *db, const char *name,
const char *url, hbool_t indirect, SAF_Algebraic *alg)

Formal Arguments:

• db: The database in which to create the new algebraic type

• name: Name of the algebraic type

• url: An optional url to the algebraic documentation

• indirect: If true then field is indirection to another field

• alg: [OUT] Optional handle to initialize (and return)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 169

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Description: This function declares a new algebraic type with a unique identification number.

Return Value: A handle to the new algebraic type.

See Also:

• Algebraic Types: Introduction for current chapter

Describe an algebraic type

saf_describe_algebraic is a function defined in algebraic.c.

Synopsis:

int saf_describe_algebraic(SAF_ParMode pmode, SAF_Algebraic *alg, char **name, char **url,
hbool_t *indirect)

Formal Arguments:

• alg: Algebraic to describe

• name: If non-null, on return points to malloc’d algebraic name if any

• url: If non-null, on return points to malloc’d url if any

• indirect: If non-null, on return points to non-zero if type is indirect

Description: Breaks ALGEBRAIC into its parts and returns them through pointers.

Preconditions:

• alg must be a valid algebraic handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, indirect, and ID will be initialized.

See Also:

• Algebraic Types: Introduction for current chapter

Find algebraic types

saf_find_algebraics is a function defined in algebraic.c.

Synopsis:

int saf_find_algebraics(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url,
htri_t indirect, int *num, SAF_Algebraic **found)

Formal Arguments:

• db: Database in which to limit the search.

• name: Optional name for which to search.

• url: Optional url for which to search.

• indirect: Optional indirect flag for which to search. The caller should pass a negative value if it is not
interested in restricting the search.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

170 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: This function allows a client to search for algebraic types in the database. The search may be limited by
one or more criteria such as the name fo the algebraic type, etc.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

• Algebraic Types: Introduction for current chapter

Find one algebraic type

saf_find_one_algebraic is a function defined in algebraic.c.

Synopsis:

SAF_Algebraic * saf_find_one_algebraic(SAF_Db *database, const char *name,
SAF_Algebraic *buf)

Formal Arguments:

• database: The database in which to search

• name: The name for which to search

• buf: [OUT] Optional algebraic handle to initialize and return

Description: This is a convenience version of saf_find_algebraic that returns the first algebraic type it finds
whose name matches that which is specified.

Return Value: A handle to a matching algebraic type on success; SAF__ERROR_HANDLE on failure.

See Also:

• Algebraic Types: Introduction for current chapter

Alternative Index Specification

The indexing specification of a collection is a characterization, more generally, of the name space used to iden-
tify members of the collection. For example, we might choose to refer to the members of a collection of 4 quads,
[Q,‘‘Q‘‘,‘‘Q‘‘,‘‘Q‘‘], using any of the following schemes:

a: 0,1,2,3

b: “Larry”, “Mark”, “Peter”, “Ray”

c: 27, 13, 102, 77

d: 14, 36, 37, 92

e: (0,0), (0,1), (1,0), (1,1)

f: 0x00000000, 0x00000001, 0x00010000, 0x00010001

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 171

SAF User Manual, Release 2.0.3

The a scheme might be considered the “default” or “natural” naming scheme. b is a naming scheme based upon
strings. c is a naming scheme based upon some arbitrary integer enumeration. Likewise for d. e is a naming scheme
based upon rectangular indexing. f is a naming scheme that might be used in a pyramid of resolution of quads with 16
or fewer layers in which a 32 bit quantity is broken into two 16-bit pieces, one for the row and column of each layer
in the pyramid.

Some observations about these naming schemes. In some, a, e and f there is an easily specified rule for generating
the names. In the others, the names must be explicitly enumerated. In some, a, b, d, e and f the names are sorted. In
some, a, e and f, the names are “compact” meaning that given the names of any two succesive members, there is no
name that can be drawn from the same pool from which the other names come that falls between them.

From these observations, we conclude that an indexing spec can be either implicit or explicit. An implicit spec is one
in which there is a simple rule for constructing each id in the name space. An explicit indexing spec is one in which
each id in the name space must be explicitly specified. In addition, for an explicit spec, we also need to know if the
names are sorted (and maybe even how to sort them by virtue of a call-back function to compare names), and if the
names are compact.

SAF’s notion of an indexing specification should be evolved to include these notions. Nonetheless, immediate support
for user-defined IDs is essential. Therefore, we have provided functions in SAF for a client to specify alternative in-
dexing specifications for a given collection. These functions will permit a SAF client to declare/describe and write/read
alternative IDs. However, all relations involving the collection must still be specified in terms of the default indexing.
Later, we can enhance the relations interface for SAF to support a client that specifies its relations in terms of these
alternative IDs.

Implementation Details

These are details that are probably of no concern to the general user. This info is for someone who cares about the lower
levels of SAF and how Alternative Indexing was implemented. The two SAF object data types SAF__IndexSpec
and SAF__AltIndexSpec both map to the same SSlib object, namely ss_indexspec_t. Every collection
record has a variable length array of links to ss_indexspec_t objects. The first item in that array is the default
index spec for that collection. If there are any alternate index specs for a collection, typically there would be only one,
since these would be the one way that the client refers to their node ids (or elem ids or face ids, etc).

Members

Declare an Alternative Index Specification

saf_declare_alternate_indexspec is a function defined in altindx.c.

Synopsis:

SAF_AltIndexSpec * saf_declare_alternate_indexspec(SAF_ParMode pmode, SAF_Db *db,
SAF_Set *containing_set,
SAF_Cat *cat, const char *name,
hid_t data_type, hbool_t is_explicit,
SAF_IndexSpec implicit_ispec,
hbool_t is_compact, hbool_t is_sorted,
SAF_AltIndexSpec *aspec)

Formal Arguments:

• pmode: The parallel mode

• db: Database to contain the new index spec.

• containing_set: The containing set of the collection.

• cat: The collection category.

172 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• name: The name you wish to assign to this alt index spec

• data_type: The data type used to identify members of the collection

• is_explicit: Whether the indexing specification is explicit or implicit

• implicit_ispec: The alternate indexing scheme of the collection. Ignored for explicit specs. Pass
SAF__NA_INDEXSPEC for explicit alternative index specs.

• is_compact: Whether the indexing specification is compact or not. Ignored for implicit specs.

• is_sorted: Whether the indexing specification is sorted or not. Ignored for implicit specs.

• aspec: [OUT] The optional returned alternate index spec handle. If the null pointer is passed for this argument
then new memory is allocated and returned, otherwise this argument serves as the successful return value.

Description: There is already a default SAF__IndexSpec associated with the collection defined by
containing_set and cat. This call registers another, alternate index specification. The default index spec as-
sociated with the collection is something that allows you to describe the collection IDs very easily by specifying the
start index and how many you have (typically the start index is 0). If you have some other, arbitrary way to identify
the members of the collection, then you need to write out a problem sized array describing the names you give to the
members of that collection. This is an explicit alternate indexing scheme, since you need to explicitly list the id’s for
each member of the collection. An implicit index spec is something that can be captured by stating the start index and
how many you have, so you don’t need to explicitly list the collection ids.

Preconditions:

• pmode must be valid. (low-cost)

• containing_set must be a valid set handle. (low-cost)

• cat must be a valid cat handle. (low-cost)

Return Value: On success, returns either the aspec argument or a newly allocated index specification. Returns the
null pointer on failure.

Issues: The data_type is just stored as the HDF5 data_type member of the SAF__AltIndexSpec. This is
transient, in memory data, it is not written to the saf database until the saf_write_alternate_indexspec call. This means
that if you do something like: saf_declare_alternate_indexspec, then saf_find_alternate_index_spec, then
saf_describe_alternate_indexspec, (with no write call yet) you won’t be able to recover the data_type.

See Also:

• Alternative Index Specification: Introduction for current chapter

Get a description of an alternate indexing spec

saf_describe_alternate_indexspec is a function defined in altindx.c.

Synopsis:

int saf_describe_alternate_indexspec(SAF_ParMode pmode, SAF_AltIndexSpec *as-
pec, SAF_Set *containing_set, SAF_Cat *cat,
char **name, hid_t *data_type, hbool_t *is_explicit,
SAF_IndexSpec *implicit_ispec, hbool_t *is_compact,
hbool_t *is_sorted)

Formal Arguments:

• pmode: The parallel mode

• aspec: The alternate index spec you want the description of.

• containing_set: [OUT] The containing set of the collection. Pass NULL if you do not want this returned.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 173

SAF User Manual, Release 2.0.3

• cat: [OUT] The collection category. Pass NULL if you do not want this returned.

• name: [OUT] The name of this alt index spec.

• data_type: [OUT] The data type used to identify members of the collection. Pass NULL if you do not want
this returned.

• is_explicit: [OUT] Whether the indexing specification is explicit or implicit.

• implicit_ispec: [OUT] The alternate indexing scheme of the collection. If the index spec is explicit, then
SAF__NA_INDEXSPEC will be returned. If the index spec is implicit, the implicit index spec will be returned
here.

• is_compact: [OUT] Whether the indexing specification is compact or not. Ignored for implicit specs.

• is_sorted: [OUT] Whether the indexing specification is sorted or not. Ignored for implicit specs.

Description: Get a description of an alternate indexing spec

Preconditions:

• pmode must be valid. (low-cost)

• The aspec argument must be a valid handle. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Alternative Index Specification: Introduction for current chapter

Find alternate index specs by matching criteria

saf_find_alternate_indexspecs is a function defined in altindx.c.

Synopsis:

int saf_find_alternate_indexspecs(SAF_ParMode pmode, SAF_Set *containing_set,
SAF_Cat *cat, const char *name_grep, int *num,
SAF_AltIndexSpec **found)

Formal Arguments:

• pmode: The parallel mode

• containing_set: The containing set of the collection.

• cat: The collection category.

• name_grep: The name of the alt index spec you wish to search for. Pass NULL if you do not wish to limit the
search via a name.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: Find alternate index specs by matching criteria.

If the name_grep argument begins with a leading “at sign” character, ‘@’, the remaining characters will be treated
as a limited form of a regular expression akin to that supported in ‘ed’. Otherwise, it will be treated as a specific name
for a set. If the name does not matter, pass SAF__ANY_NAME.

If the library was not compiled with -lgen support library, then if regular expressions are used, the library will behave
as though SAF__ANY_NAME was specified.

174 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Preconditions:

• pmode must be valid. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: This function does not follow the usual semantics of a find operation. Instead of searching through a database
(or scope) and looking for index specifications that match a certain pattern, it instead looks at a collection (specified
with the containing_set and cat arguments) and returns any index specifications of that collection that have the
requested name or name pattern.

See Also:

• Alternative Index Specification: Introduction for current chapter

Read an alternate index specs from disk

saf_read_alternate_indexspec is a function defined in altindx.c.

Synopsis:

int saf_read_alternate_indexspec(SAF_ParMode pmode, SAF_AltIndexSpec *aspec, void **buf)

Formal Arguments:

• pmode: The parallel mode.

• aspec: The alternate index spec handle to read.

• buf: The buffer to be filled in with the data.

Description: Read an alternate index specs from disk, involves actual I/O

Preconditions:

• pmode must be valid. (low-cost)

• aspec must be a valid alt index spec handle. (low-cost)

• buf cannot be null. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Issues: There is no way for the caller to find out what datatype is being returned.

See Also:

• Alternative Index Specification: Introduction for current chapter

Write an alternate index specs to disk

saf_write_alternate_indexspec is a function defined in altindx.c.

Synopsis:

int saf_write_alternate_indexspec(SAF_ParMode pmode, SAF_AltIndexSpec *aspec,
hid_t data_type, void *buf, SAF_Db *file)

Formal Arguments:

• pmode: The parallel mode.

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 175

SAF User Manual, Release 2.0.3

• aspec: The alternate index spec to write.

• data_type: The datatype used to identify members of the collection, if not already supplied with
saf_declare_alternate_indexspec.

• buf: The buffer of data to write.

• file: The optional destination file to which to write the data. If this is a null pointer then the data is written to
the same file as aspec.

Description: Write an alternate index specs to disk, involves actual I/O

Preconditions:

• pmode must be valid. (low-cost)

• aspec must be a valid alternate index spec handle. (low-cost)

• buf must not be null. (low-cost)

• You must pass a datatype either in the call to saf_declare_alternate_indexspec or here. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• saf_declare_alternate_indexspec: 30.1: Declare an Alternative Index Specification

• Alternative Index Specification: Introduction for current chapter

Basis Types

No description available.

Members

Declare a new basis type

saf_declare_basis is a function defined in basis.c.

Synopsis:

SAF_Basis * saf_declare_basis(SAF_ParMode pmode, SAF_Db *db, const char *name, const
char *url, SAF_Basis *basis)

Formal Arguments:

• name: Name of the basis type

• url: An optional url to the basis documentation

• basis: [OUT] Optional basis handle to initialize (and return).

Description: This function declares a new basis type with a unique identification number.

Return Value: A handle to the new basis type.

See Also:

• Basis Types: Introduction for current chapter

176 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Describe a basis type

saf_describe_basis is a function defined in basis.c.

Synopsis:

int saf_describe_basis(SAF_ParMode pmode, SAF_Basis *basis, char **name, char **url)

Formal Arguments:

• basis: Basis to describe

• name: [OUT] If non-null, on return points to malloc’d basis name if any

• url: [OUT] If non-null, on return points to malloc’d url if any

Description: Breaks basis into its parts and returns them through pointers.

Preconditions:

• basis must be a valid basis handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and ID will be initialized.

See Also:

• Basis Types: Introduction for current chapter

Find bases

saf_find_bases is a function defined in basis.c.

Synopsis:

int saf_find_bases(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, int *num,
SAF_Basis **found)

Formal Arguments:

• db: Database in which to limit the search.

• name: Optional name to which to limit the search.

• url: Optional url to which to limit the search.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for bases in the database. The search may be limited by one or
more criteria such as the name of the basis, etc.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode.

See Also:

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 177

SAF User Manual, Release 2.0.3

• Basis Types: Introduction for current chapter

Find one basis type

saf_find_one_basis is a function defined in basis.c.

Synopsis:

SAF_Basis * saf_find_one_basis(SAF_Db *database, const char *name, SAF_Basis *buf)

Formal Arguments:

• database: The database in which to search

• name: The name for which to search

• buf: [OUT] Optional basis handle to initialize and return.

Description: This is a convenience version of saf_find_basis that returns the first basis it finds whose name
matches that which is specified.

Return Value: A handle to a matching basis on success; SAF__ERROR_HANDLE on failure.

See Also:

• Basis Types: Introduction for current chapter

Collection Roles

No description available.

Members

Declare a new collection role

saf_declare_role is a function defined in role.c.

Synopsis:

SAF_Role * saf_declare_role(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url,
SAF_Role *role)

Formal Arguments:

• pmode: The parallel mode

• db: The database in which to create the new role

• name: Name of the role

• url: An optional url to the role documentation

• role: [OUT] Optional role handle to initialize (and return)

Description: This function declares a new collection role with a unique identification number.

Return Value: A handle to the new role.

See Also:

• Collection Roles: Introduction for current chapter

178 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Describe a role

saf_describe_role is a function defined in role.c.

Synopsis:

int saf_describe_role(SAF_ParMode pmode, SAF_Role *role, char **name, char **url)

Formal Arguments:

• role: Role to describe

• name: If non-null, on return points to malloc’d role name if any

• url: If non-null, on return points to malloc’d url if any

Description: Breaks role into its parts and returns them through pointers.

Preconditions:

• role must be a valid role handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and ID will be initialized.

See Also:

• Collection Roles: Introduction for current chapter

Find one collection role

saf_find_one_role is a function defined in role.c.

Synopsis:

SAF_Role * saf_find_one_role(SAF_Db *database, const char *name, SAF_Role *buf)

Formal Arguments:

• database: The database in which to search

• name: The name for which to search

• buf: [OUT] Optional role handle to initialize and return.

Description: This is a convenience version of saf_find_roles that returns the first role it finds whose name matches
that which is specified.

Return Value: A handle to a matching role on success; SAF__ERROR_HANDLE on failure.

See Also:

• saf_find_roles: 32.4: Find roles

• Collection Roles: Introduction for current chapter

Find roles

saf_find_roles is a function defined in role.c.

Synopsis:

int saf_find_roles(SAF_ParMode pmode, SAF_Db *db, const char *name, char *url, int *num,
SAF_Role **found)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 179

SAF User Manual, Release 2.0.3

Formal Arguments:

• db: Database in which to limit the search.

• name: Optional name to which to limit the search.

• url: Optional url to which to limit the search.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for roles in the database. The search may be limited by one or
more criteria such as the name of the role, etc.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

See Also:

• Collection Roles: Introduction for current chapter

Data Types

No description available.

Members

Convert a single value

_saf_convert is a function defined in utils.c.

Synopsis:

void * _saf_convert(hid_t srctype, const void *srcbuf, hid_t dsttype, void *dstbuf)

Formal Arguments:

• srctype: Source datatype; type of srcbuf value.

• srcbuf: Source datum to be converted to a new type.

• dsttype: Destination datatype; type of dstbuf value.

• dstbuf: Optional destination buffer. If not supplied then a buffer is allocated.

Description: Converts a single value from one datatype to another. This is most often used to convert a runtime typed
value into an integer to be used by the library.

Return Value: Returns dstbuf (or an allocated buffer if dstbuf is null) on success; returns null on failure.

Parallel Notes: Independent

See Also:

• Data Types: Introduction for current chapter

180 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Determine if datatype is primitive

_saf_is_primitive_type is a function defined in utils.c.

Synopsis:

hbool_t _saf_is_primitive_type(hid_t type)

Description: A “primitive” datatype is anything that’s an integer or floating point type.

Return Value: Returns true if type is primitive; false otherwise.

Parallel Notes: Independent

See Also:

• Data Types: Introduction for current chapter

Evaluation Types

No description available.

Members

Declare a new evaluation type

saf_declare_evaluation is a function defined in evaluation.c.

Synopsis:

SAF_Eval * saf_declare_evaluation(SAF_ParMode pmode, SAF_Db *db, const char *name, const
char *url, SAF_Eval *buf)

Formal Arguments:

• name: Name of the evaluation type

• url: An optional url to the evaluation documentation

• buf: [OUT] Optional buffer to fill in and return

Description: This function declares a new evaluation type with a unique identification number.

Preconditions:

• pmode must be valid. (low-cost)

Return Value: A handle to the new evaluation type.

See Also:

• Evaluation Types: Introduction for current chapter

Describe an evaluation type

saf_describe_evaluation is a function defined in evaluation.c.

Synopsis:

int saf_describe_evaluation(SAF_ParMode pmode, SAF_Eval *evaluation, char **name,
char **url)

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 181

SAF User Manual, Release 2.0.3

Formal Arguments:

• evaluation: Evaluation to describe

• name: If non-null, on return points to malloc’d evaluation name if any

• url: If non-null, on return points to malloc’d url if any

Description: Breaks evaluation into its parts and returns them through pointers.

Preconditions:

• pmode must be valid. (low-cost)

• evaluation must be a valid evaluation handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and ID will be initialized.

See Also:

• Evaluation Types: Introduction for current chapter

Find evaluation types

saf_find_evaluations is a function defined in evaluation.c.

Synopsis:

int saf_find_evaluations(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url,
int *num, SAF_Eval **found)

Formal Arguments:

• db: Database in which to limit the search.

• name: Optional name for which to search.

• url: Optional url for which to search.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: The function allows the client to search for evaluation types in the database. The search may be limited
by one or more criteria such as the name of the unit, etc.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

• Evaluation Types: Introduction for current chapter

182 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Find one evaluation type

saf_find_one_evaluation is a function defined in evaluation.c.

Synopsis:

SAF_Eval * saf_find_one_evaluation(SAF_Db *database, const char *name, SAF_Eval *buf)

Formal Arguments:

• database: The database in which to search

• name: The name for which to search

• buf: [OUT] Optional buffer to fill in and return

Description: This is a convenience version of saf_find_evaluation that returns the first evaluation type it finds
whose name matches that which is specified.

Return Value: A handle to a matching evaluation type on success; SAF__ERROR_HANDLE on failure.

See Also:

• Evaluation Types: Introduction for current chapter

Relation Representation Types

No description available.

Members

Declare a new object

saf_declare_relrep is a function defined in relrep.c.

Synopsis:

SAF_RelRep * saf_declare_relrep(SAF_ParMode pmode, SAF_Db *db, const char *name, const
char *url, int id, SAF_RelRep *buf)

Formal Arguments:

• db: Database in which to declare the new relation representation

• name: Name of the object

• url: An optional url to the documentation

• id: A unique non-negative identification number

• buf: [OUT] Optional handle to fill in and return

Description: This function declares a new topology relation representation type with a unique identification number.

Preconditions:

• pmode must be valid. (low-cost)

Return Value: A handle to the new object.

See Also:

• Relation Representation Types: Introduction for current chapter

1.1. Sets and Fields (SAF) API Reference Manual for SAF 2.0.3 183

SAF User Manual, Release 2.0.3

Describe an object

saf_describe_relrep is a function defined in relrep.c.

Synopsis:

int saf_describe_relrep(SAF_ParMode pmode, SAF_RelRep *obj, char **name, char **url, int *id)

Formal Arguments:

• obj: object to describe

• name: If non-null, on return points to malloc’d name if any

• url: If non-null, on return points to malloc’d url if any

• id: If non-null, on return points to unique id

Description: Breaks obj into its parts and returns them through pointers.

Preconditions:

• pmode must be valid. (low-cost)

• obj must be a valid relation representation handle. (low-cost)

Return Value: A non-negative value indicates success, and a negative value indicates failure. On return, the output
arguments name, url, and id will be initialized.

See Also:

• Relation Representation Types: Introduction for current chapter

Find one object

saf_find_one_relrep is a function defined in relrep.c.

Synopsis:

SAF_RelRep * saf_find_one_relrep(SAF_Db *database, const char *name, SAF_RelRep *buf)

Formal Arguments:

• database: The database in which to search

• name: The name for which to search

• buf: [OUT] Optional buffer to initialize and return

Description: This is a convenience version of saf_find_trelrep that returns the first object it finds whose name
matches that which is specified.

Return Value: A handle to a matching object on success; negative on failure.

See Also:

• Relation Representation Types: Introduction for current chapter

Find relation representation types

saf_find_relreps is a function defined in relrep.c.

Synopsis:

184 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

int saf_find_relreps(SAF_ParMode pmode, SAF_Db *db, const char *name, const char *url, int id,
int *num, SAF_RelRep **found)

Formal Arguments:

• db: Database in which to limit the search.

• name: Optional name for which to search.

• url: Optional url for which to search.

• id: Optional id for which to search, or pass SAF__ANY_INT.

• num: For this and the succeeding argument [see Returned Handles].

• found: For this and the preceding argument [see Returned Handles].

Description: This function allows a client to search for relation representation types in the database. The search may
be limited by one or more criteria such as the name of the type, etc.

Preconditions:

• pmode must be valid. (low-cost)

• db must be a valid database. (low-cost)

• num and found must be compatible for return value allocation. (low-cost)

Return Value: The constant SAF__SUCCESS is returned when this function is successful. Otherwise this function
either returns an error number or throws an exception, depending on the value of the library’s error handling property.

Parallel Notes: Depends on pmode

See Also:

• Relation Representation Types: Introduction for current chapter

1.2 Sets and Fields (SAF) Examples and Use Cases

Acknowledgements

1.2.1 Table of Contents

Birth and Death Use Case

This is testing code that demonstrates how to use SAF to output a mesh in which elements are being created and
destroyed over the course of a simulation. The bulk of the code here is used simply to create some interesting meshes
and has nothing to do with reading/writing from/to SAF. The only routines in which SAF calls are made are main,
OpenDatabase, WriteCurrentMesh, UpdateDatabase and CloseDatabase. As such, these are the only Public functions
defined in this file. In addition, the function to parse a sequence of addition/deletion, GetAddDelSequence, steps is
also public so that a user can see how to program this client to create a variety of interesting databases.

The test is designed to be relatively flexible in the dimension of mesh (topological and geomertic dimensions are bound
together) and in the various steps it goes through creating and deleting elements. However, elements are created and
deleted in slabs (e.g. planes of elements). There is a default dimension and sequence of steps hardcoded into this test
client. In addition, this test client is designed to also accept input from a text file that encodes the dimensionality of
the mesh and the series of steps of deletions and additions (see GetAddDelSequence).

For each step, this test client will output the mesh set, its topology relation, its nodal coordinate field and the node and
element IDs on each instance of the mesh. All mesh instances are collected together into a user-defined collection on

1.2. Sets and Fields (SAF) Examples and Use Cases 185

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

an aggregate set representing the union of the different mesh instances. In addition, the test client will create subsets
(blocks) of the mesh for the various half spaces in which the mesh exists. For example, for a 2D mesh, it will create,
at most, 4 blocks for the (+,+), (-,+), (-,-) and (+,-) quadrants of the 2D plane. Such a subset will only be created if, in
fact, a portion of the mesh exists in that particular half-space. We do this primarily to add some interesting subsets to
the mesh.

Next, unless ‘-noSimplices’ is specified on the command-line, some of these blocks are refined into simplices. Those
blocks that are refined are those whose low order 2 bits of the half-space index yield 2 or 3. In two dimensions, each
quad is refined into 2 tringles. In three dimensions, each hex is refined into 6 tets. We do this only to make the element
type generated by the code non-uniform.

If no arguments are given, the database will consist of a single file and the four mesh steps depicted in “use case
4-1.gif” will be produced. The node and element IDs will be as defined in the diagram.

Members

Form the sequence of element additions and deletions

GetAddDelSequence is a function defined in birth_death_w.c.

Synopsis:

void GetAddDelSequence(const char *inFileName, int *numDims, int *numSteps, int **theOps, Elem-
Slab_t **theSlabs)

Formal Arguments:

• inFileName: [IN] name of input file or NULL if no input file specified

• numDims: [OUT] the number of spatial and topological dimensions of the mesh

• numSteps: [OUT] the number of addition/deletion steps

• theOps: [OUT] array of length numSteps indicating the operation (add=+1,delete=-1)

• theSlabs: [OUT] array of element slabs, one for each step

Description: This function constructs the sequence of element additions or deletions. It either reads input from a file
to construct the sequence or, if no file is specified, generates some default data.

The format of the file is described below. . .

1 ndims=<n>
2 step +|- +|-<K0>,+|-<K1>,...,+|-<Kn-1>
3 step +|- +|-<K0>,+|-<K1>,...,+|-<Kn-1>
4 step +|- +|-<K0>,+|-<K1>,...,+|-<Kn-1>
5 .
6 .
7 .

For example, the file

1 ndims=2
2 step + +2,+3
3 step + +2,+0
4 step - +0,-1
5 step - -1,+0

186 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

creates several steps in the life of a 2 dimensional mesh of quads illustrated in “use case 4-1.gif”. .. figure:: use_case_4-
1.gif The mesh depicted in “use case 4-1.gif” is, in fact, the default sequence if no input file is specified.

The “ndims=2” line specifies the fact that the mesh will be 2D. In turn, this means that every “step” line in the file will
be a 2-tuple of integers. The only valid values for ndims are 1, 2 and 3. Each step line specifies elements to add or
delete. A plus (‘+’) sign immediately after “step” indicates an addition while a minus sign (‘-‘) indicates a deletion.
The signs on the entries of the tuples indicate which end of the corresponding axis at which the addition or deletion
will occur. The first step line is always an addition. For example, in the above steps, the first step line creates a mesh
2 elements wide extending in the positive ‘x’ direction by three elements high extending in the positive ‘y’ direction
from the origin. A +0 or -0 entry means the addition or deletion does not involve elements along this axis.

See Also:

• Birth and Death Use Case: Introduction for current chapter

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in birth_death_w.c.

Synopsis:

void OpenDatabase(char *dbname, hbool_t do_multifile, int numDims, DbInfo_t *dbInfo)

Formal Arguments:

• dbname: [IN] name of the database

• do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

• numDims: [IN] number of topological and geometric dimensions in the mesh

• dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set, and
the state suite.

The aggregate set is extendible because the infinity of points that comprise it can grow (or shrink).

See Also:

• Birth and Death Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in birth_death_w.c.

Synopsis:

void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numDims, CurrentMeshParams_t theMesh,
SAF_Field *fieldList, int *fieldListSize)

Formal Arguments:

• dbInfo: [IN/OUT] database info object

• theStep: current step number

• numDims: [IN] number of dimensions in mesh

• theMesh: [IN] current mesh parameters

• fieldList: [IN/OUT] list of fields we’ll append new fields too

• fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

1.2. Sets and Fields (SAF) Examples and Use Cases 187

SAF User Manual, Release 2.0.3

Description: This function does all the work of writing the current mesh, including its topology relation, subset
relations and fields, to the SAF database.

See Also:

• Birth and Death Use Case: Introduction for current chapter

Main program for Birth and Death of Elements Use Case

main is a function defined in birth_death_w.c.

Synopsis:

int main(int argc, char **argv)

Formal Arguments:

• argc: command line argument count

• argv: command line arguments

Description: This is the main code for the birth and death use case. It gets the steps of additions/deletions of elements
either from a file or uses the default steps, initializes the database, loops over all the steps and then closes the database.

If “do_multifile” is present on the command-line, each cycle output will be written to different files. Otherwise,
it will all be written to one file.

Parallel Notes: Parallel and serial behavior is identical due to use of SAF__ALL mode in all calls.

Issues: because we are in a try block here, all failures in any code here or in functions we call from here will send us
to the one and only catch block at the end of this test

See Also:

• Birth and Death Use Case: Introduction for current chapter

Storagew

This is code that demonstrates indirect fields used to represent fields stored on a domain decomposition. An indirect
field is a field whose stored coefficients are handles to fields. Typically such a field is on a superset and the handles
are to the “same” field on the subsets. This example generates a SAF database containing an unstructured mesh with
two domains. Indirect fields are specified on the mesh which refer to fields actually stored in fields on the domains.

Parallel and serial behavior are identical due to use of SAF__ALL mode in all calls.

Members

Main entry point

main is a function defined in storagew.c.

Synopsis:

int main(int argc, char **argv)

Description: See *Storagew*

See Also:

• Storagew: Introduction for current chapter

188 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Create mesh

make_base_space is a function defined in storagew.c.

Synopsis:

void make_base_space(void)

Description: Constructs the mesh for storagew and writes it to the file.

See Also:

• Storagew: Introduction for current chapter

Create direct coordinate field

make_direct_coord_field is a function defined in storagew.c.

Synopsis:

void make_direct_coord_field(void)

Description: Creates the global coordinate field defined directly on the two domains.

See Also:

• Storagew: Introduction for current chapter

Create direct temperature field

make_direct_temperature_field is a function defined in storagew.c.

Synopsis:

void make_direct_temperature_field(void)

Description: Creates the temperature field defined directly on the two domains.

See Also:

• Storagew: Introduction for current chapter

Create indirect coordinate field

make_indirect_coord_field is a function defined in storagew.c.

Synopsis:

void make_indirect_coord_field(void)

Description: Creates the global coordinate field on the mesh but defined indirectly on the two domains.

See Also:

• Storagew: Introduction for current chapter

1.2. Sets and Fields (SAF) Examples and Use Cases 189

SAF User Manual, Release 2.0.3

Create indirect temperature field

make_indirect_temperature_field is a function defined in storagew.c.

Synopsis:

void make_indirect_temperature_field(void)

Description: Creates the temperature field on the mesh but defined indirectly on the two domains.

See Also:

• Storagew: Introduction for current chapter

Triangle Mesh

No description available.

Members

Main entry point

main is a function defined in triangle_mesh.c.

Synopsis:

int main(int argc, char **argv)

Description: See *Triangle Mesh*.

See Also:

• Triangle Mesh: Introduction for current chapter

Construct triangle mesh

make_base_space is a function defined in triangle_mesh.c.

Synopsis:

void make_base_space(SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes, SAF_Cat *elems, int edge_ct_x,
int edge_ct_y)

Description: Constructs the triangle mesh and writes it to SAF__FILE.

See Also:

• Triangle Mesh: Introduction for current chapter

Construct coordinate field

make_coord_field is a function defined in triangle_mesh.c.

Synopsis:

void make_coord_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes,
SAF_Cat *elems, SAF_Db *saf_file)

190 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: Constructs the coordinate field on the mesh.

See Also:

• Triangle Mesh: Introduction for current chapter

Create coordinate field

make_coord_field_dofs is a function defined in triangle_mesh.c.

Synopsis:

double * make_coord_field_dofs(int edge_ct_x, int edge_ct_y)

Formal Arguments:

• edge_ct_x: number of edges in X direction

• edge_ct_y: number of edges in Y direction

Description: Creates the coordinate field for a rectangular triangle mesh. Number of nodes in X direction is
edge_ct_x``+1 and similarly for ``Y direction.

Preconditions:

• There must be at least 1 edge in the x direction. (low-cost)

• There must be at least 1 edge in the y direction. (low-cost)

See Also:

• Triangle Mesh: Introduction for current chapter

Create rectangular array of triangles

make_mesh_connectivity is a function defined in triangle_mesh.c.

Synopsis:

int * make_mesh_connectivity(int edge_ct_x, int edge_ct_y)

Formal Arguments:

• edge_ct_x: number of edges in X direction

• edge_ct_y: number of edges in Y direction

Description: Creates a rectangular array of triangles. The number of triangles in the X direction is 2*‘‘edge_ct_x‘‘
and similarly for the Y direction.

Preconditions:

• There must be at least 1 edge in the x direction. (low-cost)

• There must be at least 1 edge in the y direction. (low-cost)

See Also:

• Triangle Mesh: Introduction for current chapter

1.2. Sets and Fields (SAF) Examples and Use Cases 191

SAF User Manual, Release 2.0.3

Construct scalar field

make_scalar_field is a function defined in triangle_mesh.c.

Synopsis:

void make_scalar_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh, SAF_Cat *nodes,
SAF_Cat *elems, SAF_Db *saf_file)

Description: Construct the scalar field on the mesh.

See Also:

• Triangle Mesh: Introduction for current chapter

Create scalar on mesh

make_scalar_field_dofs is a function defined in triangle_mesh.c.

Synopsis:

double * make_scalar_field_dofs(int edge_ct_x, int edge_ct_y)

Formal Arguments:

• edge_ct_x: number of edges in X direction

• edge_ct_y: number of edges in Y direction

Description: Creates a scalar on a rectangular triangle mesh. Number of nodes in X direction is edge_ct_x``+1
and similarly for ``Y direction.

Preconditions:

• There must be at least 1 edge in the x direction. (low-cost)

• There must be at least 1 edge in the y direction. (low-cost)

See Also:

• Triangle Mesh: Introduction for current chapter

Construct stress field

make_stress_field is a function defined in triangle_mesh.c.

Synopsis:

void make_stress_field(int edge_ct_x, int edge_ct_y, SAF_Db *db, SAF_Set *mesh, SAF_Cat *elems,
SAF_Db *saf_file)

Description: Construct the stress field on the mesh.

See Also:

• Triangle Mesh: Introduction for current chapter

192 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Create stress field

make_stress_field_dofs is a function defined in triangle_mesh.c.

Synopsis:

double * make_stress_field_dofs(int edge_ct_x, int edge_ct_y)

Formal Arguments:

• edge_ct_x: number of edges in X direction

• edge_ct_y: number of edges in Y direction

Description: Creates a stress field on a rectangular array of triangles. Used to test instantiation of st2 field; val-
ues of field are meaningless. Number of nodes in X direction is edge_ct_x``+1 and similarly for ``Y
direction.

Preconditions:

• There must be at least 1 edge in the x direction. (low-cost)

• There must be at least 1 edge in the y direction. (low-cost)

See Also:

• Triangle Mesh: Introduction for current chapter

Dynamic Load Balance Use Case

This is testing code that demonstrates how to use SAF to output a mesh in which elements are being shifted amoung
processors between each restart dump. The bulk of the code here is used simply to create some interesting meshes
and has nothing to do with reading/writing from/to SAF. The only routines in which SAF calls are made are main,
OpenDatabase, WriteCurrentMesh, UpdateDatabase, CloseDatabase and ReadBackElementHistory. As such, these
are the only Public functions defined in this file. If you are interested in seeing the private stuff, and don’t see it in
what you are reading, you probably need to re-gen the documentation with mkdoc and specify an audience of Private
(as well as Public) with the -a option. If you are viewing this documentation with an HTML browser, don’t forget to
following the links to the actual source subroutines described here.

This use case can generate 1, 2 or 3D, unstructured meshes of edge, quad or hex elements, respectively. Use the -dims
%d %d %d command line option (always pass three args even if you want a 1 or 2D mesh in which case pass zero for
the remaining arg(s)). The default mesh is a 2D mesh of 10 x 10 quads.

Upon each cycle of this use case, a certain number of elements are shifted from one processor to the next starting with
processor 0. This shifting is continued through all the processors until the elements again appear on processor 0.

In the initial decomposition, elements are assigned round-robin to processors. This is, of course, a brain-dead decom-
position but is sufficient for purposes of this use case. However, before the round-robin assignment begins, a certain
number of elements are held-back from the list of elements to initially assign. This is the number of elements to be
shifted between processors. By defualt, this number is 10. You can specify a different number using the -numToShift
%d command line argument. These elements are the elements of highest numerical index in the global collection of
elements on the whole mesh. Thus, in the default case, elements 90. . . 99 wind up as the shifted elements. Initially,
these elements are assigned to processor 0. Then, with each cycle output, they are shifted to the next processor. Con-
sequently, in each cycle output by this use case, the element-based processor decomposition is, indeed, a partition of
the whole. No elements are shared between processors. This decomposition is illusrtrated for the default case run on
3 processors in “loadbalance diagrams-2.gif”.

Since each cycle in the output is a different decomposition of the whole, we create different instances of the whole
mesh in an self collection on the whole. The interpretation is that the top-level set and every member of the self

1.2. Sets and Fields (SAF) Examples and Use Cases 193

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

collection on that set are equivalent point-sets. They are, indeed, the same set. However, each is decomposed into
processor pieces differently.

Two fields are created. One is the coordinate field for the mesh; a piecewise-linear field with 1 dof for each node in
the problem. The other is a pressure field with the following time-space behavior. . .

1 2
2 t
3 -------
4 2
5 (1 + r)

where t is time and r is distance from the origin. This is a piecewise constant field with 1 dof for each element in the
problem.

Finally, both the the coordinate field on the whole on the given dump and the pressure field on the whole are written
to a state-field. Due to the fact that the state/suite interface does not currently support subsuites (that is subsetting of a
suite) we are forced to create a separate state/suite for each dump. This will be corrected in the SAF library shortly. A
high-level diagram of the Subset Relation Graph (SRG) is illustrated in “loadbalance diagrams-2.gif”

Note that this diagram does not show the field indirections from a particular decomposed set to its processor pieces.
That would have made the diagram even busier than it already is.

Optionally, this use case will output the dump history of a given element you specify with the -histElem %d command-
line option. Within the context of this use case, we define the dump history of an element to be the sequence of
processor assignments and pressure dofs for each dump cycle of the use case. If you specify an element number in
the interval [N-numToShift. . . ‘‘N‘‘-1], where N is the total number of elements in the mesh, the element’s processor
assignement should vary, increasing by one each step. Otherwise, it should remain constant. This so because high-
numbered elements are shifted while low-numbered ones stay on the processor they were initially assigned to.

An element’s dump history is not output by default. You have to request it by specifying the -histElem %d command-
line option. Also, to confirm that the use case does, indeed, query back from the database the correct dump history, it
also computes and stores the history as the database is generated. At the end of the run, it then prints both the history as
it was generated and the history as it was queried from the database for a visual inspection that the results are identical.

Members

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in loadbalance.c.

Synopsis:

void OpenDatabase(char *dbname, hbool_t do_multifile, int numDims, int numProcs, DbInfo_t *dbInfo)

Formal Arguments:

• dbname: [IN] name of the database

• do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

• numDims: [IN] number of topological and geometric dimensions in the mesh

• numProcs: [IN] number of processors

• dbInfo: [OUT] database info object

194 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Description: This function creates the initial database and some key objects such as the top-most aggregate set, the
nodes, elems and procs collection categories and the state suite.

See Also:

• Dynamic Load Balance Use Case: Introduction for current chapter

Query an element’s history from the database

ReadBackElementHistory is a function defined in loadbalance.c.

Synopsis:

void ReadBackElementHistory(DbInfo_t *dbInfo, int myProcNum, int histElem, int *numReadBack, El-
ementHistory_t **hist)

Formal Arguments:

• dbInfo: database info object

• myProcNum: processor rank in MPI_COMM_WORLD

• histElem: the element for which history

• numReadBack: number of dump for which history was read back

• hist: the resulting history buffer

Description: This function queries the pressure dump history for a specific element back out of the database.

Issues: For expediency in completing the use-case, this function was written to be fairly specific to what was written
to the database. Note that the approach taken here is written assuming each dump is a different set in the self collection
on the top-level set.

A more general dump history tool would involve the following. . .

1 Command-line arguments...
2 -elemID %d (0 or more times) identify the element(s) you want dump history for
3 -nodeID %d (0 or more times) identify the node(s) you want dump history for
4 -field %s (1 or more times) identify the field(s) you want dumped for each

→˓elem/node
5 use "all" for all fields
6 -IDfield If the node or element IDs you specified with -

→˓elemID or
7 -nodeID are not native collection indices,

→˓specify the name
8 of the field in which these ID's are stored

1 Possible output...

1 Dump History for Element 5...

1 stepIdx | step coord | lives in | pressure | velocity | gauss-pts
2 | | | | vx vy vz | d0 d1 d2 d3
3 --------|------------|------------|----------------|--------------|-------------
4 000 | 0.000 | whole-005 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
5 020 | 0.059 | whole-005 | 3.9 | blah-blah-blah

1 or in some decomposed database...

1.2. Sets and Fields (SAF) Examples and Use Cases 195

SAF User Manual, Release 2.0.3

1 Dump History for Element 16...

1 stepIdx | step coord | lives in | pressure | velocity | gauss-pts
2 | | | | vx vy vz | d0 d1 d2 d3
3 --------|------------|------------|----------------|--------------|-------------
4 000 | 0.000 | proc0-000 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
5 000 | 0.000 | proc1-007 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
6 000 | 0.000 | proc2-004 | 2.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
7 020 | 0.059 | proc0-000 | 42.3 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
8 020 | 0.059 | proc1-007 | 42.4 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3
9 020 | 0.059 | proc2-004 | 42.3 | 0.1 2.0 2.2 | 2.0 2.2 2.2 2.3

1 In this example, element 16 is shared by three processor pieces. And, this shows
→˓example output

2 where one processor doesn't agree with the others on the pressure value.

1 algorithm...
2 1. open the database
3 2. find all suites
4 3. order suites (by coord value associated with first member state or something)
5 4. For each suite...
6 a. read a state field
7 b. for each field in the state matching field(s) specified on command-line.
8 a. if field is inhomog, find pieces on which it is homog
9 1. locate the identified nodes and elements in each piece

10 by reading subset relations and examining them
11 2. for each piece...
12 partially read the field to obtain the dofs for all
13 specified node/elems
14 3. capture dof values, names of pieces (sets) and local
15 indexes on these sets
16 b. otherwise, just partially read the field to obtain the dofs
17 for all specified nodes/elemes
18 c. build up buffers of dof values, names of pieces (sets) and local
19 indexes on these sets

See Also:

• Dynamic Load Balance Use Case: Introduction for current chapter

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in loadbalance.c.

Synopsis:

void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numDims, int numProcs, int myProcNum, Cur-
rentMeshParams_t *theMesh, SAF_Field *fieldList, int *fieldListSize)

Formal Arguments:

• dbInfo: [IN/OUT] database info object

• theStep: [IN] current step number

• numDims: [IN] number of dimensions in mesh

• numProcs: [IN] number of processors

196 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• myProcNum: [IN] the rank of calling processor

• theMesh: [IN/OUT] current mesh parameters (relation and file handle updated)

• fieldList: [IN/OUT] list of fields we’ll append newly written fields too

• fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its domain-decomposed topology
relation, processor subset relations, coordinate field, and pressure field to the SAF database.

See Also:

• Dynamic Load Balance Use Case: Introduction for current chapter

Main program for Dynamic Load Balance Use Case

main is a function defined in loadbalance.c.

Synopsis:

int main(int argc, char **argv)

Formal Arguments:

• argc: command line argument count

• argv: command line arguments

Description: This is the main code for the dynamic load balance use case.

Here are the command-line options. . .

1 -multifile
2 each cycle output will be written to different files. Otherwise, it will all be

→˓written to one file.
3 -numToShift %d
4 specify the number of elements to shift on each step [10].
5 -meshSize %d %d %d
6 specify size of mesh in 1, 2 or 3 dimensions. Specify 0 for each dimension you do

→˓not want to have.
7 For example, -meshSize 5 0 0 specifies a 1D mesh of size 5 elements [10 10 0]
8 -histElem %d
9 specify an element, using a global element id, whose pressure history is to

→˓displayed at the
10 end of the run. In this case, the database is closed and then re-opened. For each

→˓instant of the mesh in
11 the database, the specified element's pressure is is found by first finding which

→˓processor set the
12 element was assigned to. This find step is done in parallel. Once the processor-

→˓set is known, that
13 processor re-opens the database and reads the field, using partial I/O on that

→˓specifc set for the
14 specific element and prints a value. If you want to specify an element that you

→˓know has been
15 shifted, use an element id within <numToShift> elements of the highest element

→˓number.

Issues: Only two of the proc-to-top subset relations are different in each step. It would be nice to re-use
the data already written when the relations are identical to some other previous step. A function such as
saf_usewritten_rel``(``SAF__Rel theRel, SAF__Rel alreadyWrittenRel); would do the job.

1.2. Sets and Fields (SAF) Examples and Use Cases 197

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

It might be nice to provide a -histNode command-line option. Node history is a little different because some nodes are
shared between processors.

This is intended to be only a parallel client. In serial, this example should be skipped.

This is really only a parallel test. It doesn’t make much sense to run it in serial

See Also:

• Dynamic Load Balance Use Case: Introduction for current chapter

Example Utilities

No description available.

Members

Close the database

CloseDatabase is a function defined in exampleutil.c.

Synopsis:

void CloseDatabase(DbInfo_t dbInfo)

Formal Arguments:

• dbInfo: database info object

Description: This function performs any tasks associated with closing the database. Currently, the only thing this
does is call :file:`saf_close_database ../safapi_refman.rest/saf_close_database.rst‘.

See Also:

• Example Utilities: Introduction for current chapter

Update the database to the current step

UpdateDatabase is a function defined in exampleutil.c.

Synopsis:

void UpdateDatabase(DbInfo_t *dbInfo, int stepNum, int numSteps, hbool_t do_multifile, int numFields,
SAF_Field *theFields)

Formal Arguments:

• dbInfo: [IN/OUT] database info object (currentFile member can be modified)

• stepNum: [IN] the current step number in the sequence starting from zero

• numSteps: [IN] total number of steps to be output (>=1)

• do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

• numFields: [IN] the number of fields on the mesh

• theFields: [IN] array of length numFields of the field handles

198 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: This function performs a number of tasks involved in updating the database to the current step in the
sequence of additions and deletions.

Issues: We are forced to create a new state field each time this function is called. This can be viewed as either
approrpriate or counter-intuitive depending on how the SAF client views its data. Certainly, since each step in the
sequence of additions and deletions changes the mesh, the state output by the client is different on each step. This
follows the strict definition of state currently supported by SAF’s states and suites API. However, if the list of fields
that are output do not change and only their base-space varies with time, is the state output by the client, in the eyes
of the client, really different? We could support this somewhat looser definition of state by instead of associating with
each state the fields on the mesh instances, we used fields on the aggregate. However, this would require a minor
alteration to our current interpretation of inhomogeneous fields. If interested, we can persue further.

Because the fields from each state are defined on a different base-space, we need to define a new suite for every step
in the simulation. This will be corrected when SAF supports sub-setting on suites. Then, we’ll be able to define an
inhomogenous field on the suite for its different pieces.

we always write to the 0’th index of this new suite

See Also:

• Example Utilities: Introduction for current chapter

Hadaptive Use Case

This is a simple example of using SAF to represent adaptation in a parallel-decomposed mesh. The use-case is hard-
coded to write the 6 mesh states illustrated in “use case 5-1.gif”

This example is designed to run on only 3 processors. It will abort with error if run in parallel on any other number of
processors.

There are a total of 6 states output. The ending state is identical to the initial state. Other than a coordinate field, there
are no other whole-mesh fields declared. This is simply due to expediency in completing this example code.

State 0

State 1

State 2

State 3

State 4

State 5

To give elements an immutable, global ID, we use something called the LRC index which is a triple of the level of
adaptivity and then the row and column index within that level starting from the origin in the upper right. The larges
elements are defined, arbitrarily, to be at level 1. So, for example, the lower-right child of the one elment that is refined
in state 1 has an LRC index of {2,1,3} for level 2, row 1 and column 3. The LRC indexes are written on each step as
alternative indexing for the elements. In the dialog that follows, any reference to an element enclosed in ‘{‘ and ‘}’
braces is the element’s LRC index.

In each state, each processor enumerates changes in the mesh relative to the last known dump of the mesh to the
database. Two broad categories of changes are tracked; refinements and re-balances. Refinements are tracked and
enumerated in the global context. Re-balancing is tracked and enumerated in the local context. In other words,
refinement information is stored above the processor decomposition while re-balancing information is stored below

1.2. Sets and Fields (SAF) Examples and Use Cases 199

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

it in the Subset Relation Graph (SRG). This was completely arbitrary and can be changed if desired. Given all the
elements on a processor at a given state, each processor stores information to answer: “Which of my elements in the
current state. . . ”

1 a. ...did I get from another processor in the last known state.
2 b. ...are children of (refinements of) an element in the last known state.

In addition, we arbitrarily choose to store information on UNrefinements and no-changes as well as elements that are
kept (as opposed to re-balanced). There is no particular reason to do this other than trying to make the example a little
more interesting. It costs more data that is non-essential.

In some cases, between two state dumps an element may be refined and some or all of its children may be re-balanced
to other processors. When this happens, from the point of view of the database receiving information about each state,
the convention used is that the processor in the previous state that owned the parent made the decision to refine it and
then re-balanced the elements to other processors. For example, between state 0 and state 1 in “use case 5-1.gif”,
element {1,0,1} which lived on processor 0 in state 0 was refined and half (2) of its children were given to processor
1. Thus, in state 1, processor 1 treats these two elements as being both refinements and re-balances.

Next, for re-balances, a field is stored on the re-balances set which identifies the processor from which each element
in the set came.

[Side note: Why not store this information as a set of subsets? That too, is completely appropriate. The approach
chosen here is merely more convenient and storage efficient. The fact is, there is a duality in how certain kinds of
information can be captured in SAF. This duality is a fundamental aspect of the mathematical interpreation of a field
defined on member(s) of a Set Relation Graph (SRG). In short, if one wishes to enumerate a value for each element
in a collection, one has a choice of saying (in natural language), “for each element, which value does it have. . . ” or
“for each value, which elements have that value. . . ”. The former approach takes the form of a field while the latter
approach takes the form of a set of subsets (a partition in fact). In fact, there is document that discusses these issues
in detail available from the SAF web-pages at www.ca.sandia.gov/ASCI/sdm/SAF/docs/wips/fields_n_maps.ps.gz In
summary, while one may have a natural way of thinking about this kind of data, there is clear mathematical theory to
explain why either approach is appropriate and there are even theoretical storage and performance reasons to prefer
one over the other depending on the situation. – end side note]

Since developing this initial use-case, a couple of enhancemenets have been identified that would be make the use-case
more realistic and facilitate certain kinds of queries. First, we’ve identified a way to use SAF to capture differences
in the sets from one state to the next as opposed or in addition to each specific state. Second, we’ve identified a way
to make forward references (as apposed or in addition to to backward) to facilitate forward tracking of changes in
refinement and rebalancing.

Issues: The ability to talk about the “difference” between two SRGs would be useful. If one is permitted only to
enumerate a given state of the client’s data, it is difficult to store information at state I that captures what is changed in
going to state I+1. For example, in going from state 0 to state 1, element {1,0,1} is refined into 4 children. However,
the output for state 0 can’t mention any of these children because when state 0 is created, they don’t exist. Because
they do exist in state 1, we can talk about where they came from relative to state 0. Thus, a causality is imposed, which
the current implementation demonstrates, in the direction in which we can talk about changes (as mentioned above, I
think we have identified as solution to this).

If one wishes to capture the differences between states, where does that information “live”? The differences represent
what happened in making the transition from one state to the next. In some sense the differences represent actions on
objects and not objects themselves. For example, “. . . these elments were added by refinement of that element. . . ” or
“. . . these elements were obtained by rebalancing from that processor. . . ” are the kinds of statements one might like to
make. It would be nice of such differences could be captured using the existing objects available in SAF rather than
having to create new ones. I think I have identifed a way of doing this. Given two states, ‘a’ and ‘b’, and two sets, S

200 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
http://www.ca.sandia.gov/ASCI/sdm/SAF/docs/wips/fields_n_maps.ps.gz
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

and P where S is the subset of P in both states, we can talk about the difference of Sa and Sb (that is S in state a and S
in state b) in P by introducing two subsets of S, one in state a, called Dab and one in state b called Dba where

1 Dab = Sa - Sb (all points in Sa but not in Sb)
2 Dba = Sb - Sa (all points in Sb but not in Sa)

Together, these two sets represent, in effect, additions and deletions of points in going from Sa to Sb or vice versa.
Dab is the set of points deleated from Sa in arriving at Sb and Dba is the set of points added to Sa in arriving at Sb (or
deleted from Sb to arrive at Sa in the reverse direction).

Both Dab and Dba are ordinary subsets in their respective SRGs. However, what we are missing from SAF is the
ability to declare that Dab is a difference subset and which set it is differenced with. There are two possible routes to
take here. One is to simply add a SAF__DIFFERENCE option to the :file:`saf_declare_subset_relation
../safapi_refman.rest/saf_declare_subset_relation.rst‘ call so that some subsets can be defined that are differences
with other sets. The other route is to add a new function to declare expressions involving sets such as. . .
saf_declare_set_expression``(``SAF__Set resultSet, char *expr) along with functions to build up the
string representation for the expression. This would then permit a client to find sets in the SRG according to a given
expression (implementation details would require something like an expr_blob_id member of a set object in VBT
which could be implemented as a meta_blob). The latter approach is more general in that it permits a variety of set
expressions to be characterized, not just a difference.

Because SAF is targeted primarily as a data modeling and I/O library, it is typically used to output restart or plot dumps
for states that are far apart relative to the physics time-step. For example, there may be many hundreds of time-steps
from one state dump to the next. Consequently, the relationships that can be captured in such a scenario are how the
two states as told to the**I/O**system are related. For example, if a state is dumped at time I where an element,
say K, is on processor 0 and then this element migrates from processor 0, to 1, to 5, to 17 and finally to 22 before a
new state is dumped to the I/O system, the only fact that the I/O system can capture is that, somehow, element K on
processor 0 was given to processor 22. In order to capture the in-between information, each of those states must be
enumerated to the I/O system. This might be where having the ability to enumerate state-transitions as opposed to just
states would be useful. Then, it may be relatively simple to enumerate each of the states the code went through.

Members

Open a new database and do some prepratory work on it

OpenDatabase is a function defined in hadaptive.c.

Synopsis:

void OpenDatabase(char *dbname, hbool_t do_multifile, DbInfo_t *dbInfo)

Formal Arguments:

• dbname: [IN] name of the database

• do_multifile: [IN] boolean to indicate if each step will go to a different supplemental file

• dbInfo: [OUT] database info object

Description: This function creates the initial database and some key objects such as the top-most aggregate set, the
nodes, elems and procs collection categories and the state suite.

See Also:

• Hadaptive Use Case: Introduction for current chapter

1.2. Sets and Fields (SAF) Examples and Use Cases 201

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Write current mesh to the SAF database

WriteCurrentMesh is a function defined in hadaptive.c.

Synopsis:

void WriteCurrentMesh(DbInfo_t *dbInfo, int theStep, int numProcs, int myProcNum, CurrentMesh-
Params_t theMesh, SAF_Field *fieldList, int *fieldListSize)

Formal Arguments:

• dbInfo: [IN/OUT] database info object

• theStep: [IN] current step number

• numProcs: [IN] number of processors

• myProcNum: [IN] the rank of calling processor

• theMesh: [IN] current mesh parameters

• fieldList: [IN/OUT] list of fields we’ll append newly written fields too

• fieldListSize: [IN/OUT] On input, the current size of the field list. On output, its new size

Description: This function does all the work of writing the current mesh, including its domain-decomposed topology
relation, processor subset relations, coordinate field, and pressure field to the SAF database.

See Also:

• Hadaptive Use Case: Introduction for current chapter

Main program for Hadaptive Use Case

main is a function defined in hadaptive.c.

Synopsis:

int main(int argc, char **argv)

Formal Arguments:

• argc: command line argument count

• argv: command line arguments

Issues: This is really only a parallel test. It doesn’t make much sense to run it in serial

See Also:

• Hadaptive Use Case: Introduction for current chapter

Larry Use Case

This is testing code that exercises Larry Schoof first use case. This code declares SAF objects and writes the raw data.

Members

Main entry point

main is a function defined in larry1w.c.

202 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Synopsis:

int main(int argc, char **argv)

Description: Implementation of Larry use case.

Return Value: Exit status is the number of failures.

See Also:

• Larry Use Case: Introduction for current chapter

Construct the mesh

make_base_space is a function defined in larry1w.c.

Synopsis:

void make_base_space(void)

Description: Constructs the mesh for Larry use case and writes it to a file.

See Also:

• Larry Use Case: Introduction for current chapter

Construct the displacement field

make_displacement_field is a function defined in larry1w.c.

Synopsis:

void make_displacement_field(void)

Description: Constructs the displacement field on the mesh. The field templates for the displacement field are the
same as the templates for the global coordinate field.

See Also:

• Larry Use Case: Introduction for current chapter

Construct the distribution factors

make_distribution_factors_on_ss2_field is a function defined in larry1w.c.

Synopsis:

void make_distribution_factors_on_ss2_field(void)

Description: Constructs the distribution factors field on side set 2.

See Also:

• Larry Use Case: Introduction for current chapter

1.2. Sets and Fields (SAF) Examples and Use Cases 203

SAF User Manual, Release 2.0.3

Construct the coordinate field

make_global_coord_field is a function defined in larry1w.c.

Synopsis:

void make_global_coord_field(void)

Description: Constructs the coordinate field on the mesh.

See Also:

• Larry Use Case: Introduction for current chapter

Create initial suite

make_init_suite is a function defined in larry1w.c.

Synopsis:

void make_init_suite(void)

Description: Create a suite for initial state (time step zero).

See Also:

• Larry Use Case: Introduction for current chapter

Construct the stress field

make_pressure_on_ss1_field is a function defined in larry1w.c.

Synopsis:

void make_pressure_on_ss1_field(void)

Description: Constructs the stress field on cell 1.

See Also:

• Larry Use Case: Introduction for current chapter

Construct the stress field

make_stress_on_cell_1_field is a function defined in larry1w.c.

Synopsis:

void make_stress_on_cell_1_field(void)

Description: Construct the stress field on cell 1.

See Also:

• Larry Use Case: Introduction for current chapter

204 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Construct the temperature field

make_temperature_on_cell_2_field is a function defined in larry1w.c.

Synopsis:

void make_temperature_on_cell_2_field(void)

Description: Constructs the temperature field on node set 1.

See Also:

• Larry Use Case: Introduction for current chapter

Construct the temparature field

make_temperature_on_ns1_field is a function defined in larry1w.c.

Synopsis:

void make_temperature_on_ns1_field(void)

Description: Constructs the temperature field on node set 1.

See Also:

• Larry Use Case: Introduction for current chapter

Construct the time field

make_time_base_field is a function defined in larry1w.c.

Synopsis:

void make_time_base_field(void)

Description: Construct the time field on the time base.

See Also:

• Larry Use Case: Introduction for current chapter

Create time suite

make_time_suite is a function defined in larry1w.c.

Synopsis:

void make_time_suite(void)

Description: Create time suite.

See Also:

• Larry Use Case: Introduction for current chapter

N to 1 Remapping Use Case

No description available.

1.2. Sets and Fields (SAF) Examples and Use Cases 205

SAF User Manual, Release 2.0.3

Members

Main entry point

main is a function defined in remap_n21.c.

Synopsis:

int main(int argc, char **argv)

Description: See N to 1 Remapping Use Case.

See Also:

• N to 1 Remapping Use Case: Introduction for current chapter

Overloaded Definitions

These objects have multiple definitions.

Members

OpenDatabase

This object has overloaded definitions.

Members

WriteCurrentMesh

This object has overloaded definitions.

Members

main

This object has overloaded definitions.

Members

This program demonstrates the functions needed by a parallel EXODUS application.

main is a function defined in exo_par_wt.c.

Synopsis:

int main(int argc, char **argv)

206 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: Creates a SAF database in parallel, emulating a parallel EXODUS writing client.

The code may be somewhat confusing but the subset relation graph (SRG) is straightforward. The SRG looks like this:

TOP_SET | | |—DOMAIN_0 | | | | | |—BLOCK_0_DOMAIN_0 | | . | | . | |—BLOCK_num_blocks_DOMAIN_0
| |—DOMAIN_1 | . | . | . |—DOMAIN_num_domains | | | | | |—BLOCK_0_DOMAIN_num_domains | | . |
| . | |—BLOCK_num_blocks_DOMAIN_num_domains | | | | |—BLOCK_0 | | | | | |—BLOCK_0_DOMAIN_0
(same set as subset of DOMAIN_0) | | . | | . | |—BLOCK_0_DOMAIN_num_domains | |—BLOCK_1 | . | . | .
|—BLOCK_num_blocks

|—BLOCK_num_blocks_DOMAIN_0 | . | . |—BLOCK_num_blocks_DOMAIN_num_domains

Parallel Notes: This is a parallel client.

See Also:

• Tests: Introduction for current chapter

Basic EXODUS test

main is a function defined in exo_basic_wt.c.

Synopsis:

int main(int argc, char **argv)

Description: The exo_basic_wt and exo_basic_rd test the SAF library to ensure that all serial EXODUS
functionality is supported.

Parallel Notes: This tests SAF in serial. There are corresponding tests (exo_par_wt and exo_par_rd) to test
SAF in parallel.

See Also:

• Tests: Introduction for current chapter

make_base_space

This object has overloaded definitions.

Members

Tests

No description available.

Members

Permuted Index

1.2. Sets and Fields (SAF) Examples and Use Cases 207

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Table 1.2: Permuted Index
Concept Key Reference
Form the sequence of element additions and deletions GetAddDelSequence

This program demonstrates the functions needed by a parallel
EXODUS

application. main

Create rectangular array of triangles make_mesh_connectivity

Main program for Dynamic Load Balance Use Case main

Basic EXODUS test main

Main program for Birth and Death of Elements Use
Case

main

Main program for Birth and Death of Elements Use Case main

Main program for Dynamic Load Balance Use Case main

Main program for Hadaptive Use Case main

Close the database CloseDatabase

Construct coordinate field make_coord_field

Construct scalar field make_scalar_field

Construct stress field make_stress_field

Construct the coordinate field make_global_coord_field

Construct the displacement field make_displacement_field

Construct the distribution factors make_distribution_factors_on_ss2_field

Construct the mesh make_base_space

Construct the stress field make_stress_on_cell_1_field

Construct the stress field make_pressure_on_ss1_field

Construct the temparature field make_temperature_on_ns1_field

Construct the temperature field make_temperature_on_cell_2_field

Construct the time field make_time_base_field

Construct triangle mesh make_base_space

Construct coordinate field make_coord_field
Continued on next page

208 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference

Construct the coordinate field make_global_coord_field

Create coordinate field make_coord_field_dofs

Create direct coordinate field make_direct_coord_field

Create indirect coordinate field make_indirect_coord_field

Create coordinate field make_coord_field_dofs

Create direct coordinate field make_direct_coord_field

Create direct temperature field make_direct_temperature_field

Create indirect coordinate field make_indirect_coord_field

Create indirect temperature field make_indirect_temperature_field

Create initial suite make_init_suite

Create mesh make_base_space

Create rectangular array of triangles make_mesh_connectivity

Create scalar on mesh make_scalar_field_dofs

Create stress field make_stress_field_dofs

Create time suite make_time_suite

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Update the database to the current step UpdateDatabase

Close the database CloseDatabase

Query an element’s history from the database ReadBackElementHistory

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Continued on next page

1.2. Sets and Fields (SAF) Examples and Use Cases 209

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference
Open a new database and do some prepratory

work on it
OpenDatabase

Open a new database and do some prepratory
work on it

OpenDatabase

Open a new database and do some prepratory
work on it

OpenDatabase

Update the database to the current step UpdateDatabase

Main program for Birth and Death of Elements Use Case main

Form the sequence of element additions and deletions GetAddDelSequence

This program demonstrates the functions needed
by a parallel EXODUS application.

main

Create direct coordinate field make_direct_coord_field

Create direct temperature field make_direct_temperature_field

Construct the displacement field make_displacement_field

Construct the distribution factors make_distribution_factors_on_ss2_field

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Main program for Dynamic Load Balance Use Case main

Form the sequence of element additions and deletions GetAddDelSequence

Query an element’s history from the database ReadBackElementHistory

Main program for Birth and Death of Elements Use Case main

Main entry point main

Main entry point main

Main entry point main

Main entry point main

This program demonstrates the functions needed by a parallel EXODUS application. main
Continued on next page

210 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference

Basic EXODUS test main

Construct the distribution factors make_distribution_factors_on_ss2_field

Construct coordinate field make_coord_field

Construct scalar field make_scalar_field

Construct stress field make_stress_field

Construct the coordinate field make_global_coord_field

Construct the displacement field make_displacement_field

Construct the stress field make_stress_on_cell_1_field

Construct the stress field make_pressure_on_ss1_field

Construct the temparature field make_temperature_on_ns1_field

Construct the temperature field make_temperature_on_cell_2_field

Construct the time field make_time_base_field

Create coordinate field make_coord_field_dofs

Create direct coordinate field make_direct_coord_field

Create direct temperature field make_direct_temperature_field

Create indirect coordinate field make_indirect_coord_field

Create indirect temperature field make_indirect_temperature_field

Create stress field make_stress_field_dofs

Form the sequence of element addi-
tions and deletions

GetAddDelSequence

This program demonstrates the functions needed by a parallel EX-
ODUS application.

main

Main program for Hadaptive Use Case main

Query an element’s history from the database ReadBackElementHistory

Create indirect coordinate field make_indirect_coord_field

Continued on next page

1.2. Sets and Fields (SAF) Examples and Use Cases 211

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference
Create indirect temperature field make_indirect_temperature_field

Create initial suite make_init_suite

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Main program for Dynamic Load Balance Use Case main

Main entry point main

Main entry point main

Main entry point main

Main entry point main

Main program for Birth and Death
of Elements Use Case

main

Main program for Dynamic Load
Balance Use Case

main

Main program for Hadaptive Use
Case

main

Construct the mesh make_base_space

Construct triangle mesh make_base_space

Create mesh make_base_space

Create scalar on mesh make_scalar_field_dofs

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

This program demonstrates the functions needed by a parallel EXODUS ap-
plication.

main

Open a new database and do some prepra-
tory work on it

OpenDatabase

Continued on next page

212 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference
Open a new database and do some prepra-

tory work on it
OpenDatabase

Open a new database and do some prepra-
tory work on it

OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Create scalar on mesh make_scalar_field_dofs

Open a new database and do some
prepratory work on it

OpenDatabase

Open a new database and do some
prepratory work on it

OpenDatabase

Open a new database and do some
prepratory work on it

OpenDatabase

This program demonstrates the functions needed by a parallel EXODUS application. main

Main entry point main

Main entry point main

Main entry point main

Main entry point main

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

This program demonstrates the functions
needed by a parallel EXODUS ap-
plication.

main

Main program for Birth and Death of Ele-
ments Use Case

main

Main program for Dynamic Load Balance
Use Case

main

Main program for Hadaptive Use Case main
Continued on next page

1.2. Sets and Fields (SAF) Examples and Use Cases 213

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference

Query an element’s history from the
database

ReadBackElementHistory

Create rectangular array of triangles make_mesh_connectivity

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Write current mesh to the SAF database WriteCurrentMesh

Construct scalar field make_scalar_field

Create scalar on mesh make_scalar_field_dofs

Form the sequence of element additions and
deletions

GetAddDelSequence

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Update the database to the current step UpdateDatabase

Construct stress field make_stress_field

Construct the stress field make_stress_on_cell_1_field

Construct the stress field make_pressure_on_ss1_field

Create stress field make_stress_field_dofs

Create initial suite make_init_suite

Create time suite make_time_suite

Construct the temparature field make_temperature_on_ns1_field

Construct the temperature field make_temperature_on_cell_2_field

Create direct temperature field make_direct_temperature_field

Create indirect temperature field make_indirect_temperature_field

Basic EXODUS test main

Continued on next page

214 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.2 – continued from previous page
Concept Key Reference

This program demonstrates the
functions needed by a parallel
EXODUS application.

main

Construct the time field make_time_base_field

Create time suite make_time_suite

Construct triangle mesh make_base_space

Create rectangular array of triangles make_mesh_connectivity

Update the database to the current
step

UpdateDatabase

Main program for Birth and Death of Elements Use Case main

Main program for Dynamic Load Balance Use Case main

Main program for Hadaptive Use Case main

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Open a new database and do some prepratory work on it OpenDatabase

Write current mesh to the SAF
database

WriteCurrentMesh

Write current mesh to the SAF
database

WriteCurrentMesh

Write current mesh to the SAF
database

WriteCurrentMesh

1.3 SAF Support Library (SSlib) Programming Reference Manual for
SAF 2.0.0 and later

Acknowledgements

1.3.1 Table of Contents

Introduction

The SAF Support Library (SSlib) grew out of experience the Sets and Fields (SAF) team had with the former Vector
Bundle Tables (VBT) layer and Data Sharability Layer (DSL) and to some extent with the Hierarchical Data Format
version 5, HDF5 (support.hdfgroup.org/HDF5/doc/index.html) library from NCSA. It was decided that in order to

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 215

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://support.hdfgroup.org/HDF5/doc/index.html

SAF User Manual, Release 2.0.3

increase performance, generalize some underlying functionality, and improve code engineering that we would embark
on an effort to rewrite most of VBT and DSL with these goals in mind:

Reduced Communication: We learned by experience that designing an API that requires underlying communication
makes it extremely difficult to optimize for performance at a later time, and that algorithms that require commu-
nication can be substantially slower than those that don’t. So algorithms will be used to reduce communication
and the API will be designed so that cases of repeated communication in the old VBT/DSL API can be
performed just once, and cases of related communication can be combined into single messages.

Variable Length Datatypes: The VBT design set aside a fixed size character array for every string, which
resulted in substantial wasted file space and lower bandwidth and precluded the client from using arbitrary
length strings. The SSlib will employ HDF5 variable length datatypes to avoid these problems.

Transient Objects: The original VBT specification had no provision for creating objects that exist only in
memory, although eventually this was patched in using HDF5’s core virtual file driver. Transient objects are
designed into SSlib.

Object Deletion: VBT did not allow for easy deletion of objects from the database. Although SSlib probably
won’t allow individual objects to be deleted, it will allow entire scopes to be deleted, freeing up memory in the
HDF5 file as provided by the HDF5 library and file format.

Every File a Database: SAF had a notion of supplemental data files that were pointed to by a single master
file, collectively called the database. It was not possible to open just a supplemental file, but one always had
to open the master file. SSlib will make no distinction between master and supplemental files, rather every file
will be a self-contained database. SAF allowed supplemental files to be missing; SSlib allows databases to be
missing.

Partial Metadata Reads: VBT always read all the object definitions from the database whenever a database
was opened. SSlib will only read subsets of a file called “scopes” and only when those scopes are accessed and
only by the tasks accessing those scopes.

Interfile Object References: A VBT file could only refer to objects that were also in the same file. SSlib files
will have the capability to refer to objects that are in some other file.

Multiple References: In SSlib, two or more objects may make references to a common third object or to
common raw data, thus reducing the required storage.

Object Copying: Tools such as safdiff formerly needed extensive coding in order to copy an object (e.g.,
a field) from one database to another. SSlib will provide that functionality at a much lower layer. This also
simplifies the implementation of Object Registries in SAF by moving much of that functionality downward in
the software stack.

Common Error Handling: A code engineering aspect of SSlib is to generalize the HDF5 error handling
subsystem, turn it into a public programming interface, and use it for SSlib and eventually higher software
layers. This unifies the error recording and reporting features of all layers involved.

Flexible File Decomposition: As mentioned already, SAF required all object metadata to be stored in a single
master file with optional supplemental files to hold raw field data. SSlib relaxes that constraint so that
operational environments like SILO’s multi-file output are possible, where the MPI job is partitioned into
smaller subsets of tasks with each subset responsible for a single database, the databases being “sewed” together
later.

Reduced Code Generation: SSlib replaces the more than 12,000 lines of vbtgen (a table parser and C code
generator) with a few hundred lines of perl that does something very similar. In addition, the perl script parses
standard C typedefs instead of a custom language.

Better**HDF5**Coupling: The DSL datatype interface (more than 12,000 lines of library code) will be replaced
with the HDF5 datatype interface plus a few additional functions that may migrate into the HDF5 library.

The plots below show the before and after scalability and performance improvements achieved.

216 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Pre-optimized raw data I/O aggregate bandwidth scalability

Pre-optimized overall I/O aggregate bandwidth scalability

Optimized raw data I/O aggregate bandwidth scalability

Optimized overall I/O aggregate bandwidth scalability

Comparison of SAF and Silo Ale3d restart file dump times

Comparison of SAF Ale3d restart file dump times by functionality

Library

The SSlib library must be explicitly initialized before being used and should be finalized when the client is finished
using it. In addition, this chapter contains some additional functions that operate on the library as a whole.

Members

Initialize the library

ss_init_func is a function defined in sslib.c.

Synopsis:

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 217

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

218 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 219

SAF User Manual, Release 2.0.3

220 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 221

SAF User Manual, Release 2.0.3

222 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

herr_t ss_init_func(MPI_Comm communicator)

Formal Arguments:

• communicator: Library communicator defining the maximal set of MPI tasks that can be involved in var-
ious collective SSlib function calls. However, many collective SSlib functions can operate on a subset of this
communicator. If SSlib is implicitly initialized then MPI_COMM_WORLD is assumed. When SSlib is compiled
without MPI support then the communicator argument is just an integer that’s ignored by this function.

Description: Call this function to initialize SSlib. It’s use is entirely optional since SSlib generally initializes each
layer of its software stack as it becomes necessary. However, if only a subset of the MPI tasks will be making calls to
SSlib then this function can be invoked to define what tasks own the library.

This function initializes the collective parts of some other layers as well when those other layers are largely independent
and might not have an opportunity to do their own collective initialization.

Normally the client initializes the library with the ss_init macro.

Return Value: Returns non-negative on success; negative on failure. It is an error to call this function more than one
time or to call it after the library has been implicitly initialized.

Parallel Notes: Collective across the specified communicator.

Issues: We cannot pass things to this function with property lists since those property lists rely on SSlib having been
initialized first.

See Also:

• ss_init: 2.8: Initialize the library

• ss_initialized: 2.2: Test library initialization state

• Library: Introduction for current chapter

Test library initialization state

ss_initialized is a function defined in sslib.c.

Synopsis:

htri_t ss_initialized(void)

Description: Tests whether the library has been successfully initialized but not yet finalized.

Return Value: Returns true (positive) if the library has been initialized but not yet finalized and false otherwise. This
function never fails and does not implicitly initialize the library.

Parallel Notes: Independent, although typically called collectively.

See Also:

• Library: Introduction for current chapter

Terminate the library

ss_finalize is a function defined in sslib.c.

Synopsis:

herr_t ss_finalize(void)

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 223

SAF User Manual, Release 2.0.3

Description: A call to this function will flush all pending data to the layers below SSlib, and then release as many
resources as possible. This function is a no-op if called after a previous successful call or before the library is initialized
(explicitly or implicitly). Obviously this function does not implicitly initialize the library.

Calling this function near the end of execution is strongly encouraged though not strictly necessary if all files have
been explicitly flushed and/or closed. This function is suitable for registration with atexit provided care is taken to
ensure that layers below SSlib are not finalized first.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library’s communicator.

See Also:

• Library: Introduction for current chapter

Mark library as finalized

ss_zap is a function defined in sslib.c.

Synopsis:

herr_t ss_zap(void)

Description: Sometimes it’s necessary to mark the library as finalized but without actually finalizing it. For instance,
a call to MPI_Abort may eventually call exit (e.g., from MPID_SHMEM_Abort) which would cause SSlib’s
atexit handler to be invoked. But we really don’t want that because the handler tries to do some MPI communica-
tion. So this function is supplied to make the atexit handler think ss_finalize has already been called.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library’s communicator, although this function does no MPI communication.

Issues: This function is here only because some libraries (e.g., MPICH’s MPI_Abort) incorrectly call exit instead
of calling _exit.

We should really set handlers back to their default values now and unmask them

See Also:

• ss_finalize: 2.3: Terminate the library

• Library: Introduction for current chapter

Start debugger for error

ss_error is a function defined in sslib.c.

Synopsis:

herr_t ss_error(void)

Description: This function gets called whenever SSlib pushes an error onto the error stack. If the error’s identification
number matches what the user wishes to debug as set with the SSLIB_DEBUG environment variable then the debugger
is started. This function is also a useful place to set debugger breakpoints.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Library: Introduction for current chapter

224 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Renders human readable numbers

ss_bytes is a function defined in sslib.c.

Synopsis:

char * ss_bytes(hsize_t nbytes, char *buf)

Formal Arguments:

• buf: Optional buffer to hold the results. If the user supplies the buffer then it should be large enough to hold the
result. On a 64-bit machine that would be at least 62 bytes. If the caller passes the null pointer then one of six
static buffers will be used (don’t make more than six calls to this function in a single printf argument list).

Description: Often when printing a very large decimal number it’s not obvious whether that number is some multiple
of a power of 1024. This function breaks down the nbytes argument into GB, MB, and kB and stores it in a buffer
supplied by the caller or a buffer allocated in this function. The output format will be something along the lines of:

1 4,197,386 (4M+3k+10)

If the nbytes has all bits set then it will be printed in hexadecimal. If it is less than 1024 then the parenthesised part
will be omitted.

This function has no provision for limiting the size of the result string. The maximum string length on a 64-bit machine
would be 62 bytes counting the NUL terminator:

1 ##,###,###,###,###,###,### (##,###,###,###G+####M+####k+####)

Return Value: Returns a pointer to the NUL-terminated string containing the number on success; null on failure.

Parallel Notes: Independent

See Also:

• Library: Introduction for current chapter

Insert commas into an integer

ss_insert_commas is a function defined in sslib.c.

Synopsis:

char * ss_insert_commas(char *buf)

Description: Given a string containing a decimal integer, this function will insert commas between every third digit
in order to make it more human readable.

Return Value: Returns buf after having modified it in place. Returns null on failure.

Parallel Notes: Independent

See Also:

• Library: Introduction for current chapter

Initialize the library

ss_init is a macro defined in sslib.h.

Synopsis:

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 225

SAF User Manual, Release 2.0.3

ss_init(COMM)

Description: This is a macro around ss_init_func that also checks header/library compatibility.

Return Value: Same as ss_init_func

Parallel Notes: Same as ss_init_func

See Also:

• ss_init_func: 2.1: Initialize the library

• Library: Introduction for current chapter

Environment Variables

No description available.

Members

Environment Variables

SSLIB is a collection of related C preprocessor symbols defined in ssenv.h.

Synopsis:

SSLIB_DEBUG: See ss_debug_env for details

SSLIB_2PIO: See ss_blob_set_2pio for details

Description: SSlib is controlled by various environment variables documented here.

See Also:

• Environment Variables: Introduction for current chapter

Error Handling

SSlib functions and the functions that SSlib calls all indicate errors by returning special values. SSlib code inspects
return values and enters an error recovery mode when an error is detected. In order to make the SSlib code base cleaner
and to facilitate changes in error handling policies, we use a number of macros. The goal is to have a system that is
easy to program, easy to optimize, and easy to read (lean, mean, and clean).

Almost every function will begin and end with SS_ENTER and SS_LEAVE calls. Somewhere in between them will
be an SS_CLEANUP label that marks the boundary between normal flow of control and error recovery code. Inside
the normal flow of control will be calls to SS_ERROR or SS_ERROR_FMT when an error is detected, or various calls
to SS_STATUS macros to get information about an error.

Sometimes, particularly during a parallel run, error recovery is impossible, prohibitively expensive, or unusually
complex. In such cases SSlib may call MPI_Abort. (A version of SSlib compiled with MPI support but run with a
single MPI task as the library communicator is considered a serial run.)

Members

Minor error numbers

SS_MINOR is a collection of related C preprocessor symbols defined in sserr.h.

226 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Synopsis:

SS_MINOR_ASSERT: assertion failed

SS_MINOR_CONS: constructor failed

SS_MINOR_CORRUPT: file file corruption

SS_MINOR_DOMAIN: value outside valid domain

SS_MINOR_EXISTS: already exists

SS_MINOR_FAILED: a catch-all

SS_MINOR_HDF5: HDF5 call failed

SS_MINOR_INIT: not initialized

SS_MINOR_MPI: MPI call failed

SS_MINOR_NOTFOUND: not found

SS_MINOR_NOTIMP: not implemented

SS_MINOR_NOTOPEN: not open

SS_MINOR_OVERFLOW: arithmetic or buffer overflow

SS_MINOR_PERM: not permitted

SS_MINOR_RESOURCE: insufficient resources

SS_MINOR_SKIPPED: operation skipped by request

SS_MINOR_TYPE: bad datatype

SS_MINOR_USAGE: incorrect usage

Issues: These C preprocessor symbols would normally just be defined as the corresponding global variable, however
error class numbers are generated at runtime with HDF5 calls and thus they must be initialized as a side effect of
referencing them. The initialization is done by calling ss_err_init1 and passing the address of the global minor
error class variable. That function does the initialization and then returns the contents of that global variable.

See Also:

• Error Handling: Introduction for current chapter

Asserts object runtime type

SS_ASSERT_TYPE is a macro defined in sserr.h.

Synopsis:

SS_ASSERT_TYPE(_obj_, _type_)

Description: The first argument should be an object of the specified type, valid at runtime. If it isn’t then a TYPE
error is raised. The _type_ argument is a C datatype like ss_fieldtmpl_t.

See Also:

• Error Handling: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 227

SAF User Manual, Release 2.0.3

Asserts object runtime type and existence

SS_ASSERT_MEM is a macro defined in sserr.h.

Synopsis:

SS_ASSERT_MEM(_obj_, _type_)

Description: The first argument should be an object of the specified type, valid at runtime. If it isn’t then a TYPE error
is raised. The _type_ argument is a C datatype like ss_fieldtmpl_t. This function is like SS_ASSERT_TYPE
except it also checks that the _obj_ exists in memory (i.e., the object can be dereferenced).

See Also:

• SS_ASSERT_TYPE: 4.2: Asserts object runtime type

• Error Handling: Introduction for current chapter

Asserts object runtime class

SS_ASSERT_CLASS is a macro defined in sserr.h.

Synopsis:

SS_ASSERT_CLASS(_obj_, _cls_)

Description: The first argument should be an object of the specified class, valid at runtime. If it isn’t then a TYPE
error is raised. The _cls_ argument should be a C class datatype like ss_pers_t.

See Also:

• Error Handling: Introduction for current chapter

Begin a functionality test

SS_CHECKING is a macro defined in sserr.h.

Synopsis:

SS_CHECKING(_what_)

Description: This family of macros can be used in the SSlib test suite to perform a test of some functionality. The
SS_CHECKING and SS_END_CHECKING macros should be paired with curly braces. Inside the body of that con-
struct may be zero or more calls to SS_FAILED or SS_FAILED_WHEN. If either of the failure macros is executed flow
control branches to the SS_END_CHECKING macro.

The SS_END_CHECKING_WITH macro can be used in place of SS_END_CHECKING. It takes a single argument
which is arbitrary code to execute if an error was detected in the body of the SS_CHECKING construct. Typically the
argument will be something alone the lines of return ‘‘FAILURE‘’ or ‘goto error’.

The argument for SS_CHECKING should be a string that will be printed to stderr after the word “checking”. The
string is printed only if _print is non-zero (similarly for the output from related macros).

1 FILE *_print = 0==self ? stderr : NULL;
2 int nerrors=0;
3 SS_CHECKING("file opening operations") {
4 file1 = ss_file_create(....);
5 if (!file1) SS_FAILED_WHEN("creating");
6 file2 = ss_file_open(....);

(continues on next page)

228 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

(continued from previous page)

7 if (!file2) SS_FAILED_WHEN("opening");
8 } SS_END_CHECKING_WITH(nerrors++);

1 SS_CHECKING("file close") {
2 if (ss_file_close(....)<0) SS_FAILED;
3 } SS_END_CHECKING;

See Also:

• SS_END_CHECKING: 4.10: End functionality test

• SS_END_CHECKING_WITH: 4.11: End functionality test

• SS_FAILED: 4.6: Indicate functionality test failure

• SS_FAILED_WHEN: 4.7: Indicate functionality test failure

• Error Handling: Introduction for current chapter

Indicate functionality test failure

SS_FAILED is a symbol defined in sserr.h.

Synopsis:

SS_FAILED

Description: See SS_CHECKING

See Also:

• SS_CHECKING: 4.5: Begin a functionality test

• Error Handling: Introduction for current chapter

Indicate functionality test failure

SS_FAILED_WHEN is a macro defined in sserr.h.

Synopsis:

SS_FAILED_WHEN(_mesg_)

Description: See SS_CHECKING

See Also:

• SS_CHECKING: 4.5: Begin a functionality test

• Error Handling: Introduction for current chapter

Indicate functionality test skipped

SS_SKIPPED is a symbol defined in sserr.h.

Synopsis:

SS_SKIPPED

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 229

SAF User Manual, Release 2.0.3

Description: See SS_CHECKING

See Also:

• SS_CHECKING: 4.5: Begin a functionality test

• Error Handling: Introduction for current chapter

Indicate functionality test skipped

SS_SKIPPED_WHEN is a macro defined in sserr.h.

Synopsis:

SS_SKIPPED_WHEN(_mesg_)

Description: See SS_CHECKING

See Also:

• SS_CHECKING: 4.5: Begin a functionality test

• Error Handling: Introduction for current chapter

End functionality test

SS_END_CHECKING is a symbol defined in sserr.h.

Synopsis:

SS_END_CHECKING

Description: See SS_CHECKING

See Also:

• SS_CHECKING: 4.5: Begin a functionality test

• Error Handling: Introduction for current chapter

End functionality test

SS_END_CHECKING_WITH is a macro defined in sserr.h.

Synopsis:

SS_END_CHECKING_WITH(_code_)

Description: See SS_CHECKING

See Also:

• SS_CHECKING: 4.5: Begin a functionality test

• Error Handling: Introduction for current chapter

230 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Magic Numbers

Many of the SSlib data structures have an unsigned int member that will contain a magic number while the struct
is allocated. The magic number serves to run-time type the struct. The most significant 12 bits are 0x5af (looks sort of
like “Saf”). The next eight bits are a type class number (e.g., all storable object handles belong to a certain class). The
least significant 12 bits are a unique sequence number for that particular type class and are sometimes used as indices
into various arrays.

Members

Miscellaneous (class 0x5af01000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_prop_t:

SS_MAGIC_ss_table_t:

SS_MAGIC_ss_string_table_t:

SS_MAGIC_ss_gblob_t:

See Also:

• Magic Numbers: Introduction for current chapter

Persistent object links (class 0x5af02000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_pers_t: just the class part

SS_MAGIC_ss_scope_t:

SS_MAGIC_ss_field_t:

SS_MAGIC_ss_role_t:

SS_MAGIC_ss_basis_t:

SS_MAGIC_ss_algebraic_t:

SS_MAGIC_ss_evaluation_t:

SS_MAGIC_ss_relrep_t:

SS_MAGIC_ss_quantity_t:

SS_MAGIC_ss_unit_t:

SS_MAGIC_ss_cat_t:

SS_MAGIC_ss_collection_t:

SS_MAGIC_ss_set_t:

SS_MAGIC_ss_rel_t:

SS_MAGIC_ss_fieldtmpl_t:

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 231

SAF User Manual, Release 2.0.3

SS_MAGIC_ss_tops_t:

SS_MAGIC_ss_blob_t:

SS_MAGIC_ss_indexspec_t:

SS_MAGIC_ss_file_t:

SS_MAGIC_ss_attr_t:

Description: These are the magic numbers for persistent object links, which are the handles to persistent objects that
the client usually works with.

Issues: These magic numbers must be in the same order as the persistent object magic numbers (class 0x5af03000).

See Also:

• Magic Numbers: Introduction for current chapter

Persistent objects (class 0x5af03000)

SS_MAGIC_ss is a collection of related C preprocessor symbols defined in ssobj.h.

Synopsis:

SS_MAGIC_ss_persobj_t: just the class part

SS_MAGIC_ss_scopeobj_t:

SS_MAGIC_ss_fieldobj_t:

SS_MAGIC_ss_roleobj_t:

SS_MAGIC_ss_basisobj_t:

SS_MAGIC_ss_algebraicobj_t:

SS_MAGIC_ss_evaluationobj_t:

SS_MAGIC_ss_relrepobj_t:

SS_MAGIC_ss_quantityobj_t:

SS_MAGIC_ss_unitobj_t:

SS_MAGIC_ss_catobj_t:

SS_MAGIC_ss_collectionobj_t:

SS_MAGIC_ss_setobj_t:

SS_MAGIC_ss_relobj_t:

SS_MAGIC_ss_fieldtmplobj_t:

SS_MAGIC_ss_topsobj_t:

SS_MAGIC_ss_blobobj_t:

SS_MAGIC_ss_indexspecobj_t:

SS_MAGIC_ss_fileobj_t:

SS_MAGIC_ss_attrobj_t:

Description: These are the magic numbers for the persistent objects themselves. They do not appear in the file but are
part of the transient information for an object. The order of things here is such that when synchronizing a scope we

232 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

minimize the number of forward references. That is, if objects of type A can point to objects of type B then we should
synchronize type B before type A.

Issues: These magic numbers must be in the same order as the persistent object link magic numbers (class
0x5af02000). Also, they are mentioned in ss_pers_init when constructing an HDF5 enumeration datatype.

If you add items here and they don’t show up as tables in the files then the SS_PERS_NCLASSES constant defined in
sspers.h is probably not large enough.

See Also:

• Magic Numbers: Introduction for current chapter

Obtain magic number for type

SS_MAGIC is a macro defined in ssobj.h.

Synopsis:

SS_MAGIC(_type_)

Description: Returns the magic number for the specified SSlib datatype.

Return Value: Returns an unsigned magic number.

See Also:

• Magic Numbers: Introduction for current chapter

Determine magicness

SS_MAGIC_OK is a macro defined in ssobj.h.

Synopsis:

SS_MAGIC_OK(M)

Description: Determines if number or class M looks magic.

Return Value: True if M is probably a magic number; false otherwise.

See Also:

• Magic Numbers: Introduction for current chapter

Obtain magic number class

SS_MAGIC_CLASS is a macro defined in ssobj.h.

Synopsis:

SS_MAGIC_CLASS(M)

Description: Given a magic number M, return the class part by masking off the low-order 12 bits.

Return Value: An unsigned int magic class number.

See Also:

• Magic Numbers: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 233

SAF User Manual, Release 2.0.3

Obtain magic sequence number

SS_MAGIC_SEQUENCE is a macro defined in ssobj.h.

Synopsis:

SS_MAGIC_SEQUENCE(M)

Description: Given a magic number M, return the sequence number stored in the 12 low-order bits.

Return Value: An unsigned int magic sequence number.

See Also:

• Magic Numbers: Introduction for current chapter

Construct a magic number

SS_MAGIC_CONS is a macro defined in ssobj.h.

Synopsis:

SS_MAGIC_CONS(C, S)

Description: Given a magic class number like what is returned by SS_MAGIC_CLASS and a sequence number like
what is returned by SS_MAGIC_SEQUENCE, construct a magic number. The class, C, and sequence, S, don’t have to
be purely a class or sequence because they’ll be filtered.

Return Value: An unsigned int magic number constructed from a class and sequence number.

See Also:

• SS_MAGIC_CLASS: 5.6: Obtain magic number class

• SS_MAGIC_SEQUENCE: 5.7: Obtain magic sequence number

• Magic Numbers: Introduction for current chapter

Obtain magic number from a pointer

SS_MAGIC_OF is a macro defined in ssobj.h.

Synopsis:

SS_MAGIC_OF(OBJ)

Description: Given a pointer to any object, return the magic number stored in that object.

Return Value: An unsigned int magic number or zero if OBJ is the null pointer.

See Also:

• Magic Numbers: Introduction for current chapter

Properties

SSlib uses property lists to pass miscellaneous information to various functions, to pass properties through entire
layers of the library, and as a mechanism to message pass information between MPI tasks. It relies heavily on HDF5’s
datatype description interface and data conversion functionality. The property list class ss_prop_t is a subclass of
ss_obj_t and therefore has a magic number (see *Magic Numbers*).

234 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Property lists are created and destroyed with ss_prop_new, ss_prop_dup, ss_prop_cons, and ss_prop_dest.

Once a property list exists, properties can be added and initialized to default values with ss_prop_add. The vari-
ous ss_prop_set and ss_prop_get functions and their variants set and retrieve values of individual properties. The
ss_prop_buffer function is similar to the ss_prop_get functions, but returns a pointer without copying the memory, and
ss_prop_type returns a datatype instead of the value.

The ss_prop_appendable, ss_prop_modifiable, and ss_prop_immutable define (or query) what operations can be per-
formed on a property list.

Members

Create a new property list from scratch

ss_prop_new is a function defined in ssprop.c.

Synopsis:

ss_prop_t * ss_prop_new(const char *name)

Formal Arguments:

• name: optional name for debugging

Description: Creates a new property list and initializes it. An optional name may be specified and is used only for
debugging.

Return Value: Returns new property list on success; null on failure.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

Create a new property list from an existing list

ss_prop_dup is a function defined in ssprop.c.

Synopsis:

ss_prop_t * ss_prop_dup(ss_prop_t *prop, const char *name)

Formal Arguments:

• prop: source property list

• name: optional name for debugging

Description: Duplicates an existing property list, giving it a new name (or a name generated from the source property
list). The new property list’s property names, values, and datatypes are copied from the specified prop list. The new
list is marked as appendable (new properties can be added) and modifiable (property values can be changed).

Return Value: Returns a new property list on success; null on failure.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 235

SAF User Manual, Release 2.0.3

Property constructor

ss_prop_cons is a function defined in ssprop.c.

Synopsis:

ss_prop_t * ss_prop_cons(hid_t type, void *values, const char *name)

Formal Arguments:

• type: Property datatype (copied by this function)

• values: Optional initial values, of type type

• name: Optional property list name

Description: Construct a property from a datatype and optional memory. The datatype must be an HDF5 compound
datatype and the memory must match that datatype. If a values buffer is supplied then the property list will be
marked as non-appendable (new properties cannot be added) but modifiable (property values can be changed) and the
ss_prop_dest function will not free the memory. But if values is null then a buffer will be allocated and initialized
to zeros.

Return Value: Returns a new property list on success; null on failure.

Parallel Notes: Independent

See Also:

• ss_prop_dest: 6.4: Destroy a property list

• Properties: Introduction for current chapter

Destroy a property list

ss_prop_dest is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_dest(ss_prop_t *prop)

Description: All resources associated with the specified property list are released and the property list is marked as
invalid and should not be referenced. If the caller had not supplied a buffer to hold the values then that memory is also
freed.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

Add new property to a list

ss_prop_add is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_add(ss_prop_t *prop, const char *name, hid_t type, const void *value)

Formal Arguments:

• prop: property list to which is added a property

236 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• name: name of property to add

• type: datatype for stored property value

• value: optional initial property value

Description: A new property called name is added to property list prop. The new property can be given an initial
value (or else all bits are cleared). If a value is specified it must be of type type, which is the datatype of the property
as stored in the property list.

Return Value: Returns non-negative on success; negative on failure. It is an error to add a property to the list if a
property by that name already exists in the list. Only appendable property lists can have new properties added.

See Also:

• Properties: Introduction for current chapter

Determine if property exists

ss_prop_has is a function defined in ssprop.c.

Synopsis:

htri_t ss_prop_has(ss_prop_t *prop, const char *name)

Formal Arguments:

• prop: property list being queried

• name: name of property to be tested

Description: This function determines if a property by the specified name exists in the property list.

Return Value: Returns true (positive) if name exists in prop and false if not. Returns negative on failure.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

Change a property value

ss_prop_set is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_set(ss_prop_t *prop, const char *name, hid_t type, const void *value)

Formal Arguments:

• prop: property list to be modified

• name: optional name of property to be modified

• type: optional datatype for supplied value

• value: optional new property value

Description: A property’s value can be modified by supplying a new value with this function. If type is specified
then the value will be of this type, which must be conversion-compatible with the type declared when the property
was added to the list. Otherwise, when no type is specified the value should be of the type originally specified to
ss_prop_add. If name is null then type and value refer to the entire property list rather than a single property. The

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 237

SAF User Manual, Release 2.0.3

value is copied into the property list, and if value is a null pointer then the property (or entire property list if name
is null) is reset to zero.

Return Value: Returns non-negative on success; negative on failure. The property list must be marked as “modifiable”
in order to change a property value. If the specified type is not conversion compatible with the stored type then the
property is not modified.

Parallel Notes: Indepdnent

See Also:

• ss_prop_add: 6.5: Add new property to a list

• Properties: Introduction for current chapter

Change a signed integer property value

ss_prop_set_i is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_set_i(ss_prop_t *prop, const char *name, int value)

Formal Arguments:

• prop: property list to be modified

• name: name of property to be modified

• value: new integer value

Description: This is a convenience function for modifying an integer-valued property. See ss_prop_set for details.

Return Value: See ss_prop_set.

Parallel Notes: Independent

See Also:

• ss_prop_set: 6.7: Change a property value

• Properties: Introduction for current chapter

Change an unsigned integer property value

ss_prop_set_u is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_set_u(ss_prop_t *prop, const char *name, size_t value)

Formal Arguments:

• prop: property list to be modified

• name: name of property to be modified

• value: new unsigned (size_t) value

Description: This is a convenience function for modifying an unsigned integer-valued property. See ss_prop_set for
details.

Return Value: See ss_prop_set.

Parallel Notes: Independent

238 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

See Also:

• ss_prop_set: 6.7: Change a property value

• Properties: Introduction for current chapter

Change a floating-point property value

ss_prop_set_f is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_set_f(ss_prop_t *prop, const char *name, double value)

Formal Arguments:

• prop: property list to be modified

• name: name of property to be modified

• value: new floating-point value

Description: This is a convenience function for modifying a floating-point property. See ss_prop_set for details.

Return Value: See ss_prop_set.

Parallel Notes: Independent

See Also:

• ss_prop_set: 6.7: Change a property value

• Properties: Introduction for current chapter

Query a property value

ss_prop_get is a function defined in ssprop.c.

Synopsis:

void * ss_prop_get(ss_prop_t *prop, const char *name, hid_t type, void *buffer)

Formal Arguments:

• prop: property list to be queried

• name: name of queried property

• type: optional type of data to return

• buffer: optional result buffer

Description: The value of a property (or entire property list) can be queried by providing a handle to the property
list and the name of the property (or NULL). If a datatype is supplied then it must be conversion-compatible with the
declared property (or property list) datatype, and the result will be returned as the specified datatype, otherwise the
result is returned in the original datatype. If a buffer is supplied then the value is copied into the buffer (the caller must
ensure that the buffer is large enough), otherwise a buffer is allocated for the result.

Return Value: On success, returns either the supplied buffer or an newly allocated buffer which the caller should
eventually free. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 239

SAF User Manual, Release 2.0.3

• Properties: Introduction for current chapter

Query an integer property

ss_prop_get_i is a function defined in ssprop.c.

Synopsis:

int ss_prop_get_i(ss_prop_t *prop, const char *name)

Formal Arguments:

• prop: property list to be queried

• name: name of queried property

Description: This is a convenience function for querying integer-valued properties. See ss_prop_get for details.

Return Value: Returns -1 on failure. Since this can also be a valid property value, the caller should examine the error
stack to determine if an error in fact occurred.

Parallel Notes: Independent

See Also:

• ss_prop_get: 6.11: Query a property value

• Properties: Introduction for current chapter

Query an unsigned integer property

ss_prop_get_u is a function defined in ssprop.c.

Synopsis:

size_t ss_prop_get_u(ss_prop_t *prop, const char *name)

Formal Arguments:

• prop: property list to be queried

• name: name of queried property

Description: This is a convenience function for querying unsigned integer-valued properties. See ss_prop_get for
details.

Return Value: Returns SS_NOSIZE on failure. Since this can also be a valid property value, the caller should
examine the error stack to determine if an error in fact occurred.

Parallel Notes: Independent

See Also:

• ss_prop_get: 6.11: Query a property value

• Properties: Introduction for current chapter

Query a floating point property

ss_prop_get_f is a function defined in ssprop.c.

Synopsis:

240 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

double ss_prop_get_f(ss_prop_t *prop, const char *name)

Formal Arguments:

• prop: property list to be queried

• name: name of queried property

Description: This is a convenience function for querying floating point properties. See ss_prop_get for details.

Return Value: Returns negative on failure. Since this can also be a valid property value, the caller should examine
the error stack to determine if an error in fact occurred.

Parallel Notes: Independent

See Also:

• ss_prop_get: 6.11: Query a property value

• Properties: Introduction for current chapter

Obtain pointer direct to value

ss_prop_buffer is a function defined in ssprop.c.

Synopsis:

void * ss_prop_buffer(ss_prop_t *prop, const char *name)

Formal Arguments:

• prop: property list to be queried

• name: optional property name

Description: This function is similar to ss_prop_get except instead of copying the value or values into a new buffer,
it returns a pointer directly into the property list values buffer. If a property name is specified then the pointer is to the
beginning of the specified property, otherwise the pointer is to the beginning of the entire property values buffer.

Return Value: Returns a pointer into the buffer holding property values on success; null on failure. If the client
supplied the buffer for the values via the ss_prop_cons function then the returned pointer is valid at least until the
property list is destroyed, otherwise the pointer is valid only until the list is destroyed or a new property is added,
whichever occurs first.

Parallel Notes: .. _SC_ss_prop_buffer:

1 *

See Also:

• ss_prop_cons: 6.3: Property constructor

• ss_prop_get: 6.11: Query a property value

• Properties: Introduction for current chapter

Query the datatype of a property or property list

ss_prop_type is a function defined in ssprop.c.

Synopsis:

hid_t ss_prop_type(ss_prop_t *prop, const char *name)

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 241

SAF User Manual, Release 2.0.3

Formal Arguments:

• prop: property list to be queried

• name: optional property name

Description: When given a property list and a property name, return the HDF5 datatype that was originally used to
declare the property. If no property name is specified then return the HDF5 datatype of the whole property list (which
is guaranteed to be a compound datatype).

Return Value: Returns an HDF5 datatype on success; negative on failure. The client should eventually call
H5Tclose on the returned datatype. It is a failure to try to obtain the datatype of an empty property.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

Queries/sets property list appendability

ss_prop_appendable is a function defined in ssprop.c.

Synopsis:

htri_t ss_prop_appendable(ss_prop_t *prop, htri_t new_value)

Description: Queries and/or sets whether the property list is appendable. That is, whether new properties can be added
to the property list. If new_value is negative then the appendability status remains unchanged, otherwise it is set to
the new value. Once a property list is marked as not appendable it cannot be later marked as appendable.

Return Value: Returns true (positive) if the property list was appendable before this call, false otherwise. Returns
negative on failure. It is an error to attempt to make a non-appendable property list appendable.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

Queries/sets property list modifiability

ss_prop_modifiable is a function defined in ssprop.c.

Synopsis:

htri_t ss_prop_modifiable(ss_prop_t *prop, htri_t new_value)

Description: Queries and/or sets whether the property list is modifiable. That is, whether property values can be
changed. If new_value is negative then the modifiability status remains unchanged, otherwise it is set to the new
value. Once a property list is marked as not modifiable it cannot be later marked as modifiable.

Return Value: Returns true (positive) if the property list was modifiable before this call, false otherwise. Returns
negative on failure. It is an error to attempt to make a non-modifiable property list modifiable.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

242 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Make a property list immutable

ss_prop_immutable is a function defined in ssprop.c.

Synopsis:

herr_t ss_prop_immutable(ss_prop_t *prop)

Description: This function that marks a property list as non-appendable and non-modifiable and non-destroyable.
Once a property list is marked this way it is said to be immutable and cannot be changed in any way (not even
destroyed except when the library is closed).

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Properties: Introduction for current chapter

Persistent Objects

A persistent object is anything that typically gets stored in an SSlib database. Examples are sets, fields, relations,
templates thereof, etc. For each class of persistent object SSlib creates a link datatype, which is akin to a C pointer in
that it’s a lightweight piece of data (a small C struct with no dynamically allocated components). But it’s also more
than a C pointer because it can point to disk-resident objects, and the links can be stored in files. Also like C pointers,
the object to which a link points must be dereferenced in order to get to to the actual object, and SSlib provides macros
for doing such. In fact, SSlib provides three macros for each persistent object class.

SS_FIELD: Takes one argument, field, of type ss_field_t and dereferences that link to obtain a pointer to
the C struct that implements the field object. The returned value is of type ss_fieldobj_t. The same
pattern is followed for other persistent classes.

SS_FIELD_M: Just like SS_FIELD except it also takes a member name whose value it returns via C’s arrow
operator. There really isn’t much point in using this macro but it’s supplied for completeness.

SS_FIELD_P: Just like SS_FIELD_M except it returns the address of the member instead of the member value.
This macro is used most often to obtain a pointer to a link that’s stored in some object because objects store
links but almost all SSlib functions take pointers to links. It’s only supplied for completeness because one can
do the same thing by using the “address of” (ampersand) C operator in front of SS_FIELD_M.

Generally the SAF library will pass around links to objects and dereference the link whenever access to members of
the actual object’s struct is necessary. The primary reason for passing around links instead of object pointers is that
it allows SSlib to relocate objects in memory in order to do certain memory management tasks and optimizations.
However, it’s not really a big performance penalty to repeatedly dereference links because the link caches the pointer
in such a way that most dereferencing operations will incur only two memory comparisons. And precisely for that
reason it is normal practice to pass non-const-qualified pointers to links when calling most functions: it allows SSlib
library to update the link itself and propagate that change up through the call stack.

Members

Create a new persistent object

ss_pers_new is a function defined in sspers.c.

Synopsis:

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 243

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

ss_pers_t * ss_pers_new(ss_scope_t *scope, unsigned tableid, const ss_persobj_t *init, unsigned flags,
ss_pers_t *buf, ss_prop_t UNUSED *props)

Formal Arguments:

• scope: The scope that will own this new object.

• tableid: A magic number whose sequence part defines a table

• init: Optional initial data of type ss_persobj_t or a type derived therefrom. The type must be appropriate
for the class of object being created. This argument can be used to copy a persistent object. ISSUE: Should this
be a link instead?

• flags: Creation flags, like SS_ALLSAME

• buf: Optional buffer for return value

• props: Additional properties (none defined yet)

Description: Creates a new persistent object of the specified object type in the specified scope. Normally this function
assumes that every caller could be creating its own object and the table synchronization algorithm will determine later
how many objects were actually created by comparing their contents. However, synchronization can be an expensive
operation which can be avoided when the caller knows that all tasks of the scope’s communicator are participating to
create a single object. This is situation is noted by passing the SS_ALLSAME bit in the flags argument.

Return Value: Returns a link to the new object on success; the null pointer on failure. If buf is supplied then that
will be the successful return value, otherwise a persistent object link will be allocated.

Parallel Notes: Independent or collective. This function must be collective across the scope’s communicator (although
communication-free) if the SS_ALLSAME bit is passed in the flags argument. In other words, if all tasks are
participating to create one single object, then the call must be collective if we wish to avoid the synchronization costs
later. However, it is still possible for all tasks to create one single object independently (i.e., creation order doesn’t
matter) if they don’t pass SS_ALLSAME and they don’t mind paying the synchronization cost later.

See Also:

• ss_pers_copy: 7.2: Copy an object

• Persistent Objects: Introduction for current chapter

Copy an object

ss_pers_copy is a function defined in sspers.c.

Synopsis:

ss_pers_t * ss_pers_copy(ss_pers_t *pers, ss_scope_t *scope, unsigned flags, ss_pers_t *buf,
ss_prop_t *props)

Formal Arguments:

• pers: The object to be copied.

• scope: The destination scope that will own the new object.

• flags: Creation flags like SS_ALLSAME (see ss_pers_new).

• buf: Optional buffer for return value.

• props: Additional properties (none defined yet)

Description: Copy the given object and return a link to it. If the object contains memory that needs to be copied (like
character strings or variable length arrays) then those are copied also. Other objects to which the original pointed are
not copied – the new object has links to the same ones.

244 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Return Value: Returns a link to the new object on success; the null pointer on failure. If buf is supplied then that
will be the successful return value, otherwise a persistent object link will be allocated.

Parallel Notes: Independent or collective. This function must be collective across the scope’s communicator (al-
through communication-free) if the SS_ALLSAME bit is passed in the flags argument. In other words, if all tasks
are participating to create one single new object then the call must be collecitve if we wish to avoid the synchroniza-
tion costs later. However, it is still possible for all tasks to create one single object independently (i.e., creation order
doesn’t matter) if they don’t pass SS_ALLSAME and they don’t mind paying the synchronization cost later.

See Also:

• ss_pers_new: 7.1: Create a new persistent object

• Persistent Objects: Introduction for current chapter

Sets persistent object to initial state

ss_pers_reset is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_reset(ss_pers_t *pers, unsigned flags)

Formal Arguments:

• pers: The object to be reset

• flags: Bit flags such as SS_ALLSAME

Description: This function sets a persistent object to an initial state of an all-zero bit pattern. The
ss_foo``*obj*``_tm and ss_foo``*obj*``_tf parts of the C struct are set to zero but the other stuff
is left unmodified (except the dirty bit is set).

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent. However, if the SS_ALLSAME bit flag is set then this function should be called collec-
tively across the communicator of the scope that owns the object.

See Also:

• Persistent Objects: Introduction for current chapter

Destructor

ss_pers_dest is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_dest(ss_pers_t *pers)

Description: Destroys a persistent object link by releasing those resources used by a persistent object link. If the link
was allocated on the heap then the caller should free it.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 245

SAF User Manual, Release 2.0.3

Dereference an object link

ss_pers_deref is a function defined in sspers.c.

Synopsis:

ss_persobj_t * ss_pers_deref(ss_pers_t *pers)

Description: Given a link to a persistent object, dereference that link and return a pointer to the object itself. This
may involve reading a table into memory if this is the first dereference into that table.

This function is almost never invoked directly by client code. Instead, the client will use macros appropriate for each
object class which will check the link class and cast the return value to the appropriate type. For instance, SS_FIELD
is a macro that takes a field object link as an argument, compile-time checks that the argument is an ss_field_t
pointer, run-time check that the pointer is valid, and return an ss_fieldobj_t pointer.

Return Value: Returns an object pointer on success; the null pointer on failure.

Parallel Notes: Independent

Issues: We should probably accumulate some sort of statistics here to make sure that the object caching is performing
as expected.

See Also:

• Persistent Objects: Introduction for current chapter

Updates an object link

ss_pers_update is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_update(ss_pers_t *pers)

Description: This function makes information in the object link as current as possible. If the object has a permanent
home in the table but the object index stored in the link is indirect then it is converted to a direct index. If the object is
in memory then the link is moved to the ‘memory’ state. If the ‘mapidx’ value stored in the object is different than the
object index in the link then the object index is updated in the link.

This function is essentially a weaker version of ss_pers_deref .

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• ss_pers_deref : 7.5: Dereference an object link

• Persistent Objects: Introduction for current chapter

Create an object link

ss_pers_refer is a function defined in sspers.c.

Synopsis:

ss_pers_t * ss_pers_refer(ss_scope_t *scope, ss_persobj_t *persobj, ss_pers_t *pers)

Formal Arguments:

• scope: The scope to which persobj belongs.

246 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• persobj: The object to which the new link will point.

• pers: Optional memory for the link.

Description: This function creates (or fills in) a link to a new object that exists in memory.

Return Value: Returns a pointer to a persisent object link (either the supplied pers or a newly allocated one) on
success; the null pointer on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Obtain scope for an object

ss_pers_scope is a function defined in sspers.c.

Synopsis:

ss_scope_t * ss_pers_scope(ss_pers_t *pers, ss_scope_t *buf)

Formal Arguments:

• pers: Persistent object link to query

• buf [OUT]: Optional buffer for the result scope link

Description: Every persistent object belongs to a scope and this function returns a link to that scope.

Return Value: On success, returns a link to the scope containing pers. If the caller supplied a buffer for the result in
the buf argument then that’s the success pointer returned. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Obtain file for an object

ss_pers_file is a function defined in sspers.c.

Synopsis:

ss_file_t * ss_pers_file(ss_pers_t *pers, ss_file_t *file)

Formal Arguments:

• pers: Persistent object link to query

• file [OUT]: Optional buffer for the result file link

Description: Every persistent object belongs to a file and this function returns a link to that file.

Return Value: On success, returns a link to the file containing pers. If the caller supplied a buffer for the result in
the file argument then that’s the success pointer returned. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 247

SAF User Manual, Release 2.0.3

Test whether an object can be modified

ss_pers_iswritable is a function defined in sspers.c.

Synopsis:

htri_t ss_pers_iswritable(ss_pers_t *pers)

Description: An object can be modified if it belongs to a scope that is modifiable. This function tests whether that is
true.

Return Value: Returns true (positive) if pers points to a persistent object that exists in a writable scope and false
otherwise. If pers points to a persistent object that is not in memory (e.g., it’s file is not open or its file has been
subsequently closed) then this function returns false. Errors are indicated with a negative return value.

Parallel Notes: Independent

Issues: Since the client can always obtain a pointer into memory for the object by dereferencing the link, there is
nothing stopping the client from modifying that memory and setting the object’s dirty bit and since all of that can be
done with straight C code (without SSlib assistance) it is impossible for SSlib to warn about that situation. However,
a synchronization should be able to detect and report it.

See Also:

• Persistent Objects: Introduction for current chapter

Obtain top scope for an object

ss_pers_topscope is a function defined in sspers.c.

Synopsis:

ss_scope_t * ss_pers_topscope(ss_pers_t *pers, ss_scope_t *buf)

Formal Arguments:

• pers: Persistent object link to query

• buf [OUT]: Optional buffer for the result scope link

Description: Every persistent object belongs to a scope, every scope belongs to a file, and every file has one top-scope.
This function returns a link to that top-scope.

Return Value: On success, returns a link to the top-scope for pers. If the caller supplied a buffer for the result in the
buf argument then that’s the success pointer returned. Returns the null pointer on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Determine link equality

ss_pers_eq is a function defined in sspers.c.

Synopsis:

htri_t ss_pers_eq(ss_pers_t *pers1, ss_pers_t *pers2)

248 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: This function determines if two links point to the same object.

Return Value: Returns true (positive) if PERS1 and PERS2 refer to the same object without actually dereferencing
the link, false if not, and negative on error. The names ss_pers_eq and ss_pers_equal come from LISP where the
eq function tests whether its operands refer to the same object and equal that recursively compares its operands to
determine if they have the same value.

Parallel Notes: Independent

See Also:

• ss_pers_equal: 7.13: Determine object equality

• Persistent Objects: Introduction for current chapter

Determine object equality

ss_pers_equal is a function defined in sspers.c.

Synopsis:

htri_t ss_pers_equal(ss_pers_t *pers1, ss_pers_t *pers2, ss_prop_t UNUSED *props)

Formal Arguments:

• props: A property list to indicate how the comparison should proceed. No properties are currently defined. If
an object contains persistent object links then the pointed-to objects will be compared with ss_pers_eq instead
of recursively calling ss_pers_equal.

Description: This function determines if two links point to objects that could be consistered to be the same object
even if they don’t point to the same memory. In other words, a “meter” in one database is almost certainly the same
to a “meter” in some other database even though the two object handles point to distinct objects in memory (i.e.,
ss_pers_equal is true but ss_pers_eq is false).

Return Value: Returns true (positive) if PERS1 and PERS2 refer to objects whose internals are equal or if PERS1
and PERS2 both point to the same object or both are null pointers.

Parallel Notes: Independent

See Also:

• ss_pers_eq: 7.12: Determine link equality

• Persistent Objects: Introduction for current chapter

Change link state

ss_pers_state is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_state(ss_pers_t *pers, ss_pers_link_state_t state)

Formal Arguments:

• pers: The persistent object link whose state is to be changed.

• state: Desired state for the link, one of the SS_PERS_LINK constants.

Description: A persistent object link can be in either a Closed or Memory state (not including the Filed state of links
as they appear in a file). This function moves a link from state to state and also makes sure all the information in the
link is up to date.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 249

SAF User Manual, Release 2.0.3

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Compares two persistent objects

ss_pers_cmp is a function defined in sspers.c.

Synopsis:

int ss_pers_cmp(ss_pers_t *p1, ss_pers_t *p2, const ss_persobj_t *mask)

Formal Arguments:

• p1: First of two objects to compare.

• p2: Second of two objects to cmpare.

• mask: Optional mask to use for deep comparisons. A null value implies a shallow comparison, which means
that the comparison should only look at the object handles and not the objects themselves.

Description: Compares two objects, P1 and P2, and returns a value similar to memcmp or strcmp.

If mask is the null pointer then only the contents of the links P1 and P2 are consulted and the underlying objects are
never referenced, a so called shallow comparison. The return value will be one of the following:

1 | 1 if A > B by some well defined global ordering
2 ss_pers_cmp(A,B,NULL) = | 0 if A and B point to the same object
3 | -1 if A < B
4 | -2 on error

On the other hand, if mask is not null then a deep comparison is performed and mask should be a block of memory
the same size as the objects to which P1 and P2 point (mask is not referenced if P1 and P2 point to objects of
different types). The block of memory should be initialized to zero except where a comparison in the two underlying
objects is desired. For instance, when comparing the roles and topological dimensions of two categories (SAF__Cat)
you would do the following:

1 SAF_Cat a=...; b=...;
2 ss_catobj_t mask;
3 memset(&mask, 0, sizeof mask);
4 memset(&mask.role, SS_VAL_CMP_DFLT, 1); // default comparison mode for roles
5 memset(&mask.tdim, SS_VAL_CMP_DFLT, 1); // default comparison mode for topological

→˓dimensions
6 ss_pers_cmp((ss_pers_t*)&a, (ss_pers_t*)&b, (ss_persobj_t*)&mask);

Note two things: (1) only the first non-zero byte in the mask corresponding to any particular member is consulted to
determine the kind of comparison, and (2) ss_pers_t and ss_persobj_t are the types from which all persistent
object links and objects are derived and are binary compatible with all links and objects.

To compare all fields of two categories you could just set the whole mask to the desired comparison because
ss_pers_cmp will skip over parts of the mask that don’t actually correspond to things that can be compared (e.g.,
padding bytes inserted by the compiler between members of the object and parts of the objects that are SSlib’s private
bookkeeping records):

250 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

1 memset(&mask, SS_VAL_CMP_DFLT, sizeof mask);

The various flags defining comparisons are defined by the ss_val_cmp_t type.

Return Value: Similar to memcmp except successful return value is one of: -1, 0, or 1 instead of arbitrary negative
and positive values. This allows -2 (or less) to indicate failure, which is standard practice in SSlib for comparison
functions.

Parallel Notes: Independent

Issues: Deep comparisons are not yet fully recursive. I.e., if P1 and P2 are being deeply compared and the objects
to which P1 and P2 point contain object links which are being compared because they correspond to non-zero bits in
mask, then only a shallow comparison is performed on those links. We plan to add a property list argument to this
function that would allow finer-grained control of the deep comparison recursion.

See Also:

• SS_PERS_EQ: 7.27: Determine link equality

• SS_PERS_EQUAL: 7.28: Determine object equality

• ss_pers_eq: 7.12: Determine link equality

• ss_pers_equal: 7.13: Determine object equality

• Persistent Objects: Introduction for current chapter

Compares two persistent objects

ss_pers_cmp_ is a function defined in sspers.c.

Synopsis:

int ss_pers_cmp_(ss_persobj_t *p1, ss_persobj_t *p2, const ss_persobj_t *mask)

Formal Arguments:

• p1: First of two objects to compare. This is normally considered to be the “haystack”.

• p2: Second of two objects to compare. This is normally considered to be the “needle” and might contain special
things like regular expressions, etc. depending on the values contained in the mask.

• mask: Which elements of P1 and P2 to compare. This isn’t really a true object but rather a chunk of memory
the same size as the objects that is filled with bytes that say which members of P1 and P2 to compare and how
to compare them.

Description: This is an internal version of ss_pers_cmp and does only a deep comparison of the two objects.

Return Value: On success returns -1, 0, or 1 depending on whether P1 is less than, equal, or greater than P2 by some
arbitrary but consistent comparison algorithm. Returns -2 on failure.

Parallel Notes: Independent

See Also:

• ss_pers_cmp: 7.15: Compares two persistent objects

• Persistent Objects: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 251

SAF User Manual, Release 2.0.3

Compute a checksum for a persistent object

ss_pers_cksum is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_cksum(ss_persobj_t *persobj, ss_val_cksum_t *cksum)

Formal Arguments:

• persobj: Persistent object whose checksum will be computed.

• cksum [OUT]: The computed checksum.

Description: Computes a checksum for the persistent part of a persistent object in memory.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Find objects in a scope

ss_pers_find is a function defined in sspers.c.

Synopsis:

ss_pers_t * ss_pers_find(ss_scope_t *scope, ss_pers_t *key, ss_persobj_t *mask, size_t nskip,
size_t *nfound, ss_pers_t *buffer, ss_prop_t *props)

Formal Arguments:

• scope: Scope to be searched

• key: Value for which to search. This is required even if mask is null because the key determines the type of
objects for which to search.

• mask: Which elements of key to consider when searching. It is an error if no bits of mask are set, but if mask
is the null pointer then key is assumed to match every object. If non-null then mask and key must be of the
same type. The reason mask is an object pointer rather than an object link is that the memory is really only used
to store one-byte flags that control how the matching is performed. In other words, mask isn’t truly an object–it
just has to be the same size as an object.

• nskip: Number of initial matched results that should be skipped.

• nfound [INOUT]: The input value limits the matching to the specified number of

• buffer: Optional buffer to fill in with handles to items that were found. If this is the constant SS_PERS_TEST
then this function behaves exactly as if the caller had supplied a buffer but does not attempt to return links to the
matching objects.

• props: Optional properties (See *Persistent Object Properties*)

Description: This function will find all objects in a particular scope that match certain fields of a specified key
object. The key and mask must refer to persistent objects of the same type where key contains the values to
compare against and mask specifies which part of key to consider and how to compare. However, the mask is not a
true object in that it doesn’t need to be created in some table with ss_pers_new; it can just be allocated on the stack.
Any atomic element of mask that has at least one bit set indicates that the corresponding element of key is to be
considered during the comparison. If no bits of mask are set then an error is raised, but if mask is the null pointer
then we treat the key as matching every object in the scope.

252 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

If nfound is non-null then its incoming value will be used to limit the search to the specified number of returned
matches. If more items match than what was specified then the additional items are simply ignored as if they didn’t
even exist (unless the “detect_overflow” property is true, in which case an error is raised). The caller can pass
in SS_NOSIZE if no limit is desired. If nfound is the null pointer (it can only be so if buffer is also null) then it
is treated as if it had pointed to SS_NOSIZE.

The caller can supply a buffer for the result or, by passing a null pointer, request that the library allocate the buffer.
If buffer is supplied then it must contain at least nfound (as set on entry to this function) elements to hold the
result. But if buffer is the special constant SS_PERS_TEST then the function behaves as if a valid buffer was
supplied except that it does not attempt to initialize that buffer in any way. This can be used to count how many
matches would be found and even limit the counting by supplying an initial value for nfound.

A positive value for an nskip argument causes this function to act as if the first nskip matched objects didn’t, in
fact, match.

Return Value: On success this function returns an array of matching persistent object links into the specified scope
(the caller supplied buffer or one allocated by the library) or the constant SS_PERS_TEST and nfound (if sup-
plied) will point to the number of matches found limited by the incoming value of nfound (or SS_NOSIZE). If space
permits, the last element of the return value will be followed by a null persistent link, which makes it possible to loop
over the return value even if nfound was the null pointer.

In order to distinguish the case where no item is found from the case where an error occurs, the former results in a
non-null return value (the library will allocate an array of size one if the caller didn’t supply a buffer and initialize
it to SS_PERS_NULL). The nfound returned value is zero in either case.

If no objects match in the specified scope and the object type is not ss_scope_t or ss_file_t and the noreg-
istries’ property is false or not set then each registry scope associated with the file containing ‘‘scope‘ will be searched
until matches are found in some scope or all registries are processed.

This function returns the null pointer for failure. It is not considered a failure when the key simply doesn’t match any
of the available objects.

Parallel Notes: Independent

Example: Example 1: Find all fields with an association ratio of 1 in the main scope:

1 // Obtain key from a transient scope; allocate the mask on the stack
2 ss_field_t *key = SS_PERS_NEW(transient, ss_field_t, SS_ALLSAME);
3 ss_fieldobj_t mask;
4 // Set key value for which to search and indicate such in the mask
5 SS_FIELD(key)->assoc_ratio = 1;
6 memset(&mask, 0, sizeof mask);
7 mask.assoc_ratio = SS_VAL_CMP_DFLT; //default comparison
8 // Search for matches
9 size_t nfound = SS_NOSIZE;

10 ss_field_t *found = ss_pers_find(main, key, mask, 0, &nfound, NULL, NULL);
11 // Print names of all matches
12 for (i=0; i<nfound; i++)
13 printf("match %d name=\"%s\"\n",i,ss_string_ptr(SS_FIELD_P(found+i,name)));

Example 2: Find first 10 fields with a name consisting of the word “field” in any combination of upper and lower case
letters, followed by one or more digits:

1 // Obtain key from a transient scope; allocate the mask on the stack
2 ss_field_t *key = SS_PERS_NEW(transient, ss_field_t, SS_ALLSAME);
3 ss_fieldobj_t mask;
4 // Set key value for which to search and indicate such in the mask
5 ss_string_set(SS_FIELD_P(key,name), "^field[0-9]+$");
6 memset(&mask, 0, sizeof mask);

(continues on next page)

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 253

SAF User Manual, Release 2.0.3

(continued from previous page)

7 memset(&(mask.name), SS_VAL_CMP_RE_ICASE, 1);
8 // Search for matches
9 size_t nfound = 10;

10 ss_field_t found[10];
11 ss_pers_find(main, key, &mask, 0, &nfound, found, NULL);

Example 3: Count how many fields are in the scope proc1:

1 ss_field_t *key =; // any field object
2 size_t nfound = SS_NOSIZE; // do not limit the search
3 ss_pers_find(proc1, key, NULL, 0, &nfound, SS_PERS_TEST, NULL);
4 printf("found %lu item(s)\n", (unsigned long)nfound);

See Also:

• ss_pers_new: 7.1: Create a new persistent object

• Persistent Objects: Introduction for current chapter

Mark object as modified

ss_pers_modified is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_modified(ss_pers_t *pers, unsigned flags)

Formal Arguments:

• pers: Persistent object to mark as modified

• flags: Bitflags such as SS_ALLSAME

Description: If a persistent object is modified then it should also be marked as such by invoking this function. If all
tasks modify the persistent object in the same manner then the second argument can be SS_ALLSAME, otherwise it
should be zero. The SS_PERS_MODIFIED macro is a convenience for this function since the client is often passing a
subclass of ss_pers_t and may get compiler warnings.

The client can call this function either before or after making a modification to the object, but it’s generally safer to
make this call first so that the object is marked as modified even if the modification is interrupted by an error. It doesn’t
hurt to mark an object as modified and then not actually modify it – it just causes the synchronization algorithm to
take longer to discover that there weren’t any changes.

The ‘dirty’ flag is always set to true to indicate that the object’s new value differs (or is about to differ) from what is
stored in the file.

If flags has the SS_ALLSAME bit set then the client is indicating that all tasks belonging to the scope have (or will)
make identical modifications. In this case, if the object’s synced’ flag is set we promote it to :ref:‘SS_ALLSAME <SS>
to indicate that the object is synchronized but its sync_cksum and sync_serial values are outdated. Otherwise
the object’s ‘synced’ flag is set to false.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

Issues: We should really check whether the scope owning the object is read-only, otherwise we won’t get any indica-
tion of an error until we try to synchronize.

See Also:

• SS_PERS_MODIFIED: 7.29: Mark object as modified

254 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• Persistent Objects: Introduction for current chapter

Make a new object unique

ss_pers_unique is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_unique(ss_pers_t *pers)

Formal Arguments:

• pers: Persistent object to make unique

Description: If N MPI tasks each create an object that is identical across all the tasks (such as happens when
saf_declare_set is called with all arguments the same) then SSlib will merge those N new objects into a single
permanent object. A similar thing happens when a single tasks creates multiple new identical objects. The merging
happens during a synchronization operation and only for objects that are new (i.e., objects that were not created with
the SS_ALLSAME bit flag).

By calling this function on a persistent object, the persistent object is modified in a unique manner which causes it to
be different than any other object on this MPI task or any other MPI task. The uniqueness should only be set for new
objects.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Debugging aid

ss_pers_debug is a function defined in sspers.c.

Synopsis:

herr_t ss_pers_debug(ss_pers_t *pers)

Description: Prints all known information about an object to the standard output stream.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Decode persistent object links

ss_pers_decode_cb is a function defined in sspers.c.

Synopsis:

size_t ss_pers_decode_cb(void *buffer, const char *serbuf, size_t size, size_t nelmts)

Formal Arguments:

• buffer: Array of objects into which to decode serbuf.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 255

SAF User Manual, Release 2.0.3

• serbuf: Encoded information to be decoded.

• size: Size of each element in buffer array.

• nelmts: Number of elements in buffer array.

Description: Decodes the stuff encoded by ss_pers_encode_cb.

Return Value: Returns total number of bytes consumed from serbuf on success; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Destructor

SS_PERS_DEST is a macro defined in sspers.h.

Synopsis:

SS_PERS_DEST(_pers_)

Description: This is simply a convenience function for ss_pers_dest so that the caller doesn’t have to cast the argument
and return value. The underlying object is not destroyed–only the link to that object.

Return Value: Always returns null so it can be easily assigned to the object link being destroyed.

Example: .. _SC_SS_PERS_DEST:

1 field = SS_OBJ_DEST(field);

See Also:

• ss_pers_dest: 7.4: Destructor

• Persistent Objects: Introduction for current chapter

Constructor

SS_PERS_NEW is a macro defined in sspers.h.

Synopsis:

SS_PERS_NEW(_scope_, _type_, _flags_)

Description: This is simply a convenience function for ss_pers_new so that the caller doesn’t have to cast the argument
and return value. The _type_ should be one of the persistent object link datatypes like ss_field_t, and not one
of the persistent object types like ss_fieldobj_t.

Return Value: Returns a pointer to a link to the new object on success; null on failure.

Example: .. _SC_SS_PERS_NEW:

1 To create a new Field object:
2 field = SS_PERS_NEW(scope, ss_field_t, SS_ALLSAME);

See Also:

• ss_pers_new: 7.1: Create a new persistent object

• Persistent Objects: Introduction for current chapter

256 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Copy constructor

SS_PERS_COPY is a macro defined in sspers.h.

Synopsis:

SS_PERS_COPY(_old_, _scope_, _flags_)

Description: This is simply a convenience function for ss_pers_copy so that the caller doesn’t have to cast the argu-
ments and return value.

Return Value: Returns a pointer to a link to the new object on success; null on failure.

See Also:

• ss_pers_copy: 7.2: Copy an object

• Persistent Objects: Introduction for current chapter

Find objecs in a scope

SS_PERS_FIND is a macro defined in sspers.h.

Synopsis:

SS_PERS_FIND(scope, key, mask, limit, nfound)

Description: This is simply a convenence function for ss_pers_find so that the caller doesn’t have to cast the arguments
to ss_pers_t pointers (they’ll still be run-time type checked).

Return Value: See ss_pers_find

Parallel Notes: See ss_pers_find

See Also:

• ss_pers_find: 7.18: Find objects in a scope

• Persistent Objects: Introduction for current chapter

Determine link equality

SS_PERS_EQ is a macro defined in sspers.h.

Synopsis:

SS_PERS_EQ(link1, link2)

Description: This macro returns true if two links point to the same object. Arguments are cast appropriately.

Return Value: True (positive) if same object, false if different, negative on error.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 257

SAF User Manual, Release 2.0.3

Determine object equality

SS_PERS_EQUAL is a macro defined in sspers.h.

Synopsis:

SS_PERS_EQUAL(link1, link2)

Description: This macro returns true if two links point to equivalent objects. Arguments are cast appropriately.

Return Value: True (positive) if objects are equal, false if not equal, negative on error.

Parallel Notes: Independent.

See Also:

• Persistent Objects: Introduction for current chapter

Mark object as modified

SS_PERS_MODIFIED is a macro defined in sspers.h.

Synopsis:

SS_PERS_MODIFIED(_pers_, _flags_)

Description: This macro is simply a wrapper around ss_pers_modified so the caller doesn’t have to cast arguments.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• ss_pers_modified: 7.19: Mark object as modified

• Persistent Objects: Introduction for current chapter

Check if link is null

SS_PERS_ISNULL is a macro defined in sspers.h.

Synopsis:

SS_PERS_ISNULL(_pers_)

Description: A null persistent object link is indicated by the link being in the SS_PERS_LINK_NULL state.

Return Value: Returns true if the specified link a null pointer or is in the null state; false otherwise.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Make an object unique

SS_PERS_UNIQUE is a macro defined in sspers.h.

Synopsis:

SS_PERS_UNIQUE(_pers_)

258 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Description: Makes an object unique by giving it a unique serial number. The number is unique across all the MPI
tasks so that when N tasks create N identical new objects that only differ in serial number, SSlib will convert them to
N identical permanent objects instead of merging them all into a single permanent object.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Persistent Objects: Introduction for current chapter

Persistent Object Tables

No description available.

Members

Find indirect indices for an object

ss_table_indirect is a function defined in sstable.c.

Synopsis:

size_t ss_table_indirect(ss_table_t *table, size_t idx, size_t beyond)

Formal Arguments:

• table: Table in which idx exists

• idx: Index for the object for which we are searching for an indirect index. This is usually a direct index but
doesn’t necessarily have to be such.

• beyond: Return an indirect index greater than this value. A value of zero means to return the first indirect index.
This argument can be used to scan through a table looking for all matching indirect indices for a particular direct
index. If this is a direct index (such as zero) then the first matching indirect index is returned.

Description: Given a direct index for a table object, return the first indirect index which also points to the object and
which is larger than beyond.

Return Value: Returns a matching indirect index on success; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

• Persistent Object Tables: Introduction for current chapter

Strings

Variable length strings as stored in persistent objects are manipulated through the SSlib string interface and use a
datatype ss_string_t which is opaque to the client. This allows the implementation of persistent object strings to
be changed as necessary to keep pace with functionality and performance improvements in the HDF5 string datatype.

As it turns out, HDF5 is unable to output variable length strings in parallel (1.7.3 2003-09-12). Therefore it has
become necessary to change the implementation in SSlib already: all character strings for all objects of a particular
scope will be stored in an extendible “Strings” dataset of type H5T_NATIVE_UCHAR in the same scope. Any object
that contains a variable length string will contain an index into the “Strings” dataset, and when the object is in memory
it will also contain a pointer directly to the string value. We employ an opaque HDF5 datatype to represent the string

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 259

SAF User Manual, Release 2.0.3

in memory and register a conversion function to allocate/find the string in the “strings” dataset during I/O. The only
problem with this approach is that HDF5-level tools don’t understand that the offset is an index into the Strings dataset
for a character string.

When a new task is opened all strings will initially have the same contents for the variable length string buffer, which is
read by ss_string_boot. As execution progresses different tasks will add different strings to the buffer in different
orders and the tasks will become out of sync. When objects of a scope are synchronized we will be guaranteed that all
tasks contain a valid Strings buffer, although the order of the new values in the buffer may differ between tasks. The
ss_string_flush function is responsible for choosing one of the scope tasks to write the string data back to the
file.

SSlib variable length strings support uses length rather than NUL characters to mark the end of a string and are therefore
capable of storing strings of bytes that might have embedded NUL characters.

Members

Get a C string from a persistent string

ss_string_get is a function defined in ssstring.c.

Synopsis:

char * ss_string_get(const ss_string_t *str, size_t bufsize, char *buf)

Formal Arguments:

• bufsize: Size of buf (only referenced if buf is non-null).

• buf: Optional buffer in which to store the C string. This buffer is assumed to be an array of at least bufsize
characters.

Description: Given information about a persistent string, return a pointer to a C string, i.e., an array of NUL-terminated
characters. If the caller supplies a buffer then the string will be copied into that buffer and NUL terminated, otherwise
this function mallocs a new buffer to hold the result.

Return Value: On success, returns buf if non-null or else allocates a result buffer. On failure returns the null pointer.
It is a failure to supply a bufsize which is not large enough to hold the entire string value with its NUL terminator.
The caller is responsible for freeing any return value allocated by this function.

Parallel Notes: Independent

Issues: SSlib stores strings with a byte count, so if the string was stored without a terminating NUL character then it
will also be returned as such.

See Also:

• Strings: Introduction for current chapter

Obtain pointer into string object

ss_string_ptr is a function defined in ssstring.c.

Synopsis:

const char * ss_string_ptr(const ss_string_t *str)

Description: This function is similar to ss_string_get except rather than copying the string to some other memory it
returns a pointer directly into the ss_string_t object. The caller should expect that the pointer is valid only until
some other operation on that object.

260 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Return Value: On success, returns a temporary pointer directly into the str object. If the value is zero bytes long
then a pointer to a NUL character is returned instead of null.

Parallel Notes: Independent

Issues: The returned value is ‘const’ because if it points into the Strings array then it might be the case that multiple
strings currently having the same value are sharing the same storage.

See Also:

• ss_string_get: 9.1: Get a C string from a persistent string

• Strings: Introduction for current chapter

Store a C string in a persistent string

ss_string_set is a function defined in ssstring.c.

Synopsis:

herr_t ss_string_set(ss_string_t *str, const char *s)

Formal Arguments:

• str: The destination persistent string.

• s: The source C string to copy.

Description: Given a C-style NUL-terminated character string stored in s, make the persistent string object str have
that same value. The ss_string_memset function can be used to store arbitrary data that might have embedded NUL
characters or that might not be NUL-terminated.

Return Value: Returns non-negative on success and negative on failure. The success side effect is that str has the
same value as s.

Parallel Notes: Independent

See Also:

• ss_string_memset: 9.4: Store a byte array in a string

• Strings: Introduction for current chapter

Store a byte array in a string

ss_string_memset is a function defined in ssstring.c.

Synopsis:

herr_t ss_string_memset(ss_string_t *str, const void *value, size_t nbytes)

Formal Arguments:

• str: The destination variable length string.

• value: The optional value to assign to str. If NULL then a value of all zero bytes is used.

• nbytes: The number of bytes in value.

Description: This function is similar to ss_string_set except the number of bytes in value is explicitly passed instead
of looking for the first NUL character.

Return Value: Returns non-negative on success and negative on failure.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 261

SAF User Manual, Release 2.0.3

Parallel Notes: Independent

See Also:

• ss_string_set: 9.3: Store a C string in a persistent string

• Strings: Introduction for current chapter

Free memory associated with the string

ss_string_reset is a function defined in ssstring.c.

Synopsis:

herr_t ss_string_reset(ss_string_t *str)

Description: Frees the character array value stored in str but does not free str itself.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Weakly reset a string

ss_string_realloc is a function defined in ssstring.c.

Synopsis:

herr_t ss_string_realloc(ss_string_t *str)

Description: Sometimes we want a variable length string to keep the same value it had but to be reallocated in the
string backing store. For instance, when a variable length string is copied from one scope to another we want to to keep
the same value but it cannot continue to have the same dataset offset since the new scope has a completely different
dataset for string storage.

Return Value: Returns non-negative on success; negative on failure

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Compares two variable length strings

ss_string_cmp is a function defined in ssstring.c.

Synopsis:

int ss_string_cmp(const ss_string_t *s1, const ss_string_t *s2)

Description: This function is similar to memcmp but its arguments are variable length strings instead.

Return Value: Returns -1 if the value of S1 is less than S2, 1 if S1 is greater than S2, and zero if they are equal
in value. Returns -2 on failure (beware that this is a refinement of the more general negative returns on failure used
throughout SSlib). It is an error if S1 or S2 is a null pointer, but not if either or both have no associated value. Lack
of a value is less than any other value and if S1 and S2 both lack a value they are considered equal.

262 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Compare persistent string with C string

ss_string_cmp_s is a function defined in ssstring.c.

Synopsis:

int ss_string_cmp_s(const ss_string_t *str, const char *s)

Description: This function is similar to strcmp but its first argument is a persistent string instead. It compares the
value of the persistent string with the C string s.

Return Value: Returns -1 if the value of str is less than s, 1 if str is greater than s, and zero if they are equal
in value. Returns -2 on failure (beware that this is a refinement of the more general negative returns on failure used
throughout SSlib).

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Append one string to another

ss_string_cat is a function defined in ssstring.c.

Synopsis:

herr_t ss_string_cat(ss_string_t *str, const char *s)

Description: Changes the value of the persistent string by appending another string.

Return Value: Returns non-negative on success; negative on failure. Successful side effect is that the value of str
is modified by appending the string s, which should be a C NUL-terminated string. If the original value of str is
NUL-terminated then the additional s value will replace that NUL, otherwise the additional value will be added after
the existing value.

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Substring modification

ss_string_splice is a function defined in ssstring.c.

Synopsis:

herr_t ss_string_splice(ss_string_t *str, const char *value, size_t start, size_t nbytes, size_t nreplace)

Formal Arguments:

• str: String object to be modified by this operation.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 263

SAF User Manual, Release 2.0.3

• value: Optional new data for part of the string value. If this argument is the null pointer and nbytes is
positive then the new data will be all NUL characters (this allows for an easy way to extend the length of a
string).

• start: Byte offset at which to place the new data in the string.

• nbytes: Length of the new data in bytes.

• nreplace: Number of bytes replaced by the new data. If SS_NOSIZE is passed then all bytes from start
to the end of the original value will be replaced by the new value.

Description: This function is able to modify a string value by modifying, inserting, or deleting bytes. It does not
assume that value is a C-style NUL-terminated string.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Query the length of a persistent string

ss_string_len is a function defined in ssstring.c.

Synopsis:

size_t ss_string_len(const ss_string_t *str)

Description: This function returns the number of initial non-NUL characters in a string’s value. If str’s value is a
typicall NUL-terminated C-style string then this function’s return value is identical to strlen. However, if str’s
value has no NUL characters then this function’s return value is identical to ss_string_memlen.

Return Value: Returns the number of initial non-NUL characters in a string on success; returns SS_NOSIZE on
failure.

Parallel Notes: Independent

See Also:

• ss_string_memlen: 9.12: Query the length of a persistent string

• Strings: Introduction for current chapter

Query the length of a persistent string

ss_string_memlen is a function defined in ssstring.c.

Synopsis:

size_t ss_string_memlen(const ss_string_t *str)

Description: Given a persistent string, return the number of characters contained in that string, including the termi-
nating NUL character if any. Note that for NUL terminated strings this is one more than what strlen would have
returned, but this behavior is necessary since SSlib byte-counts all string data in order to allow strings that have em-
bedded NUL characters and that might lack a NUL terminator. In other words, SSlib strings can store any type of
data.

Return Value: On success, returns the actual number of bytes stored for the string including a NUL terminator if any.
Returns SS_NOSIZE on error.

264 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Parallel Notes: Independent

See Also:

• Strings: Introduction for current chapter

Variable Length Arrays

SSlib has support for small, variable-length, arrays with independent operations. The array elements can be either
persistent object links or a user-defined datatype without embedded SSlib special types. The data for all variable
length arrays in a scope is aggregated (together with the variable length strings) into a single dataset which is read in
its entirety when a scope is opened.

The reason for the distinction between whether the array stores SSlib datatypes or not is because conversion between
memory and file representations, calculation of checksums, and interprocess communication require facilities provided
by SSlib for those types and aren’t available (or are handled entirely differently) for the non-SSlib datatypes. In practice
this doesn’t turn out to be a problem because variable length arrays are generally only used to store persistent object
links (as in a Set object pointing to Collections) or native integers (as in a Field’s permutation vector).

An array is born with zero elements of of ss_pers_t type. If the array is intended to store something other
than object links then its datatype must be changed with ss_array_target. The number of elements in an array is
changed with ss_array_resize. The ss_array_get and ss_array_put functions query or modify elements of an array
and ss_array_reset sets the array back to an initial state.

Members

Change array element datatype

ss_array_target is a function defined in ssarray.c.

Synopsis:

herr_t ss_array_target(ss_array_t *array, hid_t ftype)

Formal Arguments:

• array: Array whose datatype is to be modified.

• ftype: Datatype of the array elements as stored in the file.

Description: Every array has two datatypes associated with it: a datatype for the elements as they are stored in the
file, and a datatype of the elements as they exist in memory with the ss_array_put and ss_array_get functions. When
a new array is created the memory datatype is the HDF5 equivalent of ss_pers_t (a persistent object link) and the
file datatype is its counterpart, ss_pers_tf. This function sets the file datatype to the specified value and clears the
memory buffer and associated memory datatype.

Return Value: Returns non-negative on success; negative on failure. It is an error to modify the file datatype if the
array size is positive.

Parallel Notes: Independent

See Also:

• ss_array_get: 10.4: Obtain array value

• ss_array_put: 10.5: Modify part of an array

• Variable Length Arrays: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 265

SAF User Manual, Release 2.0.3

Inquire about array file datatype

ss_array_targeted is a function defined in ssarray.c.

Synopsis:

hid_t ss_array_targeted(ss_array_t *array)

Description: Every array has a file datatype that dermines how values are stored in a file. This function returns a copy
of that datatype.

Return Value: On success, a positive object ID for a copy of the file datatype. If an array stores links to other objects
then the returned datatype is a copy of ss_pers_tf. Returns negative on failure.

Parallel Notes: Independent

See Also:

• Variable Length Arrays: Introduction for current chapter

Change the size of a variable length array

ss_array_resize is a function defined in ssarray.c.

Synopsis:

herr_t ss_array_resize(ss_array_t *array, size_t nelmts)

Formal Arguments:

• array: Array whose size is to be changed.

• nelmts: Number of total elements to be contained in the array.

Description: Elements can be added or removed from the end of an array. If items are added then they are also
initialized to zero.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent. If more than one task changes the size of an array then they must all make identical
changes to the size.

See Also:

• Variable Length Arrays: Introduction for current chapter

Obtain array value

ss_array_get is a function defined in ssarray.c.

Synopsis:

void * ss_array_get(ss_array_t *array, hid_t mtype, size_t offset, size_t nelmts, void *buffer)

Formal Arguments:

• array: Array from which to retrieve data.

• mtype: Datatype for memory. Pass ss_pers_tm (or preferably negative) for an array of persistent object
links.

• offset: First element to be returned. It is an error to specify a starting element that is outside the valid range
of values defined for the array.

266 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• nelmts: Number of elements to return. The offset and nelmts define a range of elements to be returned.
If the range extends beyond the end of the defined range of elements for array then an error is raised; but if
nelmts is the constant SS_NOSIZE then all elements up to and including the last element are returned.

• buffer: The optional caller-supplied buffer to be filled in by the request. If the caller didn’t supply a buffer
then one will be created.

Description: This function extracts the array value or subpart thereof. The value is copied into the optional caller-
supplied buffer (or a buffer is allocated). If the value consists of more than one element then desired elements to be
returned can be specified with an offset and length.

Return Value: Returns a pointer (buffer if non-null) on success; null on failure. If the caller doesn’s supply
buffer then this function will allocate one.

Parallel Notes: Independent

See Also:

• Variable Length Arrays: Introduction for current chapter

Modify part of an array

ss_array_put is a function defined in ssarray.c.

Synopsis:

herr_t ss_array_put(ss_array_t *array, hid_t mtype, size_t offset, size_t nelmts, const void *value)

Formal Arguments:

• array: The array whose value will be modified.

• mtype: The datatype of the values pointed to by value. If the array contains persistent object links then pass
ss_pers_tm (or preferably negative).

• offset: The array element number at which to put value.

• nelmts: The number of array elements in value. If this is the constant SS_NOSIZE then we assume that
value contains enough data to fill up the current size of the array beginning at the specified offset.

• value: The value to be written into the array.

Description: nelmts values beginning at array element offset are modified by setting them to value.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

Issues: there really isn’t any point in actually converting the existing values to memory format and initializing the
array’s mbuf if we’re about to overwrite the whole thing anyway.

See Also:

• Variable Length Arrays: Introduction for current chapter

Free memory associated with the array

ss_array_reset is a function defined in ssarray.c.

Synopsis:

herr_t ss_array_reset(ss_array_t *array)

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 267

SAF User Manual, Release 2.0.3

Description: Frees the array value stored in array but does not free array itself.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Variable Length Arrays: Introduction for current chapter

Query the number of elements

ss_array_nelmts is a function defined in ssarray.c.

Synopsis:

size_t ss_array_nelmts(const ss_array_t *array)

Description: This function returns the number of elements defined in array.

Return Value: Number of elements on success; SS_NOSIZE on failure.

Parallel Notes: Independent

See Also:

• Variable Length Arrays: Introduction for current chapter

Files

An SSlib file is an HDF5 file with a certain minimum internal structure: all SSlib files contain a group named “/SAF”
which serves as the top-level scope for the file (there may be additional groups that also implement other scopes). The
top-level scope is always opened with the file’s communicator and has a Scope table in addition to the usual tables.
The Scope table is a list of all scopes contained in the file and the first element of that table is the top-level scope itself.

Every scope also has a File table that lists all files referred to by objects stored in that scope. The first element of every
File table is understood to be the file containing that table.

Files are always opened with the ss_file_open function (or the convenience ss_file_create) and closed with
ss_file_close. The file-related functions operate on or return a link of type ss_file_t, which points to some entry
in a top-scope’s File table.

In addition to the collection of File tables in all scopes of all files that are currently open, the library maintains a per-
task list of files and a mapping from the File table members to this global list. The mapping from a File table member
to the gfile array is accomplished with the ss_file_open function. This allows the following:

• Members from multiple File tables can point to a common underlying HDF5 file,

• The file whose name was originally recorded in the File table can be temporarily renamed,

• Newly discovered file objects can be implicitly opened if they match a previous open file.

The implicit opening needs more discussion: whenever SSlib opens a file (call it the master file) it looks at the File
tables of the master file to discover the names of all subordinate files that might be referenced by the master file
(i.e., all ss_file_t objects except the first one in each table, which refers to the master file itself). If any of the
subordinate names are relative, it temporarily converts them to absolute names using the master file’s directory as the
current working directory and uses these converted names when searching for matching entries in the GFile array. If
the subordinate file under consideration matches a name in the GFile array then the subordinate file will point to that
entry, thus sharing the entry with some other file; otherwise the subordinate file will point to a brand new entry. In
any case, the subordinate file’s explicit_open flag will be set to false and the GFile entry’s cur_opens counter
will not be incremented. If the GFile entry is marked as currently open then the subordinate file is also implicitly

268 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

open, sharing the same underlying HDF5 file and MPI communicator. Any implicitly opened file can be reopened
at any time, either with the same flags as it already shares or with a brand new name, and once that happens the file
is considered to be explicitly opened. Care should be taken to ensure that object links weren’t already dereferenced
through the implicitly opened file, or two or more links that look identical might not be so (this could actually be
checked by SSlib with an appropriate counter). Only files that are explicitly opened can be explicitly closed. Any
implicitly opened files will implicitly close once all explicitly opened files in common are closed.

Members

Open or create a file

ss_file_open is a function defined in ssfile.c.

Synopsis:

ss_file_t * ss_file_open(ss_file_t *file, const char *name, unsigned flags, ss_prop_t *props)

Formal Arguments:

• file: Optional handle to a persistent file object from a File table.

• name: Optional name of file to be opened.

• flags: HDF5-style file access flags.

• props: Optional file property list (see *File Properties*).

Description: Explititly opens an SSlib file and returns a link to the ss_file_t object for that file. Either file or
name or both may be specified. If one or the other (but not both) is specified then the file is simply opened with the
name contained in the file object or the specified name. If both are specified then a mapping from the file object
to the specified name is established, which is necessary if the name originally recorded in the Files table is no longer
valid due to the file being moved in the file system.

Depending on flags, the file might be created if it doesn’t exist (H5_ACC_CREATE) or truncated if it does exist
(H5_ACC_TRUNC). If the file is truncated, files which were mentioned in its File table are not automatically deleted
or truncated and other files which link to this truncated file will subsequently contain dangling or invalid links.

SSlib supports transient objects by placing them in transient files. A transient file is simply a special SSlib file that
doesn’t correspond to any underlying storage (not even an HDF5 file using the core virtual file driver). Such files
support more or less the same SSlib operations as real files although some operations may be tuned for this special
case (e.g., ss_file_flush). Transient files are always created for read and write access as are the scopes they contain, and
are denoted as such by the the bit H5F_ACC_TRANSIENT in the flags argument. They share the same name space
as their permanent cousins, and thus it is not possible to have a transient and permanent file both named “foo.saf”
although creating a transient file doesn’t affect any file that might already exist by that name.

All File tables of the file that is newly opened are scanned and all of their members are added to the GFile array. If that
array already had the name marked as open then the corresponding entry of the File table will be implicitly opened.
Files opened implicitly need not be closed and can be opened explicitly at any time (although if one is going to open
it explicitly it’s best to do so early on).

The ss_file_create function is a convenience for creating a new file.

Return Value: Returns a link to the ss_file_t object for the newly opened file on success; null on failure. If the
file argument is supplied then this will be the successful return value.

Parallel Notes: Collective across the file’s communicator as specified by props.comm, defaulting to the same thing
as the library’s communicator.

Issues: HDF5 doesn’t yet (1.6.0) support the H5F_ACC_TRANSIENT bit, which would essentially make all operations
on the file no-ops. Therefore this functionality must be supported in SSlib.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 269

SAF User Manual, Release 2.0.3

See Also:

• ss_file_create: 11.4: Create a new file

• ss_file_flush: 11.11: Write pending data to file

• Files: Introduction for current chapter

Obtain information about referenced files

ss_file_references is a function defined in ssfile.c.

Synopsis:

ss_file_ref_t * ss_file_references(ss_file_t *master, size_t *nfiles, ss_file_ref_t *fileref, ss_prop_t UN-
USED *props)

Formal Arguments:

• master: The file in question

• nfiles [INOUT]: Upon return this argument will point to the number of valid entries

• fileref: Optional pointer to an array of file reference information that will be initialized by this function and
returned (if non-null) as the successful return value of this function.

• props: File properties (none defined yet)

Description: A SAF database can consist of many files which reference each other. This function will return informa-
tion about all such files that might be referenced by the master file. The caller is expected to fill in certain members
of the returned array and then use that array to call ss_file_openall.

Return Value: On success, returns either fileref (if non-null) or an allocated array and the nfiles argument
indicates how many elements of the return value have been initialized. Returns the null pointer on failure.

Parallel Notes: Independent.

See Also:

• ss_file_openall: 11.3: Open many files

• Files: Introduction for current chapter

Open many files

ss_file_openall is a function defined in ssfile.c.

Synopsis:

herr_t ss_file_openall(size_t nfiles, ss_file_ref_t *fileref, unsigned flags, ss_prop_t *props)

Formal Arguments:

• nfiles: Number of entries in the fileref array.

• fileref: Array of information for files to be opened.

• flags: Flags to control how files are opened.

• props: Additional file opening properties (see *File Properties*).

270 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

Description: This function opens all files specified in the arguments.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the union of communicators specified in the fileref array.

See Also:

• Files: Introduction for current chapter

Create a new file

ss_file_create is a function defined in ssfile.c.

Synopsis:

ss_file_t * ss_file_create(const char *name, unsigned flags, ss_prop_t *props)

Formal Arguments:

• name: Name of file to be created.

• flags: HDF5-style file access flags (see ss_file_open).

• props: Optional file property list (see *File Properties*).

Description: Creates and initializes an SSlib file. This is actually just a convenience function for calling ss_file_open
with a flags argument of H5F_ACC_RDWR | H5F_ACC_TRUNC | H5F_ACC_CREAT in addition to those bit flags
passed into this function.

Return Value: Same as ss_file_open.

Parallel Notes: Same as ss_file_open.

See Also:

• ss_file_open: 11.1: Open or create a file

• Files: Introduction for current chapter

Test file open status

ss_file_isopen is a function defined in ssfile.c.

Synopsis:

hid_t ss_file_isopen(ss_file_t *file, const char *name)

Formal Arguments:

• file: Optional handle to a persistent File object.

• name: Optional real name of file to test for open status.

Description: Determines whether a file named name (names normalized with ss_file_fixname before being
compared) is open, or whether the persistent file object file corresponds to an open file, or whether file is currently
mapped to name depending on whether only name is specified, only file is specified, or both name and file are
specified, respectively.

Return Value: Returns true (a positive HDF5 file handle) if the file is currently open (explicitly or implicitly); false
if the file is not currently open; negative otherwise. The HDF5 file handle is not duplicated and the client should not
invoke H5Fclose on the return value.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 271

SAF User Manual, Release 2.0.3

Parallel Notes: Independent. However, since the underlying HDF5 file was opened collectively, many operations on
that file must necessarily be collective and therefore if the return value is to be used as a file (instead of a logic value)
then this function will most likely be called collectively across the file’s communicator.

Issues: The returned HDF5 file handle is not duplicated before being returned for three reasons: (1) the H5Freopen
function returns a handle which does not participate in the same file mount structure as the original and thus we cannot
guarantee that SSlib’s file view would be consistent with that of the returned handle, (2) the H5Freopen function
is collective which would preclude this function from being usable as an independent test of file availability, and (3)
requiring the caller to H5Fclose the return value gets in the way of using this function as a predicate.

Since transient files are not supported by HDF5 there can be no HDF5 file handle for a file created with the
H5F_ACC_TRANSIENT bit set. This function returns the integer 1 for such files, which is a positive true value
but which is not a valid HDF5 file handle (or any valid handle for that matter).

See Also:

• Files: Introduction for current chapter

Tests transient state of a file

ss_file_istransient is a function defined in ssfile.c.

Synopsis:

htri_t ss_file_istransient(ss_file_t *file)

Formal Arguments:

• file: A link to some File object

Description: This function tests whether file is a transient file. Transient files don’t correspond to any underlying
permanent storage (not even to an HDF5 file with a core driver).

Return Value: Returns true (positive) if file is a transient file; false if file is a permanent file; negative on error.
It is an error to query a file which isn’t in memory yet and therefore doesn’t correspond to an open file.

Parallel Notes: Independent

See Also:

• Files: Introduction for current chapter

Test file writability

ss_file_iswritable is a function defined in ssfile.c.

Synopsis:

htri_t ss_file_iswritable(ss_file_t *file)

Formal Arguments:

• file: A link to some File object

Description: Files can be open for read-only access or for read and write access. This function tests the writing
capability of the file in question.

Return Value: Returns true (positive) if filewas opened with the H5F_ACC_RDWR flag and false otherwise; returns
negative on failure, including when file is not open.

Parallel Notes: Independent

272 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

See Also:

• Files: Introduction for current chapter

Mark file as read-only

ss_file_readonly is a function defined in ssfile.c.

Synopsis:

herr_t ss_file_readonly(ss_file_t *file)

Description: A file can be marked as read-only even after it is opened for read-write. This is often useful when a
file is created since a read-only file results in certain optimizations (such as knowing that such a file is always in a
synchronized state). Marking a file as read-only can be substantially faster than closing the file and then reopening it
since no I/O needs to happen.

The file should be in a synchronized state before this function is called.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file’s communicator.

Issues: It would be nice if HDF5 had a similar function, which would add an extra level of error checking to prevent
SSlib from accidently writing to the HDF5 file after it was marked as read-only.

See Also:

• Files: Introduction for current chapter

Synchronize all scopes of a file

ss_file_synchronize is a function defined in ssfile.c.

Synopsis:

herr_t ss_file_synchronize(ss_file_t *file, ss_prop_t *props)

Formal Arguments:

• file: The file to synchronize.

• props: Optional synchronization properties.

Description: As mentioned in ss_scope_synchronize, persistent object tables may become unsynchronized across the
MPI tasks that own them. This function is simply a convenience function to synchronize all tables of all scopes that
belong to the specified open file. See *Synchronization Algorithm* for more details.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file’s communicator.

Issues: If the caller supplies a property list then the `err_newptrs’ integer property should be a member of that
list since it is used internally by this function.

See Also:

• ss_scope_synchronize: 13.7: Synchronize a scope

• Files: Introduction for current chapter

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 273

SAF User Manual, Release 2.0.3

Query file synchronization state

ss_file_synchronized is a function defined in ssfile.c.

Synopsis:

htri_t ss_file_synchronized(ss_file_t *file)

Formal Arguments:

• file: An open file

Description: As detailed in ss_scope_synchronize, scopes may become out of sync across the MPI tasks that own
them. This function queries all open scopes of the specified file to determine if any of them need to be synchronized,
and may be faster than calling ss_file_synchronize even when all scopes are in a synchronized state.

Return Value: Returns true (positive) if all scopes of file are currently synchronized; false if any scope needs to be
synchronized; negative on failure.

Parallel Notes: Collective across the file’s communicator.

See Also:

• ss_file_synchronize: 11.9: Synchronize all scopes of a file

• ss_scope_synchronize: 13.7: Synchronize a scope

• Files: Introduction for current chapter

Write pending data to file

ss_file_flush is a function defined in ssfile.c.

Synopsis:

herr_t ss_file_flush(ss_file_t *file, ss_prop_t *props)

Formal Arguments:

• file: The file to be flushed.

• props: Flushing properties. See ss_scope_flush.

Description: As objects are created or modified the library caches changes in memory to prevent repeatedly writing
to disk. This function writes that data to disk. However, to reduce the amount of communication necessary in cases
where the caller knows the file is synchronized, the various data flushing functions do not synchronize first, so the caller
should invoke ss_file_synchronize. The flushing functions also do not generally guarantee that the data is flushed from
HDF5 to the underlying file.

Flushing a transient file is a no-op.

The ss_file_close function both synchronizes and flushes.

Return Value: Returns non-negative on success, negative on failure. It is an error to attempt to flush a file which is
not open.

Parallel Notes: Collective across the file’s communicator (see ss_file_open).

Example: The following code flushes data to HDF5 and then tells HDF5 to flush its data to the file:

1 ss_file_t file = ss_file_open(....);
2
3 ss_file_synchronize(file);

(continues on next page)

274 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

(continued from previous page)

4 ss_file_flush(file, NULL);
5 H5Fflush(ss_file_isopen(file), H5F_SCOPE_GLOBAL);

See Also:

• ss_file_close: 11.12: Close a file

• ss_file_open: 11.1: Open or create a file

• ss_file_synchronize: 11.9: Synchronize all scopes of a file

• ss_scope_flush: 13.9: Write pending data to file

• Files: Introduction for current chapter

Close a file

ss_file_close is a function defined in ssfile.c.

Synopsis:

herr_t ss_file_close(ss_file_t *file)

Formal Arguments:

• file: The file to be closed

Description: Closes a file and all scopes belonging to that file. All scopes belonging to the file are synchronized and
flushed to the file first, and then all such scopes are closed. If the file contains scopes that were serving as registries
for other files, those scopes will be removed from those files’ registry stacks.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the file’s communicator (see ss_file_open).

Issues: Closing a file simply causes the cur_open reference counter to be decremented in the GFile array. When
this counter reaches zero the file is considered to be closed and we call H5Fclose, but we don’t entirely reset the
GFile array entry to zero just in case there are still things pointing into this file.

See Also:

• ss_file_flush: 11.11: Write pending data to file

• ss_file_open: 11.1: Open or create a file

• ss_file_synchronize: 11.9: Synchronize all scopes of a file

• Files: Introduction for current chapter

Attach an object registry scope

ss_file_registry is a function defined in ssfile.c.

Synopsis:

herr_t ss_file_registry(ss_file_t *file, ss_scope_t *registry)

Formal Arguments:

• file: The file that is getting the new registry.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 275

SAF User Manual, Release 2.0.3

• registry: The open scope to serve as the registry. This need not be a top-level scope though it usually is. It
could even be some scope within file in an extreme case.

Description: A find operation searches a specific scope for objects that match some partially initialized key value.
However, sometimes object definitions are in a separate object registry instead and should be “sucked into” the main
file as necessary. An object registry is simply a stack of additional scopes to search when a find operation for the
specified scope fails to locate any matching objects.

If a scope of file is searched during a find operation and results in no matches, then the registry scope is searched
(registries are searched in the order defined with this function) and the object handle that gets returned is marked as
coming from a registry. The current version of the library simply makes links to the registry scope, but a future version
might copy the object from the registry into the specified file along with all prerequisites.

Registry lists are associated with the shared file information in the GFile array. That is, if two ss_file_t objects
are opened and refer to the same underlying HDF5 file, then adding a registry to one of those ss_file_t links will
cause the other link to also see the registry. This allows files that are opened implicitly to automatically use the same
registry as their explicitly opened counterpart.

Note: The File, Scope, and Blob tables, which describe infrastructure, do not use object registries during find
operations. If the registry scope is closed then it is automatically removed from all the files for which
it’s serving as a registry.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent, although it’s typically used in such a way that all tasks of the file communicator make
identical calls to this function to define a common set of object registries.

Example: Here’s how this function might be used:

1 ss_file_t file = ss_file_open("registry.saf",H5F_ACC_RDONLY,NULL);
2 ss_scope_t registry = ss_file_topscope(file);
3 ss_file_t myfile = ss_file_create("myfile.saf",H5F_ACC_RDWR,NULL);
4 ss_file_registry(myfile,registry);

See Also:

• Files: Introduction for current chapter

Obtain top scope

ss_file_topscope is a function defined in ssfile.c.

Synopsis:

ss_scope_t * ss_file_topscope(ss_file_t *file, ss_scope_t *buf)

Formal Arguments:

• file: File for which to obtain a link to a top scope.

• buf: Optional buffer in which to store the resulting link.

Description: Given a file, return a link to the top scope of that file. This is really just a convenience function for
ss_pers_topscope that exists mostly for compile-time type checking since this is an exceedingly common operation.

Return Value: Returns a pointer to a top-scope link on success (buf if that was non-null); null on failure.

Parallel Notes: Independent

See Also:

• ss_pers_topscope: 7.11: Obtain top scope for an object

276 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• Files: Introduction for current chapter

Global File Information

No description available.

Members

Print global file table

ss_gfile_debug_all is a function defined in ssgfile.c.

Synopsis:

herr_t ss_gfile_debug_all(FILE *out)

Description: Displays information about all global files

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Global File Information: Introduction for current chapter

Print information about a global file entry

ss_gfile_debug_one is a function defined in ssgfile.c.

Synopsis:

herr_t ss_gfile_debug_one(size_t idx, FILE *out, const char *prefix)

Description: Prints information about a single entry in the global file array.

Return Value: Returns non-negative on success; negative on failure

Parallel Notes: Independent

See Also:

• Global File Information: Introduction for current chapter

Scopes

A scope is a collection of persistent object tables that belong to a single file. A file always has one top-level scope
called “SAF” which is returned when the file is opened (see ss_file_open), but may have any number of additional
scopes. Each scope is associated with a communicator which is a subset of the communicator for file containing the
scope, and that communicator defines what tasks “own” the scope. Operations that open, close, or create scopes are
generally collective over the file communicator; operations that modify the contents of a scope are generally collective
over the scope communicator; operations that simply access the scope are generally independent.

Scopes satisfy a number of design goals:

• Scopes minimize communication by isolating certain objects to a subset of MPI_COMM_WORLD.

• Scopes provide a mechanism for controlled partial reads of the SAF metadata.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 277

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• Scopes provide a framework for transient objects.

• Scopes will allow for a crude form of object deletion but at a finer granularity than entire files.

• Scopes turn SAF’s auxiliary files into standalone SAF databases.

A scope is a type of persistent object pointed to by a variable of type ss_scope_t (see *Persistent Objects*). As
such, a scope is simply an entry in a table that gets written to a file. Each file has only one scope table, called /
SAF/Scopes. That is, only the top-level scope contains a Scopes table and the first entry in that table is always the
top-level scope itself, /SAF.

Since a scope is a persistent object, scopes are created, modified, destroyed, and queried just like any other persistent
object. However, since a scope is also part of the file infrastructure, additional operations are defined and documented
in this chapter.

Members

Opens a scope

ss_scope_open is a function defined in ssscope.c.

Synopsis:

herr_t ss_scope_open(ss_scope_t *scope, unsigned flags, ss_prop_t *props)

Formal Arguments:

• scope: A link to a scope object, probably the result of a find operation.

• flags: Various bit flags to control common scope open switches.

• props: Scope opening properties (see *Scope Properties*).

Description: Given a link to a scope (i.e., a link to an entry in the top-level Scopes table of some file that is currently
open), open the scope. The flags argument determines the mode for opening the scope. The following bits are
supported at this time:

H5F_ACC_RDONLY: The scope is opened for read-only access.

H5F_ACC_RDWR: The scope is opened for both read and write access.

H5F_ACC_DEBUG: Turn on scope debugging.

The H5F_ACC_EXCL, H5F_ACC_TRUNC, and H5F_ACC_CREAT bits are not supported by this function because
they require participation of all tasks in the file’s communicator, and therefore SSlib separates scope creation from
scope opening.

The H5F_ACC_RDWR flag can only be used if the containing file is also H5F_ACC_RDWR.

The scope will be a transient scope if and only if the file was opened with H5F_ACC_TRANSIENT . Therefore this
function simply ignores that bit in the flags vector.

Return Value: Returns non-negative on success; negative on failure.

It is an error to open a scope that is already open. However, since the original open might have been performed on
a disjoint subset of tasks, the current operation might not be able to detect a duplicate open. If disjoint sets of tasks
open the same scope for read-only access and no task has the scope open for writing then things will most likely work
properly.

Parallel Notes: Collective across the scope’s communicator, props.comm, defaulting to the same communicator as
the file in which the scope exists.

See Also:

278 Chapter 1. SAF User Manuals

https://github.com/markcmiller86/SAF
https://github.com/markcmiller86/SAF

SAF User Manual, Release 2.0.3

• Scopes: Introduction for current chapter

Closes a scope

ss_scope_close is a function defined in ssscope.c.

Synopsis:

herr_t ss_scope_close(ss_scope_t *scope)

Description: Closes the specified scope without totally destroying the memory representation. Specifically, the top-
scope’s Scope table is left intact as are the indirect map arrays in all scopes that have them. This is required for the
following common scenario:

The application has two files called File-A and File-B. The application creates a new object (e.g., a quantity) in
File-A without using the SS_ALLSAME flag and then creates another object (e.g., a unit) in File-B that refers to
the object in File-A. The application closes File-A which closes all the scopes in that file. It then attempts to
close File-B, which includes a synchronization and a flush. However, when flushing, SSlib will need to convert a
persistent object link from the Memory state to the Closed state and convert its indirect object index to a direct object
index. The only way this can be done is by having the indirect mappings for the table that contained the object in
File-A.

The scope is assumed to already be synchronized and flushed. In fact, it would not even be possible to flush the scope
from this function because doing so may require a call to H5Dextend, which is file collective.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the scope’s communicator. This is the same set of tasks that originally opened the
scope.

See Also:

• Scopes: Introduction for current chapter

Query scope open status

ss_scope_isopen is a function defined in ssscope.c.

Synopsis:

hid_t ss_scope_isopen(ss_scope_t *scope)

Formal Arguments:

• scope: A link to a scope object.

Description: A scope is either opened or closed at any given time on any given task. This function returns that status.

Return Value: Returns true (a positive HDF5 group handle) if scope is currently opened by the calling task; false
if scope is currently closed; negative on error. The group handle is not duplicated and the caller should not invoke
H5Gclose on the return value. This function returns an error (instead of false) if the scope is not even booted. To be
“booted” means the scope object corresponds to some HDF5 group which is open.

Parallel Notes: Independent

Issues: The group handle return value is not duplicated by this function because (1) not doing so is consistent with
ss_file_isopen and (2) doing so would require this function to be collective.

Since transient files are not supported by HDF5 there can be no HDF5 file handle for a scope created in a transient file.
This function returns the integer 1 for such files, which is a positive true value but which is not a valid HDF5 group
handle (or any valid handle for that matter).

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 279

SAF User Manual, Release 2.0.3

See Also:

• ss_file_isopen: 11.5: Test file open status

• Scopes: Introduction for current chapter

Determines if scope is an open top-scope

ss_scope_isopentop is a function defined in ssscope.c.

Synopsis:

htri_t ss_scope_isopentop(ss_scope_t *scope)

Description: Determines if scope is open and a top-scope. A scope can be in an opened or closed state. Every file
has exactly one top-level scope which is the first entry in that scope’s Scope table.

Return Value: Returns true (positive) if scope is open and a top-scope or false if not. Returns negative on failure.

Parallel Notes: Independent

Issues: It might be better to just look to see if the specified scope has a communicator other than MPI_COMM_NULL
and has a non-null pointer for a Scope table since only top-level scopes have a Scope table.

See Also:

• Scopes: Introduction for current chapter

Tests transient state of a scope

ss_scope_istransient is a function defined in ssscope.c.

Synopsis:

htri_t ss_scope_istransient(ss_scope_t *scope)

Formal Arguments:

• scope: Any open scope.

Description: This function tests whether scope is a transient scope. A scope is transient if it belongs to a transient
file.

Return Value: Returns true (positive) if scope is a transient scope; false if scope is a permanent scope; negative
on error. It is an error to query a scope which isn’t open.

Parallel Notes: Independent

See Also:

• Scopes: Introduction for current chapter

Tests whether scope can be modified

ss_scope_iswritable is a function defined in ssscope.c.

Synopsis:

htri_t ss_scope_iswritable(ss_scope_t *scope)

Formal Arguments:

280 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

• scope: Any open scope.

Description: If a scope is opened for read-only access then the objects in that scope cannot be modified. This function
tests for that condition.

Return Value: Returns true (positive) if scope is open with write access (that is, the ss_scope_open call was passed
the H5F_ACC_RDWR flag); returns false if the scope is opened for read-only access; returns negative on failures. It is
considered a failure if scope is not open on the calling task.

Parallel Notes: Independent

See Also:

• ss_scope_open: 13.1: Opens a scope

• Scopes: Introduction for current chapter

Synchronize a scope

ss_scope_synchronize is a function defined in ssscope.c.

Synopsis:

herr_t ss_scope_synchronize(ss_scope_t *scope, unsigned tableidx, ss_prop_t *props)

Formal Arguments:

• scope: A link to an open scope that should be synchronized.

• tableidx: Magic number to define which table to synchronize. If tableidx is SS_TABLE_ALL then all
tables of the scope will be synchronized.

• props: See *Synchronization Properties*

Description: Various scope modifying operations that would normally be collective across the scope’s communicator
can be carried out locally. When this happens the various tasks of the scope’s communicator may store differing
information for the scope. This function is intended to synchronize the various tables of a particular scope across all
the MPI tasks that “own” that scope. See *Synchronization Algorithm* for more details.

Return Value: Returns non-negative on success; negative on failure. It is an error to attempt to synchronize a scope
that is not open.

Parallel Notes: Collective across the scope’s communicator. Substantial communication may be required.

See Also:

• Scopes: Introduction for current chapter

Query scope synchronization state

ss_scope_synchronized is a function defined in ssscope.c.

Synopsis:

htri_t ss_scope_synchronized(ss_scope_t *scope, unsigned tableidx)

Formal Arguments:

• scope: A link to the scope whose synchronization state is to be queried.

• tableidx: Magic number to define which table to query. If tableidx is greater than or equal to
SS_NPERSL_CLASSES then all tables of the specified scope must be in a synchronized state before this func-
tion returns true.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 281

SAF User Manual, Release 2.0.3

Description: As detailed in ss_scope_synchronize, scopes may become out of sync when tasks independently modify
table entries. This function will query whether a scope (or some table of the scope) is out of sync without synchronizing
the scope. In fact, even when the scope is in a synchronized state, calling this function may be faster than calling
ss_scope_synchronize.

Return Value: Returns true (positive) if the scope is in a synchronized state; false if synchronization is necessary;
negative on error. It is an error to make this query about a scope which is not open.

Parallel Notes: Collective across a superset of the scope’s communicator. Communication is required within the
scope communicator and other tasks will return true (positive) because the scope is not open there.

See Also:

• ss_scope_synchronize: 13.7: Synchronize a scope

• Scopes: Introduction for current chapter

Write pending data to file

ss_scope_flush is a function defined in ssscope.c.

Synopsis:

herr_t ss_scope_flush(ss_scope_t *scope, unsigned tableidx, ss_prop_t UNUSED *props)

Formal Arguments:

• scope: A link to the open scope to be flushed.

• tableidx: Magic number to define which table to flush, or SS_TABLE_ALL

• props: Scope flushing properties (none defined yet)

Description: Flushing a scope causes all of its tables to be written to HDF5. It does not include synchronizing the
tables or telling HDF5 to flush its cached data to the file or telling the operating system to flush dirty blocks to disk.
That can be done with code similar to the following:

1 ss_scope_flush(scope, SS_MAGIC(ss_field_t), properties);
2 H5Fflush(ss_scope_isopen(scope), H5F_SCOPE_GLOBAL); // flushes the whole hdf5 file

→˓and all mounts

Return Value: Returns non-negative on success, negative on failure.

Parallel Notes: Conceptually this function is collective across the scope’s communicator, however because
ss_table_write and ss_string_flush are file-collective due to HDF5 API restrictions this function must
also be file collective. Fortunately the scope argument is available on all tasks of the file which makes this restriction
easy to program around.

Issues: When flushing a specific table the variable length string values are not written to the file.

See Also:

• Scopes: Introduction for current chapter

Query the scope communicator

ss_scope_comm is a function defined in ssscope.c.

Synopsis:

herr_t ss_scope_comm(ss_scope_t *scope, MPI_Comm *comm, int *self, int *ntasks)

282 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Formal Arguments:

• comm: Optional returned communicator, not duplicated.

• self: Optional returned calling task’s rank within communicator

• ntasks: Optional returned size of communicator

Description: Given a scope, return the scope’s communicator without dup’ing it. This is either the scope’s communi-
cator or the communicator of the file to which the scope belongs.

Return Value: Returns non-negative on success, negative on failure. The communicator is returned through the comm
argument when the function is successful.

Parallel Notes: Independent

See Also:

• Scopes: Introduction for current chapter

Object Attributes

Attributes are small pieces of data which fall outside the scope of the sharable data model and thus cannot be repre-
sented by sets, fields, etc. The meaning of a particular attribute is determined by convention, requiring additional a
priori agreement between the writer and the reader, often in the form of documentation or word of mouth.

Any persistent object may have zero or more attributes and each attribute has a name, datatype, element count (as if
it were a one dimensional array), and a value. Operations on attributes are largely independent and since attributes
are implemented as a scope table, those operations are similar to operations that can be performed on other persistent
objects. One restriction on the attribute table, however, is that the attribute can only belong to an object stored in the
same scope. This is necessary in order for an object to be able to efficiently find its attributes.

Members

Add a new attribute to an object

ss_attr_new is a function defined in ssattr.c.

Synopsis:

ss_attr_t * ss_attr_new(ss_pers_t *owner, const char *name, hid_t type, size_t count, const void *value,
unsigned flags, ss_attr_t *buf, ss_prop_t *props)

Formal Arguments:

• owner: The object with which the new attribute is associated.

• name: The name of the new attribute.

• type: The datatype of the attribute.

• count: Number of values in the attribute.

• value: Optional array of count values each of type type. If this array is not supplied then the attribute’s
value will be initialized to all zero bytes.

• flags: Bit flags, such as SS_ALLSAME.

• buf: The optional buffer for the returned attribute link.

• props: Attribute properties (none defined yet).

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 283

SAF User Manual, Release 2.0.3

Description: This function adds a new attribute to the owner object (which must not be an attribute itself). An
attribute can be thought of as a one dimensional array of values all having the same datatype.

Return Value: Returns a non-null attribute link on success; null on failure. If buf is supplied then it will be the
success return value.

Parallel Notes: Independent. However if all tasks are collectively creating a single attribute and all are passing the
same type, count, and value then they may pass the SS_ALLSAME bit in the flags argument, thereby allowing
a synchronization to do less work later. When the SS_ALLSAME bit is passed then the call should be collective across
the communicator of the scope containing the owner object.

See Also:

• Object Attributes: Introduction for current chapter

Find attributes for an object

ss_attr_find is a function defined in ssattr.c.

Synopsis:

ss_attr_t * ss_attr_find(ss_pers_t *owner, const char *name, size_t nskip, size_t maxret, size_t *nret,
ss_attr_t *result)

Formal Arguments:

• owner: The object for which we’re searching for attributes.

• name: An optional attribute name on which to restrict the search.

• nskip: Skip the first SKIP matching attributes.

• maxret: Return at most maxret matching attributes. If the caller passes SS_NOSIZE then all matching
attributes are returned. If more than maxret attributes could be returned the remainder are simply discarded.
If result is non-null then this argument should reflect the size of that array.

• nret [OUT]: The number of attributes stored in the returned array of links.

• result: An optional buffer in which to store links to the matching attributes. If supplied, this will be the
successful return value. The constant SS_PERS_TEST can be supplied in order to prevent the library from
allocating a return value (this is useful if the caller simply wants to count the matches).

Description: This function finds all attributes for the persistent object owner and returns handles to those attributes.
The returned array of handles can be restricted by supplying an attribute name which must match all returned attributes.
The SKIP and maxret arguments can select a contiguous subset of the available attributes.

Return Value: On success, returns an array of links to matching attributes; returns a null pointer on failure. If no
matching attributes are found then a non-null malloc’d pointer is returned and nret points to zero. That is, the case
were no attributes match the search criteria is not considered an error.

Parallel Notes: Independent

See Also:

• Object Attributes: Introduction for current chapter

Count matching attributes

ss_attr_count is a function defined in ssattr.c.

Synopsis:

284 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

size_t ss_attr_count(ss_pers_t *owner, const char *name)

Description: Counts the number of attributes that belong to owner and have the optional string name as their name.
If no name is supplied then all attributes belonging to owner are counted.

Return Value: On success, the number of attributes found to match the owner and name pair; SS_NOSIZE on
failure.

Parallel Notes: Independent

See Also:

• Object Attributes: Introduction for current chapter

Obtain attribute value

ss_attr_get is a function defined in ssattr.c.

Synopsis:

void * ss_attr_get(ss_attr_t *attr, hid_t type, size_t offset, size_t nelmts, void *buffer)

Formal Arguments:

• attr: The attribute in question.

• type: The desired datatype of the returned value.

• offset: The first element of the value to return (an element index, not byte index)

• nelmts: The total number of elements to return. If the offset and nelmts arguments describe a range of
elements that is outside that which is known to the attribute then an error is raised. If nelmts is SS_NOSIZE
then the number of returned values is not limited (except perhaps by the non-zero offset).

• buffer: The optional buffer in which to store the returned values.

Description: This function extracts the attribute value, or subpart thereof. The value is converted to the desired type,
which must be conversion compatible with the datatype used to store the attribute value. The converted value is copied
into the optional caller-supplied buffer (or a buffer is allocated). If the value consists of more than one element then
desired elements to be returned can be specified with an offset and length.

Return Value: Returns a pointer (buffer if non-null) on success; null on failure. If the caller doesn’t supply
buffer then this function allocates one.

Parallel Notes: Independent

See Also:

• Object Attributes: Introduction for current chapter

Change an attribute value

ss_attr_put is a function defined in ssattr.c.

Synopsis:

herr_t ss_attr_put(ss_attr_t *attr, hid_t type, size_t offset, size_t nelmts, const void *value, un-
signed flags)

Formal Arguments:

• attr: The attribute in question.

• type: The datatype of value.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 285

SAF User Manual, Release 2.0.3

• offset: The element number at which to put value.

• nelmts: The number of elements in value.

• value: The value to be written to the attribute.

• flags: Flags such as SS_ALLSAME.

Description: An attribute’s value can be changed by calling this function. If the attribute stores more than one value
then the supplied new value can be for either the whole attribute or for just part of the attribute as determined by
the offset and nelmts arguments. The datatype of each element of value is specified by type and must be
conversion compatible with the datatype already registered with the attribute.

Return Value: Returns non-negative on success; negative on failure. It is an error if offset and nelmts specify a
range of elements ouside that which the attribute already knows about.

Parallel Notes: Independent. However, if the SS_ALLSAME bit is passed in the flags argument the call should
be collective across all tasks of the communicator for the scope that owns the attribute and all such tasks must pass
identical values for offset and nelmts and a type and value such that the converted value is identical on all
tasks.

See Also:

• Object Attributes: Introduction for current chapter

Modify attribute type and size

ss_attr_modify is a function defined in ssattr.c.

Synopsis:

herr_t ss_attr_modify(ss_attr_t *attr, hid_t type, size_t nelmts, unsigned flags)

Formal Arguments:

• attr: The attribute whose size will be changed.

• type: The new datatype for the attribute, or H5I_INVALID_HID if the type is not to be changed. If the
datatype is changed but is conversion compatible with the previous type then the attribute’s data will be converted
to the new datatype. Otherwise the attribute’s data will be initialized to all zero.

• nelmts: The new number of elements in the attribute value, or SS_NOSIZE if the number of elements is not
to be changed. If the number of elements decreases then the extra elements are discarded. If the number of
elements increases then the new elements will be initialized to all zero bytes.

• flags: Bit flags such as SS_ALLSAME.

Description: This function modifies the storage datatype and/or number of elements of an attribute.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent. However if the SS_ALLSAME bit is set in the flags argument then this function is
collective across the communicator of the scope that owns the attribute and all tasks must pass identical values for the
type and nelmts.

See Also:

• Object Attributes: Introduction for current chapter

286 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Query attribute metadata

ss_attr_describe is a function defined in ssattr.c.

Synopsis:

const char * ss_attr_describe(ss_attr_t *attr, ss_pers_t *owner, hid_t *type, size_t *nelmts)

Formal Arguments:

• attr: The attribute to be described.

• owner [OUT]: Optional object to which attribute belongs.

• type [OUT]: Optional datatype of attribute data. The caller should invoke

• nelmts [OUT]: Optional number of elements stored by the attribute.

Description: This is really just a convenience function so if the caller wants the attribute datatype they don’t need to
do the work of calling H5decode on the attribute type field.

Return Value: Returns the attribute name on success; null on failure. The name is simply the ss_string_ptr value of the
name field of the attribute.

Parallel Notes: Independent

See Also:

• ss_string_ptr: 9.2: Obtain pointer into string object

• Object Attributes: Introduction for current chapter

Values

These functions operate on values of pretty much any HDF5 datatype.

Members

Print an arbitrary datum

ss_val_dump is a function defined in ssval.c.

Synopsis:

herr_t ss_val_dump(void *val, hid_t type, void *_parent, FILE *out, const char *html_tag)

Formal Arguments:

• val: Value to be printed

• type: Datatype of val

• _parent: Optional persistent object into which val points

• out: Stream to which output should be sent

• html_tag: Optional HTML tag to use in output; NULL means output plain text

Description: Given memory of a certain type, print it to the specified stream.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 287

SAF User Manual, Release 2.0.3

See Also:

• Values: Introduction for current chapter

Value comparison flags

ss_val_cmp_t is a collection of related C preprocessor symbols defined in ssval.h.

Synopsis:

SS_VAL_CMP_DFLT:

SS_VAL_CMP_SUBSTR: Strings: NUL terminated substring

SS_VAL_CMP_SUBMEM: Strings: binary comparison of substring

SS_VAL_CMP_RE: Strings: NUL terminated regular expression

SS_VAL_CMP_RE_EXTENDED:

SS_VAL_CMP_RE_ICASE:

SS_VAL_CMP_RE_NEWLINE:

SS_VAL_CMP_EQ: Link: compare with ss_pers_eq

SS_VAL_CMP_EQUAL: Link: compare with ss_pers_equal

Description: The various comparison functions (such as ss_val_cmp) can be influenced to use different algorithms
during their operation by passing a bit vector describing the mode of operation. For ss_val_cmp the bit vector
is contained in the first non-zero byte of the mask for each value being compared. Generally, if the flags bits are
unrecognized or unsupported by a particular comparator a default algorithm is used.

The Default Algorithm

All comparison functions support a notion of a default comparison algorithm. This is indicated by setting all eight
low-order bits in the flag, which can be done with the constant SS_VAL_CMP_DFLT .

String Comparisons

SS_VAL_CMP_SUBSTR: If the key value is a substring of the buffer being tested then the comparator reports
that they are equal. Otherwise the key is always considered to be less than the buffer. Both the key and buffer
must be C-style NUL-terminated strings in order for a match to be detected.

SS_VAL_CMP_SUBMEM: This is similar to SS_VAL_CMP_SUBSTRING except the key and mask are considered to be
bytes of memory and all bytes of the key (including NUL bytes if any) must match at some location in buffer. If
there is no match then the key is considered to be less than the buffer.

SS_VAL_CMP_RE: The key value is interpreted as a POSIX regular expression and if that regular expression
matches the contents of buffer then the comparator reports that key and buffer are equal, otherwise the key is
considered to be less than the buffer.

If the SS_VAL_CMP_RE bit is set then the following bits are also supported (they actually each contain the
SS_VAL_CMP_RE bit as well):

SS_VAL_CMP_RE_EXTENDED: The key value is treated as an extended regular expression rather than a basic
regular expression. Refer to the documentation for the REG_EXTENDED flag of regcomp for details.

SS_VAL_CMP_RE_ICASE: Ignore case when matching letters.

SS_VAL_CMP_RE_NEWLINE: Treat a newline in key as dividing buffer into multiple lines, so that a dollar
sign can match before the newline and a carat can match after. Also, don’t permit a dot to match a newline,
and don’t permit a complemented character class (square brackets with a leading carat) to match a newline.
Otherwise, newline acts like any other ordinary character.

288 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Object Link Comparisons

SS_VAL_CMP_EQ: When comparing two persistent object links use ss_pers_eq. This is the default.

SS_VAL_CMP_EQUAL: When comparing two persistent object links use ss_pers_equal.

Issues: Since these bits must be passed as the bytes of a mask they must be only eight bits wide. The type, however,
is defined as unsigned because of argument promotion rules.

See Also:

• ss_pers_eq: 7.12: Determine link equality

• ss_pers_equal: 7.13: Determine object equality

• Values: Introduction for current chapter

HDF5

These functions provide features that are missing from HDF5.

Members

Compares two datatypes

H5Tcmp is a function defined in sshdf5.c.

Synopsis:

int H5Tcmp(hid_t t1, hid_t t2)

Description: This is essentially a public version of H5T_cmp

Return Value: 1, 0, or 1 depending on whether T1 is less than, equal to, or greater than T2. Returns -2 on failure.

Parallel Notes: Independent

Issues: This function calls internal HDF5 functions for which we have no prototypes.

See Also:

• HDF5: Introduction for current chapter

Extra native datatypes

H5T_NATIVE is a collection of related C preprocessor symbols defined in sshdf5.h.

Synopsis:

H5T_NATIVE_SIZE:

H5T_NATIVE_HID:

H5T_NATIVE_VOIDP:

H5T_NATIVE_MPI_COMM:

H5T_NATIVE_MPI_INFO:

Description: These are useful native datatypes that are missing from HDF5.

See Also:

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 289

SAF User Manual, Release 2.0.3

• HDF5: Introduction for current chapter

Declare a file to be transient

H5F_ACC_TRANSIENT is a symbol defined in sshdf5.h.

Synopsis:

H5F_ACC_TRANSIENT

Description: When this bit is passed as the *flags* argument to ss_file_open or ss_file_create then a no-op HDF5
file is created. Since HDF5 doesn’t support this functionality, SSlib simply notes that there is no underlying HDF5
file.

Issues: We commandeer a high-order bit for our purposes, knowing that the H5F API uses the low-order bits. This bit
will never make it into HDF5, but we need to insure that it doesn’t conflict with the other H5F_ACC bits.

See Also:

• ss_file_create: 11.4: Create a new file

• ss_file_open: 11.1: Open or create a file

• HDF5: Introduction for current chapter

Datatypes

No description available.

Members

Maximum IndexSpec dimensionality

SS_MAX_INDEXDIMS is a symbol defined in sspers.h.

Synopsis:

SS_MAX_INDEXDIMS

Description: This constant represents the maximum number of dimensions that can be described by an index specifi-
cation.

See Also:

• Datatypes: Introduction for current chapter

Number of base quantities

SS_MAX_BASEQS is a symbol defined in sspers.h.

Synopsis:

SS_MAX_BASEQS

Description: All quantities can be defined in terms of seven basic quantities.

See Also:

• Datatypes: Introduction for current chapter

290 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Wildcard SIL role

SAF_SROLE_ANY is a symbol defined in sspers.h.

Synopsis:

SAF_SROLE_ANY

Description: This constant can be used as a wildcard when searching based on SIL role.

See Also:

• Datatypes: Introduction for current chapter

SIL roles

ss_silrole_t is an enumerated type defined in sspers.h.

Synopsis:

‘‘‘‘:

SAF_SROLE_SPACE: sil is for space

SAF_SROLE_STATE: for state space

SAF_SROLE_PARAM: sil is generic param space

SAF_SROLE_CTYPE: sil is for a cell

SAF_SROLE_ATYPE: sil is for an algebraic type

SAF_SROLE_USERD: sil has a user defined role

SAF_SROLE_SUITE: for a suite

Description: These are the roles that can appear in a subset inclusion lattice. One additional constant
SAF__SROLE_ANY, although not part of this enumeration due to it never appearing in a file, can be used as a
wildcard for searching.

See Also:

• Datatypes: Introduction for current chapter

Miscellaneous

No description available.

Members

Global bit flags

SS is a collection of related C preprocessor symbols defined in sslib.h.

Synopsis:

SS_ALLSAME: All applicable tasks are supplying identical data or performing the same operation. For instance, in a
call to ss_pers_new this indicates that the new object can be “born synchronized” because all tasks will have the same
value for the object without needing to communicate. Absence of this bit simply means that different tasks might be

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 291

SAF User Manual, Release 2.0.3

supplying different data but doesn’t guarantee that the data is different. (Note: this value must be distinct from TRUE,
but don’t worry, it’s checked at runtime.)

SS_STRICT: Flag that causes certain functions to “try harder” to do something

Description: Various bit flags that are useful to different interfaces. These global flags use the high-order bits of a
word while the interface-specific flags use the low-order bits.

See Also:

• Miscellaneous: Introduction for current chapter

Notes

Miscellaneous notes.

Members

Debugging

SSlib has a fair amount of debugging support built in, most of which is runtime selectable from the SSLIB_DEBUG
environment variable and documented in the ss_debug_env function.

Members

Enter an interactive debugging loop

ss_debug is a function defined in ssdebug.c.

Synopsis:

herr_t ss_debug(void)

Description: Read and execute debugging commands if the commands’ word was present in the :ref:‘SSLIB_DEBUG
<SSLIB> environment variable. The file containing the commands is also specified in SSLIB_DEBUG. See
ss_debug_env for complete documentation for that variable. If commands’ is not specified in :ref:‘SSLIB_DEBUG
<SSLIB> for the calling task or if the command input file is empty then this function is a no-op.

The commands accepted by this function are defined in ss_debug_s. In addition, the command detach’ causes this
function to immediately return. The ‘‘ss_debug‘ function may be called more than once in any given executable.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• ss_debug_env: 22.2: Parse debug setup statements

• ss_debug_s: 22.3: Evaluate a debug command

• Debugging: Introduction for current chapter

292 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Parse debug setup statements

ss_debug_env is a function defined in ssdebug.c.

Synopsis:

herr_t ss_debug_env(MPI_Comm UNUSED_SERIAL comm, const char *s_const)

Formal Arguments:

• comm: The library communicator. Pass any integer value when using a version of SSlib compiled without MPI
support.

• s_const: Optional string to use instead of looking at the SSLIB_DEBUG environment variable. Pass null
to use SSLIB_DEBUG instead. Passing an empty string (or all white space) accomplishes nothing. Task zero
broadcasts this string to all the other tasks.

Description: This function looks at the contents of the SSLIB_DEBUG environment variable. It is a semicolon
separated list of terms which control various things. Valid terms are:

task=*n*: Controls which tasks will be affected by subsequent debugging terms. A value of n with an initial
plus sign will add task n to the list of selected tasks; a leading minus sign removes the task from the list; lack of
a plus or minus makes task n the only selected task. The value all or none can also be supplied which selects
all tasks or no tasks, respectively. The value can also be a comma-separated list of task ranks which acts the
same as if multiple

task terms had been specified (the plus or minus sign should be at the beginning of the list

and applies to all values of the list).

error=*n*: When errors are pushed onto the error stack they are each given a unique (within a task)
identification number. When this error debugging term is specified then the debugger of choice is in-
voked when error number n is pushed onto the stack. If the equal sign and error number are omitted then the
debugger is never started for an error, but the error stack will display the error identification numbers. Only
one error number can be specified per task–if more flexibility is needed then the application can be run under a
debugger with a breakpoing set in ss_error.

file=*name*: Selects the output file to use for subsequent debugging terms for the selected tasks. The file will
be created if it doesn’t exist or truncated if it does exist. The name is actually a printf format string and
the first format specifier (if present) should be for an integer task number. If name is the word none then output
is disabled; if name is a positive integer then the specified file descriptor is used without attempting to open it
(this is useful if the descriptor was opened with the shell). If a number and name are both specified separated
by a comma then the name is opened and dup’d to the desired file descriptor. If the name begins with a ‘<’
character then the file is opened for read-only.

stop: The specified MPI task(s) will print their MPI rank and process ID and then suspend themselves, giving
an opportunity for a debugger to attach.

pause=‘‘N‘‘: The specified MPI task(s) will immediately pause for N seconds. This is useful when a task needs
to give a debugger (such as strace) to automatically attach to child processes.

debugger=*name*: Specifies which debugger should be used. The default is ‘ddd’.

debug: The specified debugger (or ddd) is started for the affected task or tasks. This probably only works on
systems that have a /proc/self/exe link to the executable and the DISPLAY environment variable set
properly for the affected task. If the non-default debugger is desired then the ‘debugger’ keyword must appear
before this ‘debug’ keyword.

signal: Start the debugger when a task is about to die from certain signals (those that signify a program error).
The task is suspended (although other signal handlers might still be executed) and must be explicitly killed.
The ‘debug’ keyword takes precedence over ‘signal’.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 293

SAF User Manual, Release 2.0.3

stack: Turn automatic error reporting on or off for selected tasks depending on the current setting for the file
descriptor. When off, errors are reported by return values as usual and the error stack contains information
about the error, but the stack is not automatically printed. The default is that errors are printed to stderr.

pid: Print the process ID for all selected tasks. This is useful when various tools (such as valgrind) print PIDs
but have no way of knowing the MPI task number.

mpi: Do not register an MPI error handler in the ss_init call.

banner=‘‘STR‘‘: Display the specified string value on stderr when ss_init is about to return. This is normally
used in conjuction with the config file to notify users that they should recompile their application with a newer
version of sslib.

commands: Enables the ss_debug calls that might appear in applications. The ‘file’ term should be used
before this term in order to specify from where the debug commands should be read (don’t forget to use the
‘<’ in front of the file name in order to open it for read-only). If no file is specified then SSlib attempts to read
the commands from the stderr stream, which may cause the commands to be read from the controlling terminal
in certain situations (but it’s usually better to be explicit by providing the ‘file=<*dev*tty’ term). Specifying
an empty file such as *dev*null has essentially the same effect as if the ‘commands’ term was not given.

warnings: For the selected MPI tasks, send all miscellaneous SSlib warning messages to the selected file.

check=*what*: Turns on or off various categories of internal consistency checking, some of which incur
considerable runtime expense. The what is a comma-separated list of category names where that category of
checking is turned off if introduced with a minus sign and on otherwise. Only selected tasks are affected. See
the table below for a list of categories.

The following internal consistency checking categories are defined. Some categories can take a comma-separated list
of attributes separated from the category name by an equal sign. When a category is followed by an equal sign then it
must be the last category listed for that check term, but additional categories can be specified with additional check
terms.

sync: When turned on, SSlib will check for many situations where a call to ss_pers_modified (or the macro
SS_PERS_MODIFIED) was accidently omitted by computing and caching checksums. If the error attribute
is specified then such situations will be considered errors instead of just generating debugging information on
the warning stream. If the bcast attribute is specified then information about which objects are transmitted
will be displayed to the warning stream.

2pio: SSlib will display certain information about 2-phase I/O if this is turned on. For instance, when aggrega-
tion tasks are chosen for a blob the mapping from dataset addresses to aggregators is displayed. The task
setting doesn’t affect this flag since it’s always task zero that displays this collective information.

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Collective across the library communicator. We do this because environment variables are sometimes
only available at certain tasks (task zero of the library communicator must have the environment variable).

Example: Example 1: To start the DDD debugger on task 17:

1 SSLIB_DEBUG='task=17;debug' ...

Example 2: To stop all tasks but task 17:

1 SSLIB_DEBUG='task=-17;stop' ...

Example 3: To cause task 17 to report errors to a file named “task17.err” and no other task to report errors:

1 SSLIB_DEBUG='file=none;stack;task=17;file=task17.err;stack' ...

Example 4: Cause HDF5 to emit tracing information to files like task001.trace, task002.trace, etc. The
thing to watch out for here is that HDF5 gets initialized before SSlib and if file descriptor 99 is not open then tracing

294 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

is disabled. So we rely on the shell to supply an initial file for descriptor 99 which SSlib will swap out from under
HDF5. Until the swap occurs, all tasks will emit tracing to the shell-supplied file:

1 SSLIB_DEBUG="file=99,task%03d.trace" HDF5_DEBUG=99,trace 99>tasks.trace ...

Example 5: Invoke a debugger on any task that fails an assertion or receives certain other normally fatal signals. Use
gdb instead of the default ddd.

1 SSLIB_DEBUG='debugger=gdb;signal' ...

Example 6: To cause each task to redirect its standard error output to its own file:

1 SSLIB_DEBUG='file=2,stderr.%04d' ...

Example 7: To type commands interactively to SSlib one makes a call to ss_debug in the application and then uses
SSLIB_DEBUG as follows:

1 SSLIB_DEBUG='task=0;file=<commands.txt;commands' ...

Example 8: To turn off the warning/debug messages that are normally emitted from SSlib on the stderr stream one
would do the following:

1 SSLIB_DEBUG='file=/dev/null;warnings' ...

See Also:

• SS_PERS_MODIFIED: 7.29: Mark object as modified

• ss_debug: 22.1: Enter an interactive debugging loop

• ss_error: 2.5: Start debugger for error

• ss_init: 2.8: Initialize the library

• ss_pers_modified: 7.19: Mark object as modified

• Debugging: Introduction for current chapter

Evaluate a debug command

ss_debug_s is a function defined in ssdebug.c.

Synopsis:

herr_t ss_debug_s(const char *cmd)

Description: This function parses a debugging command in cmd and executes it. The first word in the string is the
name of the command and the rest of the string contains the arguments for that command.

• files:

Display information about all known files.

• classes:

Show names of all object classes.

• class spec:

Display information about the specified persistent object. Class is one of the class words such as ‘set’ or
‘field’, etc. Use the command ‘classes’ for a complete list.

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 295

SAF User Manual, Release 2.0.3

Return Value: Returns non-negative on success; negative on failure.

Parallel Notes: Independent

See Also:

• Debugging: Introduction for current chapter

Overloaded Definitions

These objects have multiple definitions.

Members

SS_MAGIC_ss

This object has overloaded definitions.

Members

Permuted Index

Table 1.3: Permuted Index
Concept Key Reference
Miscellaneous (class 0x5af01000) SS_MAGIC_ss

Persistent object links (class 0x5af02000) SS_MAGIC_ss

Persistent objects (class 0x5af03000) SS_MAGIC_ss

Miscellaneous (class 0x5af01000) SS_MAGIC_ss

Persistent object links (class 0x5af02000) SS_MAGIC_ss

Persistent objects (class 0x5af03000) SS_MAGIC_ss

Initiate 2-phase I/O ss_blob_synchronize

Print information about a global file entry ss_gfile_debug_one

Inquire about array file datatype ss_array_targeted

Obtain information about referenced files ss_file_references

Add a new attribute to an object ss_attr_new

Add new property to a list ss_prop_add

Debugging aid ss_pers_debug

Continued on next page

296 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Synchronize all scopes of a file ss_file_synchronize

Append one string to another ss_string_cat

Append one string to another ss_string_cat

Queries/sets property list appendability ss_prop_appendable

Print an arbitrary datum ss_val_dump

Change the size of a variable length array ss_array_resize

Free memory associated with the array ss_array_reset

Modify part of an array ss_array_put

Change array element datatype ss_array_target

Inquire about array file datatype ss_array_targeted

Store a byte array in a string ss_string_memset

Obtain array value ss_array_get

Asserts object runtime class SS_ASSERT_CLASS

Asserts object runtime type SS_ASSERT_TYPE

Asserts object runtime type and ex-
istence

SS_ASSERT_MEM

Free memory associated with the array ss_array_reset

Free memory associated with the string ss_string_reset

HDF5 async callback ss_aio_hdf5_cb

Terminate the asynchronous I/O subsystem ss_aio_finalize

Initialize the asyncronous I/O subsystem ss_aio_init

Attach an object registry scope ss_file_registry

Query attribute metadata ss_attr_describe

Add a new attribute to an object ss_attr_new

Modify attribute type and size ss_attr_modify

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 297

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Change an attribute value ss_attr_put

Obtain attribute value ss_attr_get

Count matching attributes ss_attr_count

Find attributes for an object ss_attr_find

Number of base quantities SS_MAX_BASEQS

Test whether an object can be modified ss_pers_iswritable

Tests whether scope can be modified ss_scope_iswritable

Declare a file to be transient H5F_ACC_TRANSIENT

Begin a functionality test SS_CHECKING

Bind a blob to a dataset ss_blob_bind_f

Bind a blob to a dataset ss_blob_bind_f1

Bind a blob to memory ss_blob_bind_m

Bind a blob to memory ss_blob_bind_m1

Global bit flags SS

Create a new blob ss_blob_new

Create storage for a blob ss_blob_mkstorage

Extend a blob ss_blob_extend

Extend a blob ss_blob_extend1

Query dataset bound to a blob ss_blob_bound_f

Query dataset bound to a blob ss_blob_bound_f1

Query memory bound to a blob ss_blob_bound_m

Query memory bound to a blob ss_blob_bound_m1

Write data to a blob ss_blob_write

Write data to a blob ss_blob_write1

Query blob extent ss_blob_space
Continued on next page

298 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Bind a blob to a dataset ss_blob_bind_f

Bind a blob to a dataset ss_blob_bind_f1

Bind a blob to memory ss_blob_bind_m

Bind a blob to memory ss_blob_bind_m1

Block until requests complete ss_aio_suspend

Query dataset bound to a blob ss_blob_bound_f

Query dataset bound to a blob ss_blob_bound_f1

Query memory bound to a blob ss_blob_bound_m

Query memory bound to a blob ss_blob_bound_m1

Store a byte array in a string ss_string_memset

Compare persistent string with C string ss_string_cmp_s

Get a C string from a persistent string ss_string_get

Store a C string in a persistent string ss_string_set

HDF5 async callback ss_aio_hdf5_cb

Test whether an object can be modified ss_pers_iswritable

Tests whether scope can be modified ss_scope_iswritable

Change a floating-point property
value

ss_prop_set_f

Change a property value ss_prop_set

Change a signed integer property
value

ss_prop_set_i

Change an attribute value ss_attr_put

Change an unsigned integer prop-
erty value

ss_prop_set_u

Change array element datatype ss_array_target

Change link state ss_pers_state
Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 299

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Change the size of a variable length
array

ss_array_resize

Check if link is null SS_PERS_ISNULL

Compute a checksum for a persistent object ss_pers_cksum

Asserts object runtime class SS_ASSERT_CLASS

Obtain magic number class SS_MAGIC_CLASS

Close a file ss_file_close

Closes a scope ss_scope_close

Evaluate a debug command ss_debug_s

Insert commas into an integer ss_insert_commas

Query the scope communicator ss_scope_comm

Compare persistent string with C
string

ss_string_cmp_s

Compares two datatypes H5Tcmp

Compares two persistent objects ss_pers_cmp

Compares two persistent objects ss_pers_cmp_

Compares two variable length
strings

ss_string_cmp

Value comparison flags ss_val_cmp_t

Block until requests complete ss_aio_suspend

Compute a checksum for a persis-
tent object

ss_pers_cksum

Construct a magic number SS_MAGIC_CONS

Constructor SS_PERS_NEW

Copy constructor SS_PERS_COPY

Property constructor ss_prop_cons

Continued on next page

300 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Copy an object ss_pers_copy

Copy constructor SS_PERS_COPY

Count matching attributes ss_attr_count

Open or create a file ss_file_open

Create a new blob ss_blob_new

Create a new file ss_file_create

Create a new persistent object ss_pers_new

Create a new property list from an
existing list

ss_prop_dup

Create a new property list from
scratch

ss_prop_new

Create an object link ss_pers_refer

Create storage for a blob ss_blob_mkstorage

Returns current status of a request ss_aio_error

Read data from a file ss_blob_read

Read data from a file ss_blob_read1

Write data to a blob ss_blob_write

Write data to a blob ss_blob_write1

Write pending data to file ss_scope_flush

Write pending data to file ss_file_flush

Flush pending data to HDF5 ss_blob_flush

Bind a blob to a dataset ss_blob_bind_f

Bind a blob to a dataset ss_blob_bind_f1

Query dataset bound to a blob ss_blob_bound_f

Query dataset bound to a blob ss_blob_bound_f1

Change array element datatype ss_array_target
Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 301

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Inquire about array file datatype ss_array_targeted

Query the datatype of a property or property
list

ss_prop_type

Compares two datatypes H5Tcmp

Extra native datatypes H5T_NATIVE

Print an arbitrary datum ss_val_dump

Evaluate a debug command ss_debug_s

Parse debug setup statements ss_debug_env

Start debugger for error ss_error

Debugging aid ss_pers_debug

Enter an interactive debugging loop ss_debug

Declare a file to be transient H5F_ACC_TRANSIENT

Decode persistent object links ss_pers_decode_cb

Dereference an object link ss_pers_deref

Destroy a property list ss_prop_dest

Destructor SS_PERS_DEST

Destructor ss_pers_dest

Determine if property exists ss_prop_has

Determine link equality SS_PERS_EQ

Determine link equality ss_pers_eq

Determine magicness SS_MAGIC_OK

Determine object equality SS_PERS_EQUAL

Determine object equality ss_pers_equal

Determines if scope is an open top-
scope

ss_scope_isopentop

Continued on next page

302 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Maximum IndexSpec dimensionality SS_MAX_INDEXDIMS

Obtain pointer direct to value ss_prop_buffer

Change array element datatype ss_array_target

Query the number of elements ss_array_nelmts

End functionality test SS_END_CHECKING

End functionality test SS_END_CHECKING_WITH

Enter an interactive debugging loop ss_debug

Print information about a global file entry ss_gfile_debug_one

Environment Variables SSLIB

Determine link equality SS_PERS_EQ

Determine link equality ss_pers_eq

Determine object equality SS_PERS_EQUAL

Determine object equality ss_pers_equal

Start debugger for error ss_error

Minor error numbers SS_MINOR

Evaluate a debug command ss_debug_s

Asserts object runtime type and existence SS_ASSERT_MEM

Create a new property list from an existing list ss_prop_dup

Determine if property exists ss_prop_has

Extend a blob ss_blob_extend

Extend a blob ss_blob_extend1

Query blob extent ss_blob_space

Extra native datatypes H5T_NATIVE

Indicate functionality test failure SS_FAILED

Indicate functionality test failure SS_FAILED_WHEN
Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 303

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Close a file ss_file_close

Create a new file ss_file_create

Open or create a file ss_file_open

Read data from a file ss_blob_read

Read data from a file ss_blob_read1

Synchronize all scopes of a file ss_file_synchronize

Tests transient state of a file ss_file_istransient

Write pending data to file ss_scope_flush

Write pending data to file ss_file_flush

Mark file as read-only ss_file_readonly

Inquire about array file datatype ss_array_targeted

Print information about a global file entry ss_gfile_debug_one

Obtain file for an object ss_pers_file

Test file open status ss_file_isopen

Query file synchronization state ss_file_synchronized

Print global file table ss_gfile_debug_all

Declare a file to be transient H5F_ACC_TRANSIENT

Test file writability ss_file_iswritable

Obtain information about referenced files ss_file_references

Open many files ss_file_openall

Mark library as finalized ss_zap

Find attributes for an object ss_attr_find

Find indirect indices for an object ss_table_indirect

Find objecs in a scope SS_PERS_FIND

Continued on next page

304 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Find objects in a scope ss_pers_find

Global bit flags SS

Value comparison flags ss_val_cmp_t

Query a floating point property ss_prop_get_f

Change a floating-point property value ss_prop_set_f

Flush pending data to HDF5 ss_blob_flush

Free memory associated with the ar-
ray

ss_array_reset

Free memory associated with the
string

ss_string_reset

Begin a functionality test SS_CHECKING

End functionality test SS_END_CHECKING

End functionality test SS_END_CHECKING_WITH

Indicate functionality test failure SS_FAILED

Indicate functionality test failure SS_FAILED_WHEN

Indicate functionality test skipped SS_SKIPPED

Indicate functionality test skipped SS_SKIPPED_WHEN

Get a C string from a persistent
string

ss_string_get

Get two-phase I/O properties ss_blob_get_2pio

Global bit flags SS

Print information about a global file entry ss_gfile_debug_one

Print global file table ss_gfile_debug_all

Flush pending data to HDF5 ss_blob_flush

HDF5 async callback ss_aio_hdf5_cb

Renders human readable numbers ss_bytes

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 305

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Initiate 2-phase I/O ss_blob_synchronize

Get two-phase I/O properties ss_blob_get_2pio

Set two-phase I/O properties ss_blob_set_2pio

Initialize the asyncronous I/O subsystem ss_aio_init

Terminate the asynchronous I/O subsystem ss_aio_finalize

Check if link is null SS_PERS_ISNULL

Determine if property exists ss_prop_has

Determines if scope is an open top-scope ss_scope_isopentop

Make a property list immutable ss_prop_immutable

Maximum IndexSpec dimensionality SS_MAX_INDEXDIMS

Indicate functionality test failure SS_FAILED

Indicate functionality test failure SS_FAILED_WHEN

Indicate functionality test skipped SS_SKIPPED

Indicate functionality test skipped SS_SKIPPED_WHEN

Find indirect indices for an object ss_table_indirect

Find indirect indices for an object ss_table_indirect

Print information about a global file entry ss_gfile_debug_one

Obtain information about referenced files ss_file_references

Sets persistent object to initial state ss_pers_reset

Test library initialization state ss_initialized

Initialize the asyncronous I/O sub-
system

ss_aio_init

Initialize the library ss_init_func

Initialize the library ss_init

Initiate 2-phase I/O ss_blob_synchronize

Continued on next page

306 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Initiate a write operation ss_aio_write

Inquire about array file datatype ss_array_targeted

Insert commas into an integer ss_insert_commas

Insert commas into an integer ss_insert_commas

Query an integer property ss_prop_get_i

Query an unsigned integer property ss_prop_get_u

Change a signed integer property value ss_prop_set_i

Change an unsigned integer property value ss_prop_set_u

Enter an interactive debugging loop ss_debug

Insert commas into an integer ss_insert_commas

Obtain pointer into string object ss_string_ptr

Determines if scope is an open top-scope ss_scope_isopentop

Check if link is null SS_PERS_ISNULL

Change the size of a variable length array ss_array_resize

Query the length of a persistent string ss_string_len

Query the length of a persistent string ss_string_memlen

Compares two variable length strings ss_string_cmp

Initialize the library ss_init_func

Initialize the library ss_init

Terminate the library ss_finalize

Mark library as finalized ss_zap

Test library initialization state ss_initialized

Create an object link ss_pers_refer

Dereference an object link ss_pers_deref

Updates an object link ss_pers_update
Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 307

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Determine link equality SS_PERS_EQ

Determine link equality ss_pers_eq

Check if link is null SS_PERS_ISNULL

Change link state ss_pers_state

Decode persistent object links ss_pers_decode_cb

Persistent object links (class 0x5af02000) SS_MAGIC_ss

Add new property to a list ss_prop_add

Create a new property list from an existing list ss_prop_dup

Destroy a property list ss_prop_dest

Query the datatype of a property or property list ss_prop_type

Queries/sets property list appendability ss_prop_appendable

Create a new property list from an existing list ss_prop_dup

Create a new property list from scratch ss_prop_new

Make a property list immutable ss_prop_immutable

Queries/sets property list modifiability ss_prop_modifiable

Enter an interactive debugging loop ss_debug

Construct a magic number SS_MAGIC_CONS

Obtain magic number class SS_MAGIC_CLASS

Obtain magic number for type SS_MAGIC

Obtain magic number from a pointer SS_MAGIC_OF

Obtain magic sequence number SS_MAGIC_SEQUENCE

Determine magicness SS_MAGIC_OK

Make a new object unique ss_pers_unique

Make a property list immutable ss_prop_immutable

Continued on next page

308 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Make an object unique SS_PERS_UNIQUE

Open many files ss_file_openall

Mark file as read-only ss_file_readonly

Mark library as finalized ss_zap

Mark object as modified SS_PERS_MODIFIED

Mark object as modified ss_pers_modified

Count matching attributes ss_attr_count

Maximum IndexSpec dimensional-
ity

SS_MAX_INDEXDIMS

Bind a blob to memory ss_blob_bind_m

Bind a blob to memory ss_blob_bind_m1

Free memory associated with the array ss_array_reset

Free memory associated with the string ss_string_reset

Query memory bound to a blob ss_blob_bound_m

Query memory bound to a blob ss_blob_bound_m1

Query attribute metadata ss_attr_describe

Minor error numbers SS_MINOR

Miscellaneous (class 0x5af01000) SS_MAGIC_ss

Queries/sets property list modifiability ss_prop_modifiable

Substring modification ss_string_splice

Mark object as modified SS_PERS_MODIFIED

Mark object as modified ss_pers_modified

Test whether an object can be modified ss_pers_iswritable

Tests whether scope can be modified ss_scope_iswritable

Modify attribute type and size ss_attr_modify

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 309

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Modify part of an array ss_array_put

Extra native datatypes H5T_NATIVE

Add a new attribute to an object ss_attr_new

Create a new blob ss_blob_new

Create a new file ss_file_create

Make a new object unique ss_pers_unique

Create a new persistent object ss_pers_new

Create a new property list from an existing
list

ss_prop_dup

Create a new property list from scratch ss_prop_new

Add new property to a list ss_prop_add

Check if link is null SS_PERS_ISNULL

Construct a magic number SS_MAGIC_CONS

Obtain magic sequence number SS_MAGIC_SEQUENCE

Obtain magic number class SS_MAGIC_CLASS

Obtain magic number for type SS_MAGIC

Obtain magic number from a pointer SS_MAGIC_OF

Number of base quantities SS_MAX_BASEQS

Query the number of elements ss_array_nelmts

Minor error numbers SS_MINOR

Renders human readable numbers ss_bytes

Find objecs in a scope SS_PERS_FIND

Add a new attribute to an object ss_attr_new

Compute a checksum for a persistent object ss_pers_cksum

Copy an object ss_pers_copy

Continued on next page

310 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Create a new persistent object ss_pers_new

Find attributes for an object ss_attr_find

Find indirect indices for an object ss_table_indirect

Obtain file for an object ss_pers_file

Obtain pointer into string object ss_string_ptr

Obtain scope for an object ss_pers_scope

Obtain top scope for an object ss_pers_topscope

Mark object as modified SS_PERS_MODIFIED

Mark object as modified ss_pers_modified

Test whether an object can be modified ss_pers_iswritable

Determine object equality SS_PERS_EQUAL

Determine object equality ss_pers_equal

Create an object link ss_pers_refer

Dereference an object link ss_pers_deref

Updates an object link ss_pers_update

Decode persistent object links ss_pers_decode_cb

Persistent object links (class 0x5af02000) SS_MAGIC_ss

Attach an object registry scope ss_file_registry

Asserts object runtime class SS_ASSERT_CLASS

Asserts object runtime type SS_ASSERT_TYPE

Asserts object runtime type and existence SS_ASSERT_MEM

Sets persistent object to initial state ss_pers_reset

Make a new object unique ss_pers_unique

Make an object unique SS_PERS_UNIQUE

Compares two persistent objects ss_pers_cmp
Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 311

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Compares two persistent objects ss_pers_cmp_

Persistent objects (class 0x5af03000) SS_MAGIC_ss

Find objects in a scope ss_pers_find

Obtain array value ss_array_get

Obtain attribute value ss_attr_get

Obtain file for an object ss_pers_file

Obtain information about refer-
enced files

ss_file_references

Obtain magic number class SS_MAGIC_CLASS

Obtain magic number for type SS_MAGIC

Obtain magic number from a pointer SS_MAGIC_OF

Obtain magic sequence number SS_MAGIC_SEQUENCE

Obtain pointer direct to value ss_prop_buffer

Obtain pointer into string object ss_string_ptr

Obtain scope for an object ss_pers_scope

Obtain top scope ss_file_topscope

Obtain top scope for an object ss_pers_topscope

Append one string to another ss_string_cat

Open many files ss_file_openall

Open or create a file ss_file_open

Query scope open status ss_scope_isopen

Test file open status ss_file_isopen

Determines if scope is an open top-scope ss_scope_isopentop

Opens a scope ss_scope_open

Initiate a write operation ss_aio_write
Continued on next page

312 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Parse debug setup statements ss_debug_env

Modify part of an array ss_array_put

Write pending data to file ss_scope_flush

Write pending data to file ss_file_flush

Flush pending data to HDF5 ss_blob_flush

Compute a checksum for a persistent object ss_pers_cksum

Create a new persistent object ss_pers_new

Decode persistent object links ss_pers_decode_cb

Persistent object links (class
0x5af02000)

SS_MAGIC_ss

Sets persistent object to initial state ss_pers_reset

Compares two persistent objects ss_pers_cmp

Compares two persistent objects ss_pers_cmp_

Persistent objects (class
0x5af03000)

SS_MAGIC_ss

Get a C string from a persistent string ss_string_get

Query the length of a persistent string ss_string_len

Query the length of a persistent string ss_string_memlen

Store a C string in a persistent string ss_string_set

Compare persistent string with C string ss_string_cmp_s

Query a floating point property ss_prop_get_f

Obtain magic number from a pointer SS_MAGIC_OF

Obtain pointer direct to value ss_prop_buffer

Obtain pointer into string object ss_string_ptr

Print an arbitrary datum ss_val_dump

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 313

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Print global file table ss_gfile_debug_all

Print information about a global file
entry

ss_gfile_debug_one

Get two-phase I/O properties ss_blob_get_2pio

Set two-phase I/O properties ss_blob_set_2pio

Query a floating point property ss_prop_get_f

Query an integer property ss_prop_get_i

Query an unsigned integer property ss_prop_get_u

Property constructor ss_prop_cons

Determine if property exists ss_prop_has

Destroy a property list ss_prop_dest

Query the datatype of a property or property list ss_prop_type

Queries/sets property list appendability ss_prop_appendable

Create a new property list from an existing list ss_prop_dup

Create a new property list from scratch ss_prop_new

Make a property list immutable ss_prop_immutable

Queries/sets property list modifiability ss_prop_modifiable

Query the datatype of a property or property list ss_prop_type

Add new property to a list ss_prop_add

Change a property value ss_prop_set

Change a floating-point property value ss_prop_set_f

Change a signed integer property value ss_prop_set_i

Change an unsigned integer property value ss_prop_set_u

Query a property value ss_prop_get

Number of base quantities SS_MAX_BASEQS

Continued on next page

314 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Queries/sets property list append-
ability

ss_prop_appendable

Queries/sets property list modifia-
bility

ss_prop_modifiable

Query a floating point property ss_prop_get_f

Query a property value ss_prop_get

Query an integer property ss_prop_get_i

Query an unsigned integer property ss_prop_get_u

Query attribute metadata ss_attr_describe

Query blob extent ss_blob_space

Query dataset bound to a blob ss_blob_bound_f

Query dataset bound to a blob ss_blob_bound_f1

Query file synchronization state ss_file_synchronized

Query memory bound to a blob ss_blob_bound_m

Query memory bound to a blob ss_blob_bound_m1

Query scope open status ss_scope_isopen

Query scope synchronization state ss_scope_synchronized

Query the datatype of a property or
property list

ss_prop_type

Query the length of a persistent
string

ss_string_len

Query the length of a persistent
string

ss_string_memlen

Query the number of elements ss_array_nelmts

Query the scope communicator ss_scope_comm

Read data from a file ss_blob_read

Read data from a file ss_blob_read1

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 315

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Mark file as read-only ss_file_readonly

Renders human readable numbers ss_bytes

Obtain information about referenced files ss_file_references

Attach an object registry scope ss_file_registry

Renders human readable numbers ss_bytes

Returns current status of a request ss_aio_error

Block until requests complete ss_aio_suspend

Weakly reset a string ss_string_realloc

Returns current status of a request ss_aio_error

Wildcard SIL role SAF_SROLE_ANY

SIL roles ss_silrole_t

Asserts object runtime class SS_ASSERT_CLASS

Asserts object runtime type SS_ASSERT_TYPE

Asserts object runtime type and existence SS_ASSERT_MEM

Attach an object registry scope ss_file_registry

Closes a scope ss_scope_close

Find objecs in a scope SS_PERS_FIND

Find objects in a scope ss_pers_find

Obtain top scope ss_file_topscope

Opens a scope ss_scope_open

Synchronize a scope ss_scope_synchronize

Tests transient state of a scope ss_scope_istransient

Tests whether scope can be modified ss_scope_iswritable

Query the scope communicator ss_scope_comm

Obtain scope for an object ss_pers_scope
Continued on next page

316 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Obtain top scope for an object ss_pers_topscope

Determines if scope is an open top-scope ss_scope_isopentop

Query scope open status ss_scope_isopen

Query scope synchronization state ss_scope_synchronized

Synchronize all scopes of a file ss_file_synchronize

Create a new property list from scratch ss_prop_new

Obtain magic sequence number SS_MAGIC_SEQUENCE

Set two-phase I/O properties ss_blob_set_2pio

Sets persistent object to initial state ss_pers_reset

Parse debug setup statements ss_debug_env

Change a signed integer property value ss_prop_set_i

Wildcard SIL role SAF_SROLE_ANY

SIL roles ss_silrole_t

Modify attribute type and size ss_attr_modify

Change the size of a variable length array ss_array_resize

Indicate functionality test skipped SS_SKIPPED

Indicate functionality test skipped SS_SKIPPED_WHEN

Start debugger for error ss_error

Change link state ss_pers_state

Query file synchronization state ss_file_synchronized

Query scope synchronization state ss_scope_synchronized

Sets persistent object to initial state ss_pers_reset

Test library initialization state ss_initialized

Tests transient state of a file ss_file_istransient

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 317

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Tests transient state of a scope ss_scope_istransient

Parse debug setup statements ss_debug_env

Query scope open status ss_scope_isopen

Test file open status ss_file_isopen

Returns current status of a request ss_aio_error

Create storage for a blob ss_blob_mkstorage

Store a byte array in a string ss_string_memset

Store a C string in a persistent string ss_string_set

Compare persistent string with C string ss_string_cmp_s

Free memory associated with the string ss_string_reset

Get a C string from a persistent string ss_string_get

Query the length of a persistent string ss_string_len

Query the length of a persistent string ss_string_memlen

Store a byte array in a string ss_string_memset

Store a C string in a persistent string ss_string_set

Weakly reset a string ss_string_realloc

Get a C string from a persistent string ss_string_get

Store a C string in a persistent string ss_string_set

Obtain pointer into string object ss_string_ptr

Append one string to another ss_string_cat

Compare persistent string with C string ss_string_cmp_s

Compares two variable length strings ss_string_cmp

Substring modification ss_string_splice

Initialize the asyncronous I/O subsystem ss_aio_init

Terminate the asynchronous I/O subsystem ss_aio_finalize
Continued on next page

318 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Query file synchronization state ss_file_synchronized

Query scope synchronization state ss_scope_synchronized

Synchronize a scope ss_scope_synchronize

Synchronize all scopes of a file ss_file_synchronize

Print global file table ss_gfile_debug_all

Terminate the asynchronous I/O
subsystem

ss_aio_finalize

Terminate the library ss_finalize

Begin a functionality test SS_CHECKING

End functionality test SS_END_CHECKING

End functionality test SS_END_CHECKING_WITH

Indicate functionality test failure SS_FAILED

Indicate functionality test failure SS_FAILED_WHEN

Test file open status ss_file_isopen

Test file writability ss_file_iswritable

Test library initialization state ss_initialized

Indicate functionality test skipped SS_SKIPPED

Indicate functionality test skipped SS_SKIPPED_WHEN

Test whether an object can be modi-
fied

ss_pers_iswritable

Tests transient state of a file ss_file_istransient

Tests transient state of a scope ss_scope_istransient

Tests whether scope can be modified ss_scope_iswritable

Obtain top scope ss_file_topscope

Obtain top scope for an object ss_pers_topscope

Continued on next page

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 319

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference
Determines if scope is an open top-scope ss_scope_isopentop

Declare a file to be transient H5F_ACC_TRANSIENT

Tests transient state of a file ss_file_istransient

Tests transient state of a scope ss_scope_istransient

Compares two datatypes H5Tcmp

Compares two persistent objects ss_pers_cmp

Compares two persistent objects ss_pers_cmp_

Compares two variable length strings ss_string_cmp

Get two-phase I/O properties ss_blob_get_2pio

Set two-phase I/O properties ss_blob_set_2pio

Asserts object runtime type SS_ASSERT_TYPE

Obtain magic number for type SS_MAGIC

Asserts object runtime type and existence SS_ASSERT_MEM

Modify attribute type and size ss_attr_modify

Make a new object unique ss_pers_unique

Make an object unique SS_PERS_UNIQUE

Query an unsigned integer property ss_prop_get_u

Change an unsigned integer property value ss_prop_set_u

Block until requests complete ss_aio_suspend

Updates an object link ss_pers_update

Change a floating-point property value ss_prop_set_f

Change a property value ss_prop_set

Change a signed integer property value ss_prop_set_i

Change an attribute value ss_attr_put

Change an unsigned integer property value ss_prop_set_u
Continued on next page

320 Chapter 1. SAF User Manuals

SAF User Manual, Release 2.0.3

Table 1.3 – continued from previous page
Concept Key Reference

Obtain array value ss_array_get

Obtain attribute value ss_attr_get

Obtain pointer direct to value ss_prop_buffer

Query a property value ss_prop_get

Value comparison flags ss_val_cmp_t

Change the size of a variable length array ss_array_resize

Compares two variable length strings ss_string_cmp

Environment Variables SSLIB

Weakly reset a string ss_string_realloc

Test whether an object can be modified ss_pers_iswritable

Tests whether scope can be modified ss_scope_iswritable

Wildcard SIL role SAF_SROLE_ANY

Test file writability ss_file_iswritable

Write data to a blob ss_blob_write

Write data to a blob ss_blob_write1

Initiate a write operation ss_aio_write

Write pending data to file ss_scope_flush

Write pending data to file ss_file_flush

1.3. SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later 321

SAF User Manual, Release 2.0.3

322 Chapter 1. SAF User Manuals

Index

Symbols
_saf_convert (C function), 180
_saf_find_parent_field (C function), 108
_saf_gen_stdtypes (C function), 51
_saf_is_primitive_type (C function), 181
_saf_strdup (C function), 152

C
CloseDatabase (C function), 198

G
GetAddDelSequence (C function), 186

H
H5F_ACC_TRANSIENT (C variable), 290
H5Tcmp (C function), 289

M
main (C function), 188, 190, 197, 202, 203, 206, 207
make_base_space (C function), 189, 190, 203
make_coord_field (C function), 190
make_coord_field_dofs (C function), 191
make_direct_coord_field (C function), 189
make_direct_temperature_field (C function),

189
make_displacement_field (C function), 203
make_distribution_factors_on_ss2_field

(C function), 203
make_global_coord_field (C function), 204
make_indirect_coord_field (C function), 189
make_indirect_temperature_field (C func-

tion), 190
make_init_suite (C function), 204
make_mesh_connectivity (C function), 191
make_pressure_on_ss1_field (C function), 204
make_scalar_field (C function), 192
make_scalar_field_dofs (C function), 192
make_stress_field (C function), 192
make_stress_field_dofs (C function), 193

make_stress_on_cell_1_field (C function),
204

make_temperature_on_cell_2_field (C func-
tion), 205

make_temperature_on_ns1_field (C function),
205

make_time_base_field (C function), 205
make_time_suite (C function), 205

O
OpenDatabase (C function), 187, 194, 201

R
ReadBackElementHistory (C function), 195

S
SAF_1DC (C macro), 156
SAF_1DF (C macro), 157
SAF_2DC (C macro), 157
SAF_2DF (C macro), 157
SAF_3DC (C macro), 157
SAF_3DF (C macro), 158
saf_allgather_handles (C function), 153
SAF_ASSERT_DISABLE (C variable), 43
SAF_BARRIER (C macro), 150
SAF_BOUNDARY (C macro), 83
SAF_CATCH (C variable), 48
SAF_CATCH_ALL (C variable), 48
SAF_CATCH_ERR (C macro), 49
saf_close_database (C function), 64
SAF_COMMON (C macro), 83
SAF_CONSTANT (C macro), 107
SAF_CORDER (C macro), 159
saf_createProps_database (C function), 66
saf_createProps_lib (C function), 53
saf_data_has_been_written_to_comp_field

(C function), 109
saf_data_has_been_written_to_field (C

function), 109

323

SAF User Manual, Release 2.0.3

saf_declare_algebraic (C function), 169
saf_declare_alternate_indexspec (C func-

tion), 172
saf_declare_basis (C function), 176
saf_declare_category (C function), 76
saf_declare_collection (C function), 79
saf_declare_coords (C function), 110
saf_declare_default_coords (C function), 110
saf_declare_evaluation (C function), 181
saf_declare_field (C function), 111
saf_declare_field_tmpl (C function), 101
saf_declare_quantity (C function), 137
saf_declare_relrep (C function), 183
saf_declare_role (C function), 178
saf_declare_set (C function), 70
saf_declare_state_group (C function), 127
saf_declare_state_tmpl (C function), 124
saf_declare_subset_relation (C function), 84
saf_declare_suite (C function), 132
saf_declare_topo_relation (C function), 93
saf_declare_unit (C function), 142
SAF_DECOMP (C macro), 107
SAF_DEFAULT_DBPROPS (C variable), 66
SAF_DEFAULT_LIBPROPS (C variable), 160
saf_describe_algebraic (C function), 170
saf_describe_alternate_indexspec (C func-

tion), 173
saf_describe_basis (C function), 177
saf_describe_category (C function), 76
saf_describe_collection (C function), 80
saf_describe_evaluation (C function), 181
saf_describe_field (C function), 114
saf_describe_field_tmpl (C function), 102
saf_describe_quantity (C function), 138
saf_describe_relrep (C function), 184
saf_describe_role (C function), 179
saf_describe_set (C function), 71
saf_describe_state_group (C function), 129
saf_describe_state_tmpl (C function), 125
saf_describe_subset_relation (C function),

87
saf_describe_suite (C function), 133
saf_describe_topo_relation (C function), 95
saf_describe_unit (C function), 142
saf_divide_quantity (C macro), 139
saf_divide_unit (C macro), 143
SAF_EMBEDBND (C macro), 84
SAF_EQUIV (C macro), 151
SAF_ERROR_REPORTING (C variable), 44
saf_error_str (C function), 50
saf_extend_collection (C function), 81
saf_final (C function), 51
saf_find_algebraics (C function), 170

saf_find_alternate_indexspecs (C function),
174

saf_find_bases (C function), 177
saf_find_categories (C function), 77
saf_find_collections (C function), 82
saf_find_coords (C function), 115
saf_find_default_coords (C function), 116
saf_find_evaluations (C function), 182
saf_find_field_tmpls (C function), 103
saf_find_fields (C function), 116
saf_find_matching_sets (C function), 72
saf_find_one_algebraic (C function), 171
saf_find_one_basis (C function), 178
saf_find_one_evaluation (C function), 183
saf_find_one_quantity (C function), 139
saf_find_one_relrep (C function), 184
saf_find_one_role (C function), 179
saf_find_one_unit (C function), 143
saf_find_quantities (C function), 139
saf_find_relreps (C function), 184
saf_find_roles (C function), 179
saf_find_sets (C function), 73
saf_find_state_groups (C function), 129
saf_find_state_tmpl (C function), 125
saf_find_subset_relations (C function), 88
saf_find_suites (C function), 134
saf_find_topo_relations (C function), 95
saf_find_unit_not_applicable (C function),

144
saf_find_units (C function), 144
SAF_FORDER (C macro), 161
saf_freeInfo_path (C function), 59
saf_freeProps_database (C function), 66
saf_freeProps_lib (C function), 53
SAF_GENERAL (C macro), 84
saf_get_attribute (C function), 148
saf_get_cat_att (C function), 78
saf_get_count_and_type_for_field (C func-

tion), 117
saf_get_count_and_type_for_subset_relation

(C function), 89
saf_get_count_and_type_for_topo_relation

(C function), 96
saf_get_field_att (C function), 118
saf_get_field_tmpl_att (C function), 104
saf_get_set_att (C function), 75
saf_get_state_grp_att (C function), 130
saf_get_state_tmpl_att (C function), 126
saf_get_suite_att (C function), 134
saf_getInfo_errmsg (C function), 59
saf_getInfo_hdfversion (C function), 59
saf_getInfo_isHDFfile (C function), 60
saf_getInfo_isSAFdatabase (C function), 60
saf_getInfo_libversion (C function), 61

324 Index

SAF User Manual, Release 2.0.3

saf_getInfo_mpiversion (C function), 61
saf_getInfo_permissions (C function), 62
saf_getInfo_staterror (C function), 62
saf_init (C macro), 52
saf_is_self_stored_field (C function), 118
saf_is_self_stored_topo_relation (C func-

tion), 97
saf_log_unit (C function), 145
saf_multiply_quantity (C function), 140
saf_multiply_unit (C function), 146
SAF_NA_INDEXSPEC (C variable), 162
SAF_NELMTS (C macro), 151
SAF_NODAL (C macro), 107
SAF_NOT_APPLICABLE_INT (C variable), 163
SAF_NOT_IMPL (C variable), 163
SAF_NOT_SET_DB (C variable), 64
SAF_NULL_FIELD (C macro), 108
SAF_NULL_FTMPL (C macro), 100
SAF_NULL_REL (C macro), 100
SAF_NULL_SET (C macro), 69
SAF_NULL_STATE_GRP (C macro), 127
SAF_NULL_STMPL (C macro), 124
SAF_NULL_SUITE (C macro), 132
saf_offset_unit (C function), 146
saf_open_database (C function), 64
SAF_PARALLEL_VAR (C variable), 154
SAF_POSTCOND_DISABLE (C variable), 45
SAF_PRECOND_DISABLE (C variable), 45
saf_put_attribute (C function), 149
saf_put_cat_att (C function), 78
saf_put_field_att (C function), 119
saf_put_field_tmpl_att (C function), 104
saf_put_set_att (C function), 75
saf_put_state_grp_att (C function), 130
saf_put_state_tmpl_att (C function), 126
saf_put_suite_att (C function), 134
SAF_QAMOUNT (C variable), 135
SAF_QCURRENT (C variable), 136
SAF_QLENGTH (C variable), 136
SAF_QLIGHT (C variable), 136
SAF_QMASS (C variable), 136
SAF_QNAME (C macro), 137
SAF_QTEMP (C variable), 137
SAF_QTIME (C variable), 137
saf_quantify_unit (C function), 147
SAF_RANK (C macro), 151
saf_read_alternate_indexspec (C function),

175
saf_read_field (C function), 119
saf_read_state (C function), 130
saf_read_subset_relation (C function), 90
saf_read_topo_relation (C function), 98
saf_readInfo_path (C function), 62
SAF_REGISTRIES (C variable), 46

SAF_REGISTRY_SAVE (C variable), 46
saf_same_collections (C function), 83
SAF_SELF (C macro), 75
saf_setProps_Clobber (C function), 67
saf_setProps_DbComm (C function), 67
saf_setProps_DontAbort (C function), 54
saf_setProps_ErrFunc (C function), 54
saf_setProps_ErrorLogging (C function), 55
saf_setProps_ErrorMode (C function), 55
saf_setProps_LibComm (C function), 56
saf_setProps_MemoryResident (C function), 68
saf_setProps_ReadOnly (C function), 68
saf_setProps_Registry (C function), 56
saf_setProps_StrMode (C function), 57
saf_setProps_StrPoolSize (C function), 58
SAF_SIZE (C macro), 151
SAF_SROLE_ANY (C variable), 291
saf_target_field (C function), 121
saf_target_subset_relation (C function), 91
saf_target_topo_relation (C function), 98
SAF_TRACING (C variable), 47
SAF_TRY_BEGIN (C variable), 49
SAF_TRY_END (C variable), 49
SAF_UNIVERSE (C macro), 69
saf_update_database (C function), 65
saf_use_written_subset_relation (C func-

tion), 91
SAF_VALID (C macro), 152
SAF_VERSION_ANNOT (C variable), 154
SAF_VERSION_MAJOR (C variable), 154
SAF_VERSION_MINOR (C variable), 155
SAF_VERSION_RELEASE (C variable), 155
saf_version_string (C function), 156
SAF_VERSION_VAR (C variable), 155
SAF_WHOLE_FIELD (C variable), 108
saf_write_alternate_indexspec (C function),

175
saf_write_field (C function), 122
saf_write_state (C function), 131
saf_write_subset_relation (C function), 92
saf_write_topo_relation (C function), 99
SAF_XOR (C macro), 152
SAF_ZONAL (C macro), 108
ss_array_get (C function), 266
ss_array_nelmts (C function), 268
ss_array_put (C function), 267
ss_array_reset (C function), 267
ss_array_resize (C function), 266
ss_array_target (C function), 265
ss_array_targeted (C function), 266
SS_ASSERT_CLASS (C macro), 228
SS_ASSERT_MEM (C macro), 228
SS_ASSERT_TYPE (C macro), 227
ss_attr_count (C function), 284

Index 325

SAF User Manual, Release 2.0.3

ss_attr_describe (C function), 287
ss_attr_find (C function), 284
ss_attr_get (C function), 285
ss_attr_modify (C function), 286
ss_attr_new (C function), 283
ss_attr_put (C function), 285
ss_bytes (C function), 225
SS_CHECKING (C macro), 228
ss_debug (C function), 292
ss_debug_env (C function), 293
ss_debug_s (C function), 295
SS_END_CHECKING (C variable), 230
SS_END_CHECKING_WITH (C macro), 230
ss_error (C function), 224
SS_FAILED (C variable), 229
SS_FAILED_WHEN (C macro), 229
ss_file_close (C function), 275
ss_file_create (C function), 271
ss_file_flush (C function), 274
ss_file_isopen (C function), 271
ss_file_istransient (C function), 272
ss_file_iswritable (C function), 272
ss_file_open (C function), 269
ss_file_openall (C function), 270
ss_file_readonly (C function), 273
ss_file_references (C function), 270
ss_file_registry (C function), 275
ss_file_synchronize (C function), 273
ss_file_synchronized (C function), 274
ss_file_topscope (C function), 276
ss_finalize (C function), 223
ss_gfile_debug_all (C function), 277
ss_gfile_debug_one (C function), 277
ss_init (C macro), 225
ss_init_func (C function), 217
ss_initialized (C function), 223
ss_insert_commas (C function), 225
SS_MAGIC (C macro), 233
SS_MAGIC_CLASS (C macro), 233
SS_MAGIC_CONS (C macro), 234
SS_MAGIC_OF (C macro), 234
SS_MAGIC_OK (C macro), 233
SS_MAGIC_SEQUENCE (C macro), 234
SS_MAX_BASEQS (C variable), 290
SS_MAX_INDEXDIMS (C variable), 290
ss_pers_cksum (C function), 252
ss_pers_cmp (C function), 250
ss_pers_cmp_ (C function), 251
ss_pers_copy (C function), 244
SS_PERS_COPY (C macro), 257
ss_pers_debug (C function), 255
ss_pers_decode_cb (C function), 255
ss_pers_deref (C function), 246
ss_pers_dest (C function), 245

SS_PERS_DEST (C macro), 256
ss_pers_eq (C function), 248
SS_PERS_EQ (C macro), 257
ss_pers_equal (C function), 249
SS_PERS_EQUAL (C macro), 258
ss_pers_file (C function), 247
ss_pers_find (C function), 252
SS_PERS_FIND (C macro), 257
SS_PERS_ISNULL (C macro), 258
ss_pers_iswritable (C function), 248
ss_pers_modified (C function), 254
SS_PERS_MODIFIED (C macro), 258
ss_pers_new (C function), 243
SS_PERS_NEW (C macro), 256
ss_pers_refer (C function), 246
ss_pers_reset (C function), 245
ss_pers_scope (C function), 247
ss_pers_state (C function), 249
ss_pers_topscope (C function), 248
ss_pers_unique (C function), 255
SS_PERS_UNIQUE (C macro), 258
ss_pers_update (C function), 246
ss_prop_add (C function), 236
ss_prop_appendable (C function), 242
ss_prop_buffer (C function), 241
ss_prop_cons (C function), 236
ss_prop_dest (C function), 236
ss_prop_dup (C function), 235
ss_prop_get (C function), 239
ss_prop_get_f (C function), 240
ss_prop_get_i (C function), 240
ss_prop_get_u (C function), 240
ss_prop_has (C function), 237
ss_prop_immutable (C function), 243
ss_prop_modifiable (C function), 242
ss_prop_new (C function), 235
ss_prop_set (C function), 237
ss_prop_set_f (C function), 239
ss_prop_set_i (C function), 238
ss_prop_set_u (C function), 238
ss_prop_type (C function), 241
ss_scope_close (C function), 279
ss_scope_comm (C function), 282
ss_scope_flush (C function), 282
ss_scope_isopen (C function), 279
ss_scope_isopentop (C function), 280
ss_scope_istransient (C function), 280
ss_scope_iswritable (C function), 280
ss_scope_open (C function), 278
ss_scope_synchronize (C function), 281
ss_scope_synchronized (C function), 281
SS_SKIPPED (C variable), 229
SS_SKIPPED_WHEN (C macro), 230
ss_string_cat (C function), 263

326 Index

SAF User Manual, Release 2.0.3

ss_string_cmp (C function), 262
ss_string_cmp_s (C function), 263
ss_string_get (C function), 260
ss_string_len (C function), 264
ss_string_memlen (C function), 264
ss_string_memset (C function), 261
ss_string_ptr (C function), 260
ss_string_realloc (C function), 262
ss_string_reset (C function), 262
ss_string_set (C function), 261
ss_string_splice (C function), 263
ss_table_indirect (C function), 259
ss_val_dump (C function), 287
ss_zap (C function), 224

U
UpdateDatabase (C function), 198

W
WriteCurrentMesh (C function), 187, 196, 202

Index 327

	SAF User Manuals
	Sets and Fields (SAF) API Reference Manual for SAF 2.0.3
	Sets and Fields (SAF) Examples and Use Cases
	SAF Support Library (SSlib) Programming Reference Manual for SAF 2.0.0 and later

	Index

